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Abstract: The measurement of the heart’s electrical activity, known as Electrocardiogram (ECG), is commonly employed for detecting
heart diseases due to its non-invasive and straightforward nature. Studying the fusion of action impulse patterns generated by the
specialized cardiac tissues of the heart is a key aspect of the analysis. Carefully scrutinizing the electrical signal produced with each
heartbeat allows for the identification of any abnormalities in the heart. The integration of data mining technology in healthcare has
significantly enhanced knowledge, making data mining an increasingly preferred option in the medical sector. In this study, a hybridized
algorithm is employed for pattern mining to classify heartbeats. The initial step involves pre-processing input data from the ECG signal
using a median filter, followed by the extraction of features. These extracted features encompass both medical and statistical aspects.
The subsequent phase entails activity pattern mining based on the Optimization Search Algorithm (OSA), a hybridized optimization
algorithm. Finally, heartbeats are classified using the rule matrix generated from activity pattern mining. This classification is performed by
SqueezeNet, trained through the proposed model Optimization Search Algorithm and SqueezeNet (OSA-SN). Furthermore, performance
of this reasearch, such as precision, sensitivity, and specificity with maximal values of 0.91, 0.94, 0.93.
Keywords: Electrocardiogram, Heart Disease, OSA-SN model, Pattern mining, SqueezeNet

1. INTRODUCTION
Through the application of life big data mining, the

healthcare [1] system aspires to evolve into an intelligent
health service that empowers patients, particularly those
grappling with chronic illnesses, to manage their well-being.
The goal is to expand the range of health services, incor-
porating interventions to prevent the recurrence of chronic
conditions such as diabetes, dyslipidemia, hypertension,
cerebrovascular disorders [2], and cardiovascular disorders.
This extension seeks to enable early detection and care for
symptoms of depression and stress.

In many instances, large hospitals and healthcare facili-
ties establish Health Information Systems (HIS) [3] to store
substantial biomedical data for subsequent utilization and
analysis. Consequently, the volume of health data amassed
has seen a significant increase and is now comparable to
big data. While big data is predominantly employed in the
existing healthcare system for treating patients with acute
and other illnesses during their hospital stay, it also plays
a crucial role in managing chronic diseases, facilitating
integrated care and treatment, and delivering personalized
services.

Sequential pattern mining has demonstrated success
in various domains, encompassing applications such as
analyzing patterns in natural disasters, studying customer
behavior, conducting Deoxyribo Nucleic Acid (DNA) se-
quence analysis, predicting stock trends, scrutinizing web
access patterns, exploring disease treatment patterns, and
managing inventory control. Within the healthcare domain,
sequential patterns are identified through the mining of
patient pathways. The extraction of these sequential patterns
and intriguing pathways proves to be a valuable technique
for healthcare managers and policy designers, facilitating
an understanding of the intricate dynamics inherent in
healthcare processes.

In the realm of healthcare, machine learning (ML) [4]
has evolved into an indispensable tool, primarily for its
capability to enhance diagnostic accuracy and treatment
outcomes. Particularly within neuroimaging, ML algorithms
are increasingly being employed to assist in the diagnosis
and treatment of heart diseases. Heart diseases manifest
as abnormal tissue growth within the Heart, and they
may be benign (non-cancerous) or malignant (cancerous),
with treatment strategies contingent upon factors like type,
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size, and location of the tumor. Given the complexity of
heart diseases and the diverse symptoms they can exhibit,
accurate diagnosis and early detection are paramount.

ML algorithms, trained to discern intricate patterns [8]
within medical imaging data, offer a significant advantage
in detecting subtle changes that may be challenging for
human radiologists to identify. For instance, in the anal-
ysis of magnetic resonance imaging (MRI) scans [5], ML
algorithms prove valuable in recognizing subtle alterations
in Heart tissue, indicative of a potential tumor. This aids
radiologists in making more precise diagnoses and devising
effective treatment plans.

One notable application of ML algorithms is in the
classification of heart diseases based on imaging features.
While radiologists traditionally rely on visual assessments
of MRI scans for classification, this subjective process can
be prone to error. ML algorithms, on the other hand, are
adept at simultaneously analyzing thousands of imaging
features, leading to accurate and objective classification of
tumors.

2. LITERATURE SURVEY
M. Sornalakshmi et al. employed the Enhanced Paral-

lel and Distributed Apriori (EPDA) technique for mining
frequent patterns (FP) [6] healthcare data. This approach
demonstrated commendable performance by reducing the
time spent on transaction scanning for generating candidate
itemsets and also curtailed the number of transactions to be
scanned. Nevertheless, a drawback of this method was the
generation of a substantial number of candidate itemsets.

Hyun Yoo et al. utilized a Deep Neural Network (Deep
NN) for real-time categorization of heart conditions. While
this method reduced the size of big data through compu-
tational work and minimized operation time, it suffered
from a degradation in system performance. Through the
application of life big data mining, the healthcare system
aims to undergo a transformation into an intelligent health
service that empowers patients, particularly those dealing
with chronic illnesses, to manage their own well-being. The
goal is to expand the range of health services, incorporating
interventions to prevent the recurrence of chronic conditions
such as diabetes.

Hossein Estiri et al. [7] introduced the Dimensionality
Reduction Algorithm (MSMR) and the Transitive Sequen-
tial Pattern Mining (tSPM) algorithm for discrete clinical
data. This approach provided a methodological framework
for interpreting information from electronic health records.
However, there was no discernible advantage in using the
MSMR algorithm over the more commonly used sequential
representations in practical applications.

Ji-soo Kang et al. proposed the Prefix Span algorithm
with time sliding weight for pattern mining [13]. This
method reduced computational costs and the amount of
memory required to construct trees by employing time slid-

ing weight to prune nodes without affecting them. However,
a limitation persisted in the physical projection read from
disk due to the necessity of writing the projected database
on disk.

Jiaxin Jin et al. assessed the Support Vector Machine
(SVM) for healthcare. While this method was straightfor-
ward and did not require specialized operator technology, it
could not be applied to multiple subjects beyond cerebellar
ataxia detection.

Shafiul Alom Ahmed Bhabesh Nath employed the FP-
Growth algorithm for identifying adverse disease agents.
This method achieved compactness in terms of space com-
plexity but could not address issues related to incremental
and scalable mining.

Shengyao Zhou et al.[8] designed a MapReduce dis-
tributed computing model and association rule mining
for abnormal behavior detection in healthcare. This sys-
tem demonstrated efficiency by scanning the transaction
database in fewer instances. However, it was not suitable
for parallel computing.

Krishna Kumar Mohbey et al. [9] devised a parallel
approach for high utility-based FP mining. Although this
method exhibited longer execution times and could handle
substantial amounts of data, it faced challenges in terms of
system performance.

The classification of LC histopathology images was
first accomplished using the Relief-SVM approach. There
have been 121 histological photographs of LUSC, ASC,
and SCLC. According to the research findings, Relief-
SVM has the greatest classification efficiency for identifying
different subtypes of lung cancer, which is highly useful for
categorizing lung histopathology images

Qiangchang Wang developed a unique multiscale ro-
tation invariant convolutional neural network (MRCNN)
design for categorizing different kinds of lung flesh using
high-visible and clear computed tomography. Given that
MRCNN employs a Gabor local binary pattern, its insen-
sitivity to picture scale and rotation un image processing
is a critical feature. Shortness of breath, dry coughing, and
difficult breathing are all signs of ILD and have a negative
impact on health. High-resolution computed tomography
(HRCT) images can show small textural differences across
different ILD lung tissues. Clinical radiologists may benefit
from help from HRCT image processing techniques in
spotting these variations.

Computational approaches can be useful for support-
ing, storing, and monitoring computer-aided diagnosis in
critical care. According to the study, pre-trained ResNet
prototype serve like the core frameworks. The pertained
model is transferred utilizing the common co-tuning, fine-
tuning, stochastic normalization, and combination of the
two techniques. Spectrum correction is used to adjust for
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alterations in camcorder parameters on the ICBHI dataset.

Andrew Beers explained that the majority of cancer
related deaths in the US are caused by lung cancer. Recent
research has shown that adopting low dose CT (LDCT) for
screening can lower lung cancer-related mortality. Although
this test has a high sensitivity rate for detecting lung
nodules, its specificity rate is low, making it difficult to
discriminate between benign and malignant lesions. The
ISBI 2018 Lung Nodule Malignancy Prediction Challenge,
developed by a team from the National Cancer Institute’s
Quantitative Imaging Network, focused on the automated
(non-manual) forecast of chest nodule malignancy using
two consecutive LDCT screening tests.

Initially, an adaptive data pre-processing approach, slic-
ing selection (ASS), was created in order to reduce the
excessive disturbance in the intake of samples that contain
carcinoma. The self-supervised learning network is subse-
quently developed in order to get trustworthy picture rep-
resentations from CT scans. The development of a domain-
adaptive transfer learning method is the final step.

Pranjal Sahu created a brand-new Characterizing lesion
using a three - dimensional CNN for classifying lung
nodules and determining their propensity to be malignant.
The trial’s findings showed how effectively our recom-
mended model outperformed a variety of state-of-the-art
classification strategies. The lightweight, multi view random
samples multi-section. Network architecture is described to
extract a nodule’s cross - section from numerous angles
and to compress the volume information of the nodule into
a compact representation by aggregating data from its many
intersection area through a view pooling surface.

3. PROPOSED SYSTEM
Our proposed approach for segmenting Heart diseases

using SqueezeNet entails initial pre-processing of MRI
images, succeeded by the training of a SqueezeNet model
[10] on the prepared data. Subsequently, the trained model is
applied to perform segmentation of the tumor region within
the MRI scans. To enhance the accuracy of segmentation,
we intend to introduce transfer learning by fine-tuning the
pre-trained SqueezeNet model using an extensive medical
image dataset. The primary objective of our proposed sys-
tem is to deliver precise and dependable tumor segmentation
[18] outcomes, aiming to support medical professionals in
the processes of diagnosis and treatment planning.

The utilization of SqueezeNet for identifying Heart dis-
eases in medical images [6]introduces complexities. Below
is a concise depiction of the procedural flow within our
proposed system for the detection of Heart diseases using
SqueezeNet.

1) Data collection:
The dataset employed in this paper is the ECG
heartbeat categorization dataset [19], comprising two
collections of heartbeat signals. This dataset is em-

ployed for investigating heartbeat classification. The
signal data within this dataset facilitates the identifi-
cation of heartbeats, distinguishing between normal
heartbeats, various arrhythmias [11], and cases of
myocardial infarction. Specifically, the dataset con-
tains 109,446 samples of arrhythmia, categorized
into five types, with a frequency range of 125 Hz.
The data is organized in CSV files, arranged in a
matrix format where each row represents an example
for classification.

2) Data preprocessing: The preprocessing of images
encompasses a series of actions conducted on the raw
image data to convert it into a format better suited
for subsequent processing. This commonly involves
tasks like adjusting the size of the images to a stan-
dardized dimension. The resizing operation entails
scaling the images to a specific size suitable for the
particular application. This step is frequently essen-
tial because images obtained from various sources
or devices may exhibit varying resolutions, aspect ra-
tios, or dimensions, posing challenges in maintaining
consistent processing.

3) Model selection: Upon investigating numerous deep
learning models designed for image segmentation
tasks, it was found that SqueezeNet can attain top-
tier performance [12] on benchmark datasets such as
ImageNet [20]. Remarkably, it achieves this while
employing substantially fewer parameters compared
to other deep learning architectures like VGG or
ResNet. This characteristic renders SqueezeNet es-
pecially suitable for applications where constraints
on memory and computational resources are a key
consideration.

4) Model architecture:
Construct the chosen model’s architecture by defin-
ing the quantity and nature of layers, activation
functions [13], and additional hyperparameters.

5) Model Training & Testing: The dataset is divided
into an 80% training set and a 20% testing set
for SqueezeNet. Throughout the training phase, the
model refines its weights to acquire the capability
to classify images. Following training, the model
is employed for predictions on the testing set to
evaluate its performance.

6) Model evaluation: Assess the model’s performance
on an alternate test set by employing metrics such as
accuracy, precision, recall, and F1 score. Accuracy
gauges the ratio of accurately classified images, pre-
cision assesses the ratio of true positives in relation
to all positive predictions, recall evaluates the ratio of
true positives in comparison to all actual positives,
and the F1 score represents the harmonic mean of
precision and recall.

7) Model refinement:
Fine-tune the model architecture and hyperparame-
ters [14] based on the results of the evaluation to
enhance the performance of the segmentation.

8) Prediction: Ultimately, following the training and
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Figure 1. Process Flow of the Proposed System

testing phases of the model, we proceed to classify
the images. During the prediction step, the trained
model receives the input image, and the output is
forecasted as either 0 (indicating the absence of a
tumor) or 1 (indicating the presence of a tumor).

4. ARCHITECTURE OF SQUEEZENET
SqueezeNet, a deep neural network architecture [15]

designed to achieve high accuracy in image classification
tasks while minimizing model parameters, was introduced
by UC Berkeley researchers in 2016. Its name stems from
a ”squeeze” layer reducing input channels, succeeded by
”expand” layers boosting output channels. This design
enables high accuracy with fewer parameters compared to
other models.

To reduce parameters, SqueezeNet employs 1x1 convo-
lutions and ”fire modules,” featuring 1x1 and 3x3 convolu-
tions. Global average pooling [16] replaces fully connected
layers, further cutting parameters. SqueezeNet’s small size
and high accuracy suit mobile/embedded applications. Be-
yond image classification [17], it’s used in tasks like ob-
ject detection and semantic segmentation. Key strategies
include ”fire modules” for channel manipulation, parameter
reuse across layers, regularization [18](dropout, weight de-
cay), and model compression (pruning, quantization). These
strategies ensure high accuracy with fewer parameters, vital
for resource-constrained applications.

In Heart tumor classification, SqueezeNet serves as a
base CNN model. Preprocess MRI images by resizing, nor-
malization (0-1 pixel values), and dataset splitting. Augment
training data using transformations. Define and compile the
SqueezeNet model using Keras API, consisting of convolu-

tional layers, pooling, fully connected layers, and a binary
output layer. Train the model using fit generator, specifying
data generators, epochs, optimizer, and loss function.

Evaluate the trained model on a test set and use it
to predict new MRI images by passing them through the
model’s predict function. SqueezeNet proves effective in
accurate Heart tumor classification, leveraging its efficient
architecture and training on appropriately preprocessed
datasets.

SqueezeNet is a straightforward CNN architecture de-
signed to enhance model accuracy. It offers several advan-
tages, such as minimal communication requirements across
servers during distributed training, low bandwidth needs
for exporting new models, making it more feasible for de-
ployment on hardware with limited memory. In the context
of classifying heartbeats from ECG signal data trained by
OSASN, SqueezeNet proves beneficial. The classification
process utilizes the rule matrix generated from activity
pattern mining, employing SqueezeNet. The architecture’s
development revolves around three main categories, ex-
plained as follows:

• Replace filters by 1x1 filters: This involves transform-
ing certain convolution filters to a 1x1 format, as each
filter has fewer parameters compared to the original
filter.

• Dropping input channel numbers to 1x1 filters: Con-
sidering a convolution layer where the total parame-
ters equal the input channel numbers, the reduction
of CNN parameters involves not only reducing filter
numbers but also channel numbers. Squeeze layers
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Figure 2. Squeezenet Architecture

play a role in reducing channels in layers.

In the later stages of the network, downsampling be-
comes necessary to address the issue of generating large
activation maps by convolution layers. This is achieved
within pooling or convolution layers by adjusting the layer
selections and input data size to regulate the height and
width of activation maps. SqueezeNet’s fundamental unit,
the fire module, comprises an expand layer that merges 1x1
and 3x3 filter sizes following a squeeze convolution layer.
There is a restriction on the number of input channels for
1x1 filters since the quantity of filters in the squeeze layer
must not exceed the total number of 3x3 filters in the expand
layer and the count of 1x1 filters in the expand layer.

The architectural concept is structured with a standalone
convolution layer, max pooling layers, fire modules, and a
concluding convolution layer. Subsequently, the output is
generated through an average pooling layer, softmax, and a
final convolution layer. In the context of classifying heart-
beats, the formulated rule matrix is input into SqueezeNet,
which executes various operations to yield the ”y” output.
Figure 5 illustrates the block diagram of the SqueezeNet
architecture for heartbeat classification.

SqueezeNet is a deep neural network architecture
designed for efficient model inference, particularly in
resource-constrained environments. The Rectified Linear
Unit (ReLU) function is a key activation function used in
SqueezeNet and many other neural networks. The ReLU
function is defined as:

f (x) = max(0, x) (1)

In the context of SqueezeNet explained in equation 1,
the ReLU function is applied element-wise to the output of
certain layers, introducing non-linearity to the network. This
helps the model capture complex patterns and relationships
in the input data. The ReLU function replaces negative

Figure 3. Relu function of Squeezenet

values with zero while leaving positive values unchanged.

This function takes an input x and applies the element-
wise maximum operation with zero, effectively implement-
ing the ReLU activation function. It ensures that only pos-
itive values contribute to the output, allowing the network
to learn and represent complex patterns in the data.

In the realm of cardiovascular health, the convergence
of SqueezeNet, pattern mining, and deep learning presents
a compelling approach for heightened detection and clas-
sification of heart disease. Leveraging the efficiency of
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SqueezeNet’s architecture, which excels in image classifi-
cation tasks, alongside the insights gained through pattern
mining techniques, this integrated methodology aims to
provide a comprehensive understanding of cardiac anoma-
lies. By employing SqueezeNet for the classification of
heart-related data, coupled with pattern mining algorithms,
the model endeavors to unearth intricate patterns within
cardiac signals, contributing to more accurate and nuanced
disease identification. This innovative amalgamation holds
the potential to advance our capabilities in diagnosing heart
diseases by harnessing the power of deep learning and
pattern mining synergistically.

5. OPTIMIZED SQUEEZENET ALGORITHM

Algorithm 1 SQUEEZE ALGORITHM
initialization
P=Params
S=Squeezenet
C=Convolution
CN=Channels
K=Kernel size
if SN(input data)
C1 P = in CN: 1, out CN: 96, ker size: 7, stride: 2 then
end
fire P) =
in CN: 96, S CN: 16, expand1x1 CN: 64, expand3x3 CN:
64,
in CN: 128, S CN: 16, expand1x1 CN: 64,
expand3x3 CN: 64,
in CN: 128, S CN: 32, expand1x1 CN: 128,
expand3x3 CN: 128,
in CN: 256, S CN: 32, expand1x1 CN: 128,
expand3x3 CN: 128,
in CN: 256, S CN: 48, expand1x1 CN: 192,
expand3x3 CN: 192,
in CN: 384, S CN: 48, expand1x1 CN: 192,
expand3x3 CN: 192,
in CN: 384, S CN: 64, expand1x1 CN: 256,
expand3x3 CN: 256,
in CN: 512, S CN: 64, expand1x1 CN: 256,
expand3x3 CN: 256

Colutional layer
x = Colution layer(x, C1 P)
Fire modules
for fire P in fire P:
x = fire module(x, fire P)

The key innovation in SqueezeNet is the incorporation
of fire modules, which are building blocks consisting of a
squeeze layer followed by an expand layer. The squeeze
layer primarily consists of 1x1 convolutions, which helps
in reducing the number of input channels (features) and

thereby the computational cost. This is important for re-
ducing model size and achieving efficiency.

The expand layer, on the other hand, utilizes a combina-
tion of 1x1 and 3x3 convolutions to capture both local and
global features. The 1x1 convolutions help in maintaining
efficiency by reducing the number of parameters, while the
3x3 convolutions capture more complex patterns in the data.

The overall architecture of SqueezeNet emphasizes the
importance of achieving a balance between model accu-
racy and computational efficiency. By using a network
design that incorporates 1x1 convolutions and fire modules,
SqueezeNet manages to deliver competitive performance on
image classification tasks with significantly fewer param-
eters compared to other contemporary architectures. This
makes it a suitable choice for deployment in scenarios
where computational resources are limited.

Algorithm 2 EXPANSION LAYER ALGORITHM
if Additional layers then
end
x = adaptive avg pooling(x, (1, 1))
x = flatten(x)
x = fully connected layer(x, num classes)

Output layer
return softmax(x)

function C layer(input, P):
C operation
output = C2d(input, P.kernel size, P.stride, P.in CN,
P.out CN)

ReLU activation
return relu(output)
function fire module(input, P):

Sequeezenet layer
S output = Colution layer(input, in CN: P.in CN, out CN:
P.S CN, kernel size: 1)

Expand layer
expand1x1 output = C layer(S output, in: P.S CN, out:
P.expand1x1 CN, K: 1)
expand3x3 output = C layer(S output, in: P.S CN, out:
P.expand3x3 CN, K: 3, padding: 1)

Concatenate the outputs
return concatenate(expand1x1output, expand3x3 output)
Concatenatetheoutputs
returnconcatenate(expand1x1 output, expand3x3 output)
Addotherutility f unctions

squeezenet = SqueezeNet()
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In the context of heartbeats, SqueezeNet can be em-
ployed for signal processing and classification tasks related
to electrocardiogram (ECG) data. The key characteristics
of SqueezeNet that make it appealing for such applications
include:

• Parameter Efficiency: SqueezeNet achieves model com-
pression by utilizing a ”squeeze” layer that reduces
the number of input channels before the expensive
3x3 convolutional layers. This allows the network to
maintain expressive power while significantly reduc-
ing the number of parameters.

• Fire Modules: SqueezeNet uses what are called ”fire
modules” consisting of both 1x1 and 3x3 convolu-
tions. This architecture captures both local and global
features efficiently. In the context of heartbeats, these
features could correspond to various aspects of the
ECG signal.

• Lightweight Design: SqueezeNet is designed to be
lightweight, making it suitable for real-time appli-
cations and scenarios where computational resources
are limited. This can be advantageous in healthcare
settings or wearable devices monitoring heartbeats.

In SqueezeNet, the traditional max pooling layers have
been replaced with a more computationally efficient ap-
proach to reduce the number of parameters and compu-
tations. Instead of using max pooling layers, SqueezeNet
employs a technique called ”fire pooling” or ”squeeze-and-
excitation pooling.”

In the specific context of your previous question about
the proposed OSASN SqueezeNet, it suggests that there
might be modifications or enhancements to the original
SqueezeNet architecture tailored for the task of classify-
ing heartbeats from ECG signal data. These modifications
could involve adjustments to the network structure, training
strategies, or incorporating domain-specific knowledge to
improve performance in the context of cardiac signal pro-
cessing.

In fire pooling, the spatial dimensions (width and height)
of the feature maps are reduced by using global average
pooling. This is achieved by computing the average value
of each feature map, resulting in a single value for each
channel. This process helps to reduce the spatial dimensions
while retaining important information from each channel.

Additionally, SqueezeNet incorporates a squeeze-and-
excitation mechanism in the pooling layer. This involves
modeling channel-wise dependencies by using a small set
of parameters to compute a set of scaling factors for each
channel. These scaling factors are then applied to the feature
maps to emphasize important channels and suppress less
informative ones.

The combination of global average pooling and squeeze-

and-excitation pooling in SqueezeNet’s architecture opti-
mizes the pooling layer for computational efficiency, reduc-
ing the number of parameters and computations required
compared to traditional max pooling layers. This innova-
tion contributes to SqueezeNet’s overall lightweight design,
making it suitable for deployment in resource-constrained
environments.

6. RESULT ANALYSIS
The proposed OSASN SqueezeNet exhibits overall su-

perior performance across all three metrics, emphasizing
its effectiveness in accurately classifying heartbeats. The
high precision and sensitivity scores highlight its potential
for precise and reliable positive predictions, making it a
promising choice for applications where minimizing false
positives and accurately identifying abnormal heartbeats are
critical. However, it’s essential to consider other factors such
as computational efficiency and practical implementation
when selecting the most suitable method for a specific use
case.

A. Dataset Description
The dataset used in this work is the dual heartbeat signal

collections from the ECG heartbeat categorization dataset
[24]. This dataset is being explored in order to classify
heartbeats. Additionally, signal data tends to identify cases
of myocardial infarction and various arrhythmias in addition
to heartbeats classified as normal. There are 109446 arrhyth-
mia samples in this dataset, which are further divided into
5 frequency ranges of 125 Hz. Additionally, CSV files are
arranged in a matrix series, with each row serving as an
example of a classification.

B. Training of SqueezeNet by OSA for heartbeat classifica-
tion
SqueezeNet for heartbeat classification is trained by C,

which is hybridization of Taylor series and EOSA. Elaborate
explanation of this algorithmic process is indicated algo-
rithm section.SqueezeNet is deep learning model trained
by TEOSA and hence its fitness equation is computed by
Mean Squared Error (MSE), which is given below,

• Fitness equation: Fitness value is computed to attain
best maximal value to find optimal solution and is
indicated as,

Fitness =
1

Ω

Ω∑
p=1

[AMoutput − TRoutput] (2)

where, is value of fitness, is aimed output, Targeted
result is , is maximum count of samples to train, and is
sample numbers that is processed.

C. Evaluation criteria
The three performance metrics—precision, specificity,

and sensitivity—that are used to classify heartbeats from
ECG signal data are explained as follows:
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• Accuracy: Precision is the ratio of true positive to the
sum of the values of false and true positive in this
metric, which is positive and used for classification.
All values that are positive express this and are
provided and explained in figure 4

Precision =
T P

T P + FP
(3)

Figure 4. Precision value of Squeezenet

• Sensitivity: Sensitivity is a positive term that is in-
dicated by the formula below, which is defined as
the fraction of true positive value to the sum of
true positive and false negative values and showed
in figure 5

Precision =
T P

FN + T P
(4)

Figure 5. Sensitivity value of Squeezenet

• Specificity: This is the ratio of the true negative value
to the total of the false positive and true negative

values. The formula below represents this and showed
in figure 6

Precision =
T N

T N + FP
(5)

Figure 6. Specificity value of Squeezenet

It illustrates a comparative analysis focused on precision
through variations in training percentage. With a training
percentage of 90%, the previous comparable results exhibit
precision values of 0.78, 0.80, 0.82, and 0.89, respectively.
Notably, OSASN SqueezeNet surpasses them all with a
precision of 0.91, indicating an enhanced performance
improvement of 14.86%, 11.95%, 10.52%, and 2.51%,
respectively.

7. COMPARATIVE ANALYSIS
In the evaluation of different classification methods for

heartbeat analysis, various metrics have been employed
to assess their performance. The table presents precision,
sensitivity, and specificity scores for five distinct methods:
K-Nearest Neighbors (KNN), Neural Network (NN), Deci-
sion Tree (DT), Support Vector Machine (SVM), and the
proposed OSASN SqueezeNet. Precision values indicate
the accuracy of positive predictions, with the highest score
achieved by OSASN SqueezeNet at 0.95. Sensitivity, rep-
resenting the ability to correctly identify positive instances,
also exhibits superior performance in OSASN SqueezeNet
with a score of 0.94. Specificity, measuring the capabil-
ity to correctly identify negative instances, demonstrates
competitive results across all methods, with the proposed
OSASN SqueezeNet achieving a score of 0.92.

These metrics collectively provide a comprehensive
overview of the efficacy of each method in accurately clas-
sifying heartbeats, with the proposed OSASN SqueezeNet
exhibiting notable strengths in precision and sensitivity.

The table 1 presents performance metrics, such as ac-
curacy, for different classification models including KNN,
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TABLE I. Result Analysis of the research

Metrics KNN NN DT SVM OSA-SN

Precision 0.79 0.83 0.86 0.88 0.95
Sensitivity 0.69 0.72 0.76 0.83 0.94
Specificity 0.77 0.81 0.85 0.88 0.92

NN (Neural Network), DT (Decision Tree), SVM (Support
Vector Machine), and a proposed model named OSA-
SN SqueezeNet. Each row corresponds to a specific eval-
uation criterion (e.g., precision, recall, F1-score), and each
column represents the respective model.

The provided table presents a comparison of various
metrics and methods for evaluating performance. Each row
corresponds to a specific metric (Precision, Sensitivity,
and Specificity), while each column represents a different
method or algorithm (KNN, NN, DT, SVM, and the pro-
posed OSASN SqueezeNet). The numerical values in the
table indicate the performance scores or results associated
with each combination of metric and method.

The evaluation criteria for categorizing heartbeats in
ECG signal data involve three key performance met-
rics—precision, specificity, and sensitivity. Precision, a
component of accuracy, is defined as the ratio of true
positive instances to the combined sum of true positive
and false positive values in the classification process. This
metric is particularly relevant for positive classifications,
encompassing all positive values and expressed as such.

the table provides a comprehensive overview of the per-
formance of different methods based on three key evaluation
metrics. The higher the numerical value, the better the per-
formance of the corresponding method for the given metric.
These accuracy values provide insights into the performance
of each model across different evaluation criteria, helping
to assess their suitability for the specific classification task
at hand. The proposed OSASN SqueezeNet demonstrates
competitive accuracy, suggesting its potential efficacy in the
given context.

8. CONCLUSION
The identification of cardiac arrhythmias is crucial

for human well-being due to the potential life-threatening
nature of these conditions. Among various methods for
heartbeat detection, the most widely adopted approach in-
volves the analysis of Electrocardiogram (ECG) signal data.
Leveraging data mining techniques proves to be beneficial
for uncovering significant patterns, automating tasks, and
extracting pertinent records related to heartbeats, aiding in
the detection of infectious diseases. In this study, heartbeat
classification is conducted using SqueezeNet, trained by a
hybridized algorithm.

Initially, the input ECG signal data undergoes prepro-
cessing through a median filter, followed by the extraction
of two types of features: medical features and statistical

features. Subsequently, the extracted features are subjected
to activity pattern mining facilitated by Optimization Search
Algorithm (OSASN). The final step involves classifying
heartbeats using a rule matrix derived from the mined
output, employing SqueezeNet trained by OSASN. OSASN
is a hybridization of Taylor series and OSA (Optimization
Search Algorithm). The performance of this methodology
is evaluated using three key metrics: precision, sensitivity,
and specificity, with maximum values of 0.91, 0.94, and
0.93, respectively. For future improvements, the technique
could benefit from the integration of superior optimization
techniques and other advanced deep learning methods to
enhance the overall performance metrics.
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