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Abstract: In this research paper, we present an innovative tuberculosis (TB) classification model built upon the well-established
AlexNet architecture, with a primary emphasis on its outstanding performance in the realm of TB detection. Tuberculosis remains
a formidable challenge to global healthcare systems, particularly in resource-limited settings. Timely and accurate diagnosis is of
paramount importance for the effective management and containment of this disease. Our approach entails meticulous architectural
refinements and rigorous training on a diverse dataset encompassing a wide spectrum of TB-related symptoms. This comprehensive
training ensures the model’s adaptability and resilience in addressing real-world diagnostic complexities. The central objective of our
OSAN model is to categorize medical images into two crucial groups: ”normal” and ”TB-infected.” The outcomes achieved are truly
noteworthy, with a classification accuracy rate of 99.67%. This exceptional level of accuracy underscores the model’s potential to
bring about transformative changes in TB diagnostics. It holds the promise of early identification, facilitating prompt intervention, and
ultimately leading to improved patient outcomes. Our research contributes to the overarching objective of enhancing patient care and
supporting global health initiatives. By providing a reliable and accessible tool for TB diagnosis, our model has the potential to make a
significant impact in the battle against this persistent global health menace.

Keywords: AlexNet, Chest X-rays, Convolutional Neural Networks, OSAN model, Tuberculosis

1. INTRODUCTION
Tuberculosis (TB) stands as a persistent and formidable

global health challenge, ranking among the top 10 lead-
ing causes of mortality worldwide [1]. This chronic lung
disease, rooted in bacterial infection, continues to exert
a profound toll on human health and healthcare systems
worldwide [2]. Chest X-rays have long been instrumental
in the diagnosis and monitoring of TB, providing critical in-
sights into the structural and pathological changes occurring
within the lungs [3]. In the arena of TB diagnosis, the emer-
gence of computer-aided diagnosis (CAD) systems holds
substantial promise [4]. These systems leverage cutting-
edge technologies to analyze chest X-ray images, poten-
tially revolutionizing the identification and management of
TB on a mass scale [5].

The effectiveness of CAD systems, however, hinges
upon the availability of extensive and meticulously an-
notated datasets [6]. In the domain of medical imaging,
the acquisition of such comprehensive datasets, comparable
to those readily available in general image recognition

(e.g.,ImageNet), presents a distinct challenge. Nevertheless,
recent years have witnessed a transformative shift in the
field of medical image analysis, driven by the ascendancy
of deep learning methodologies [7]. This paper embarks
on a comprehensive exploration of deep learning, with a
particular focus on convolutional neural networks (CNNs),
as applied to the analysis of chest X-ray images for TB
detection [8]. By harnessing the capabilities of CNNs, we
aspire to enhance diagnostic precision, alleviate the burden
on healthcare professionals, and contribute significantly
to the global effort to combat this enduring infectious
disease [9]. Our research is dedicated to advancing TB
diagnosis accuracy and efficiency through the application
of deep learning methodologies to the analysis of chest
X-ray images. In Figure 1.a and Figure 1.b, we illustrate
examples of chest X-ray scans from our dataset, showcasing
the pivotal visual data that underpins our inquiry. Through
this investigation, we aim to elucidate the transformative
potential that deep learning holds within the realm of TB
diagnosis, thereby paving the way for improved healthcare
outcomes and fortified global endeavors to address this
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Figure 1. Chest X-rays

pressing health crisis [10].

Furthermore, our study extends beyond the realm of
TB diagnosis; it contributes to the broader field of medical
image analysis. The successful application of deep learning
techniques, notably CNNs, in the context of chest X-ray
analysis for TB detection, underscores the adaptability and
versatility of artificial intelligence (AI) technologies within
the healthcare domain [11]. This research emphasizes the
profound potential for AI-driven solutions to enhance the
capabilities of medical professionals, reducing diagnosis
time and enhancing accuracy [12]. As we continue to
innovate and refine these methodologies, our aspiration is
to shape a future where AI plays a pivotal role in the early
detection of diseases, spanning beyond TB to encompass a
wide array of medical conditions [13]. Ultimately, our work
aligns with the overarching goal of augmenting healthcare
outcomes and democratizing access to high-quality medical
diagnostics on a global scale [14].

2. LITERATURE SURVEY
Research on ”Efficient Deep Network Architectures for

Fast Chest X-Ray Tuberculosis Screening and Visualiza-
tion” was undertaken in 2019 by F. Pasa, V. Golkov, F.
Pfeifer, D. Cremers, and D. Pfeifer [15]. In this paper, an
effective neural network for diagnosing TB is introduced,
with competitive outcomes. Saliency maps offer insightful
visuals that are helpful for clinical interpretation. Future
research will focus on increasing accuracy while keeping
speed benefits using pre-training and bigger datasets. The
network’s ability to localize symptoms points to the poten-
tial for producing textual annotations comparable to those
in related papers, representing a considerable improvement
in the diagnosis of TB.

In research on the “Reliable Chest X-Ray Detection of
Tuberculosis Visualization, Segmentation, and Deep Learn-
ing Deep Convolutional Neural Networks” used by Tawsifur
Rahman, Amith Khandakar, Mahamed Arselene Ayari, and

Muhammad E.H. Chowdhury (2020) [16], the study aims to
automatically diagnose TB in chest radiographs while com-
paring nine different models. DenseNet201 improves with
lung segmentation, obtaining excellent accuracy, precision,
and recall, up to 98.6%, 98.57%, and 98.56%, compared to
ChexNet, which performs best without segmentation. The
research shows how important lung segmentation is to a
precise diagnosis, making this method a potentially life-
saving one for early TB identification.

In a research titled ”A Novel Method for Detect-
ing Tuberculosis in Chest Radiographs Using Artificial
Ecosystem-Based Optimization of Deep Neural Network
Features,” Ahmed T. Sahlol, Mohamed Abd Elaziz, Amani
Tariq Jamal, Robertas Damasevicius, and Osama Farouk
Hassan (2020) [17], this work introduces a unique method
that combines MobileNet deep learning with the Artifi-
cial Ecosystem-based Optimization (AEO) algorithm to
filter pertinent characteristics. On the Shenzhen Dataset
and Dataset 2, the MobileNet-AEO technique beats earlier
research in terms of accuracy, complexity reduction, and
performance. A similar strategy will be used in future
research to diagnose COVID-19 using chest radiographs.
This study highlights the potency of hybrid approaches for
classifying medical images.

By utilizing convolutional networks, Kai Cao, Jingyi
Zhang, Mengge Huang, and Tao Deng (2021)[18] studied
the X-ray classification of tuberculosis. This study compares
various convolutional network models for categorizing pho-
tos of TB. DenseNet surpasses competitors, obtaining over
90% accuracy thanks to its distinctive dense connections
and feature reuse. This study highlights the potential of
DenseNet for classifying medical images and offers sugges-
tions for future enhancements to feature use for improved
outcomes.

Mycobacterium Tuberculosis Detection Using Support
Vector Machine Classification Approach was studied by
Akanksha Soni, Avinash Rai, and Satish Kumar Ahirwar
in the year 2021 [19]. This paper proposes a unique
approach for utilizing MATLAB to automatically identify
and categorize Mycobacterium TB in lung CT images. The
method uses AHE, Embossing, and SVM to extract objects
with a promising accuracy of 96.50%. Although there were
some misclassifications, it is clear that the system has room
to grow with more datasets and more sophisticated machine-
learning methods. This research makes a significant advance
to medical imaging’s ability to identify TB.

A stochastic Learning-Based Artificial Neural Network
Model for an Automatic Tuberculosis Detection System
Using Chest X-ray images was studied by Shabana Urooj, S.
Suchitra, Lalitha Krishnasamy, Neelam Sharma, and Nitish
Pathak in 2202 [20]. The approach described in this study
uses a stochastic learning-based artificial neural network
(SL-ANN) model with random fluctuations in chest X-ray
images to diagnose tuberculosis. The technique increases
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accuracy by adding unpredictability to the neural network.
It performs better than cutting-edge techniques for detecting
tuberculosis, with excellent levels of sensitivity, specificity,
accuracy, and F-score. Future research may examine rapid
illness detection, monitoring disease development, and the
use of mobile devices for diagnostics that are affordable. [?].
The Ensembling of Efficient Deep Convolutional Networks
and Machine Learning Algorithms for Resource Effective
Detection of Tuberculosis Using Thoracic (Chest) Radio-
graphy was studied by Rajat Mehrrotraa, M.A. Ansari,
Abdelzahir Abdelmaboud, and Faisal Saeed (2022) [21].
This study suggests a system for dividing chest radiographs
into COVID-19, Normal, and TB categories. During the
COVID-19 epidemic, it addresses the pressing need for
effective TB detection. The method achieves great accuracy
by combining features from three deep neural networks
with machine learning classifiers. Notably, it functions
well on common hardware. Larger datasets and real-time
applications might be used in future studies.

K. Manivannan and Dr. S. Sathiamoorthy (2023) [22]
conducted a study on Robust Tuberculosis Detection Using
Optimal Deep Learning Model Using Chest X-Rays. In this
work, a novel approach for classifying tuberculosis in chest
X-ray pictures, called HHODL-TBC, is introduced. It makes
use of MF preprocessing, HHO hyperparameter optimiza-
tion, MobileNet-v2 feature extraction, U-Net segmentation,
and GRU classification. HHODL-TBC outperforms current
methods and shows encouraging results. Future research
could investigate more complex DL algorithms to improve
TB categorization in real-time applications.

Using deep learning, Princy K. T. M., Tripty Singh,
Vineet Vinayak, and Prakash Duraisamy (2023) [23] studied
the detection and classification of tuberculosis HIV-positive
patients. For the purpose of detecting TB in chest X-rays,
this study contrasts CNN with three transfer learning models
(ResNet50, VGG16, and VGG19). Without preprocessing,
VGG19 has accuracy comparable to that of earlier tech-
niques, and it gets even better with data augmentation.
Future research will apply VGG19 to all photos in an
effort to improve performance. This study demonstrates the
potential for image augmentation in medical image analysis
and the efficacy of transfer learning models.

3. DATASET AND DATA PREPROCESSING
Detecting brain tumors using XceptionNet is a chal-

lenging problem in medical image analysis. Here’s a brief
outline of a proposed system for detecting brain tumors
using XceptionNet:

A. Dataset Overview
Our research made use of the Tuberculosis (TB) Chest

X-ray Database, a collaborative project involving a diverse
team of researchers from Qatar University, Doha, Qatar, the
University of Dhaka, Bangladesh, as well as collaborators
from Malaysia [24]. Additionally, the dataset benefited from
the valuable contributions of medical professionals from
Hamad Medical Corporation in Qatar and Bangladesh

B. Data Composition
This extensive and invaluable database is comprised of

a wide array of chest X-ray images, covering both TB-
positive cases and images classified as ’Normal.’ Within this
dataset, we meticulously curated and included 600 chest X-
ray images representing instances of Tuberculosis, along-
side an extensive collection of 3,000 images representing
normal chest X-rays.

C. Statistical Insights
To provide a more comprehensive understanding of the

dataset, it is pertinent to highlight the distribution of these
images. Among the 3,600 images in total, the Tuberculosis-
positive cases make up a distinct minority, accounting for
600 images. In contrast, the majority of the dataset consists
of normal chest X-ray images, numbering 3,000. Handling
Class Imbalance with Class Weights: In many real-world
machine learning applications, class imbalance is a com-
mon challenge, where certain classes have significantly
fewer samples than others. This imbalance can lead to
biased model training and suboptimal performance [25],
particularly for minority classes. To mitigate this issue,
we employed class weights, a well-established technique
in machine learning, to give higher importance to minority
classes during training. Definition of Class Weights: In our
study, we aimed to address class imbalance for a binary
classification problem with two classes: Class 0 and Class 1.
To assign class weights, we used the following approach: 1.
Identification of Imbalanced Classes[26]: We identified that
Class 1 had significantly fewer samples compared to Class
0, resulting in class imbalance. 2. Assigning Class Weights:
To address this imbalance, we assigned a class weight to
Class 1, relative to Class 0. Specifically, we set the class
weight for Class 1 to 5 times that of Class 0. This means that
during the training process, the loss associated with samples
from Class 1 was scaled up by a factor of 5, effectively
increasing their influence on the model’s parameter updates.
To implement class weights, we used the following Python
code snippet:

class weights = Tensor([5]) (1)

Assign a class weight of 5 to Class 1

class weights = class weights.to(cuda1) (2)

Move the class weights tensor to the GPU (if available)

Here, ‘class weights‘ is a PyTorch tensor representing
the assigned weights, and ‘cuda1‘ refers to the GPU device.
Moving the class weights to the GPU ensures that they are
compatible with the model’s training process, which also
occurs on the GPU. Impact on Model Training: The use of
class weights had a significant impact on our model’s train-
ing dynamics. By giving more importance to the minority
class, our model was better able to learn meaningful patterns
from the underrepresented data, ultimately improving its
ability to make accurate predictions on both minority and
majority classes.Incorporating class weights is a valuable
strategy for addressing class imbalance and enhancing the
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TABLE I. FUTURE WORK OF REFERENCE PAPERS

Ref. Citation Future Work

15

Introduced an effective neural network for diagnosing TB with competitive
outcomes. Saliency maps for clinical interpretation. Future research aims
to improve accuracy while maintaining speed using pre-training and larger
datasets. Potential for producing textual annotations for improved TB diag-
nosis.

16
Demonstrated the importance of lung segmentation for precise TB diagnosis.
DenseNet201 with lung segmentation achieved high accuracy, precision, and
recall.

17 Enhancing the suggested CNN architecture’s accuracy and effectiveness in
MRI image-based brain tumour detection.

18

Introduced a unique method combining MobileNet and AEO algorithm for
TB classification. Outperformed earlier research in accuracy, complexity
reduction, and performance. Potential for diagnosing COVID-19 using chest
radiographs

19
Compared convolutional network models for TB image classification.
DenseNet achieved over 90% accuracy due to dense connections and feature
reuse.

20

Proposed a unique MATLAB-based approach for Mycobacterium TB de-
tection in lung CT images. Achieved promising accuracy of 96.50% using
AHE, Embossing, and SVM. Room for improvement with more datasets and
advanced ML methods.

21

Introduced a stochastic learning-based ANN model for TB diagnosis using
chest X-rays. Outperformed cutting-edge techniques with high sensitivity,
specificity, accuracy, and F-score. Potential for rapid illness detection and
mobile device diagnostics

22

Proposed a system for categorizing chest radiographs into COVID-19, Nor-
mal, and TB categories. Achieved high accuracy by combining features from
deep neural networks with ML classifiers. Suitable for common hardware and
future studies with larger datasets.

23
Introduced HHODL-TBC for TB classification using various deep-learning
techniques. Outperformed existing methods with promising results. Potential
for further research with more complex DL algorithms.

24
Compared CNN with transfer learning models for TB detection in chest
X-rays. VGG19 achieved high accuracy, especially with data augmentation.
Demonstrated the potential of image augmentation in medical image analysis.

25

Emphasized the impact of dataset quality on machine learning model per-
formance. Achieved great accuracy with CBAMWDNet and other models.
Suggested future research directions for further improvement.This table pro-
vides a concise overview of the key research papers, their authors, publication
years, and main findings in the field of tuberculosis detection using deep
learning and other techniques.

overall performance and fairness of our machine-learning
model.

D. Data Preprocessing
In this section, we detail the preprocessing steps applied

to the image dataset used in our study. The goal of data
preprocessing is to prepare the input data for our deep
learning model, ensuring that it is in a suitable format
and range for training. The following transformations were
applied to the images: Normalization: Each image was
normalized by subtracting the mean (0.5, 0.5, 0.5) and
dividing by the standard deviation (0.5, 0.5, 0.5) for each

channel. This standardization brings the pixel values within
a common range and helps improve convergence during
training. The formula to find the normalised value is given
below:

normalized value = (original value−mean)/std deviation
(3)

Conversion to Tensors: We converted the images from
their original format, typically PIL (Python Imaging Li-
brary) images, into PyTorch tensors using the ‘trans-
forms.ToTensor()‘ operation. PyTorch tensors are the pri-
mary data structure used for neural network operations.
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E. Data loading
We used the PyTorch library for efficient data loading

and batching. The steps for data loading and organization
are as follows:

1) ImageFolder Dataset: We employed PyTorch’s ‘Im-
ageFolder‘ dataset class to load our image data. This
class assumes a specific directory structure where
images are organized into subdirectories, each rep-
resenting a different class or label. The ‘transform‘
argument was set to apply the aforementioned data
preprocessing transformations to each image upon
loading.

2) Train-Validation Split: To facilitate model training
and evaluation, we partitioned the dataset into two
subsets: a training set and a validation set. The
validation set consisted of 600 images, allowing us
to assess the model’s performance during training.

3) Label Counts: We computed and reported the num-
ber of unique labels and their respective counts in
the training set. using NumPy. This information is
valuable for understanding the class distribution in
the training data.

4) Data Loaders: Data loaders were created to facilitate
the training and validation processes. Data loaders
are responsible for loading and batching the data ef-
ficiently. Key parameters for data loaders include the
batch size, shuffling of data, the number of worker
processes for data loading, and pinning memory for
GPU acceleration if available. In our case, we used
a batch size of 18 for training and 30 for validation.
These preprocessing and data loading steps ensure
that our image data is properly prepared for training
our deep learning model. The data loaders allow us
to iterate through the dataset in batches, making it
possible to train and evaluate our model effectively.

4. ARCHITECTURE
Tuberculosis (TB) remains a significant global health

challenge, with millions of cases reported each year. Early
and accurate diagnosis of TB is essential for effective
treatment and disease control. In recent years, deep learning
techniques have emerged as promising tools for automating
the diagnosis of TB from medical images, particularly
chest X-rays. One prominent deep-learning architecture
used for medical image classification is AlexNet. AlexNet,
initially developed for the ImageNet Large Scale Visual
Recognition Challenge, has demonstrated remarkable capa-
bilities in feature extraction and classification tasks. In the
context of TB classification, AlexNet can be leveraged to
distinguish between TB-infected and non-infected chest X-
rays, contributing to timely diagnoses and improved patient
outcomes.

In this paper, we present a comprehensive study on
the application of AlexNet for the classification of TB
using chest X-ray images. We discuss the architectural
modifications made to adapt AlexNet for this specific med-

ical imaging task, the integration of transfer learning tech-
niques to capitalize on pre-trained knowledge, and the fine-
tuning strategies employed to optimize model performance.
Through empirical evaluations and comparative analyses,
we aim to highlight the effectiveness and potential of the
AlexNet architecture as a valuable tool in the automated
diagnosis of TB, ultimately contributing to enhanced health-
care outcomes and TB control efforts worldwide.

In the context of tuberculosis (TB) classification using
medical images, the importance of customizing the AlexNet
architecture, as opposed to relying solely on pre-trained
weights, is multifaceted and pivotal to the success of the
diagnostic task. First and foremost, the customization of
AlexNet aligns the architecture with the intricacies of the
medical imaging domain. Medical images, such as chest X-
rays, exhibit unique characteristics and variations that dis-
tinguish them from the natural images the original AlexNet
was designed for. By adapting the architecture, we can
ensure that it can effectively capture the salient features and
patterns specific to medical imaging, ultimately enhancing
its diagnostic accuracy.

Furthermore, customization enables us to optimize the
feature extraction process. Deep learning models excel in
medical image classification by extracting relevant and
discriminative features from the input data. Through archi-
tectural adjustments, including the configuration of layers,
choice of activation functions, and setting of dropout rates,
we can tailor AlexNet to focus precisely on the medically
relevant aspects of chest X-ray images. This refinement
results in a more effective and precise diagnostic tool.

TB classification, as a critical diagnostic task, places
demanding requirements on sensitivity and specificity due
to the potential public health consequences of misdiagnosis.
Customization empowers us to configure the model to meet
these specific performance requirements. By fine-tuning the
architecture, we can adapt it to the unique challenges of TB
detection, ensuring that it strikes the right balance between
model complexity and generalization.

Another compelling advantage of customization is the
reduced risk of overfitting. Transfer learning using pre-
trained weights can sometimes lead to overfitting, where
the model becomes excessively tuned to the source domain,
such as natural images from ImageNet. By customizing
AlexNet, we mitigate this risk by tailoring the model’s
capacity to the characteristics of chest X-ray data. This
refined approach helps us achieve better model general-
ization and robustness. Finally, customization enhances the
interpretability of the model. Understanding why a model
makes a particular diagnosis is of paramount importance
in the medical field. By adapting the architecture, we gain
greater control over the model’s internal representations
and activations, leading to improved interpretability. This is
instrumental in providing clinicians with insights into the
rationale behind a specific diagnosis, ultimately enhancing
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Figure 2. Architectural overview of the Proposed System

trust and adoption of AI-assisted diagnostic tools.

In summary, the OSAN architecture for TB classification
as shown in Fig.2 empowers us to harness the immense
potential of deep learning while ensuring that the model
is finely tuned to the demands of medical imaging. This
tailored approach offers the prospect of higher diagnostic
accuracy, reduced overfitting, improved interpretability, and
overall improved diagnostic performance, all of which are
pivotal factors in the successful application of deep learning
to medical image analysis and TB diagnosis.

A. OSAN ARCHITECTURE
OSAN architecture for tuberculosis (TB) classification

is an essential step in harnessing the potential of deep
learning for the accurate diagnosis of this disease from
medical images. In this section, we provide a comprehensive
and in-depth examination of the precise changes made to
the original AlexNet architecture to optimize it for TB
classification as shown in Fig.3

Adaptive Average Pooling Layer: A pivotal modification
introduced to the AlexNet architecture is the incorporation
of an adaptive average pooling layer. Unlike the fixed-
size pooling layers present in the original architecture,
our OSAN now integrates adaptive average pooling with
an output size of (15, 15). This adjustment serves to
address a fundamental challenge posed by medical imaging,
particularly chest X-ray images, which often vary in spatial
dimensions. By dynamically resizing the output spatial di-
mensions, the model gains the remarkable ability to capture
essential information across a spectrum of image sizes. This
adaptability significantly enhances the model’s capacity to
recognize TB-related features consistently, irrespective of
variations in image resolution or scale. The adaptive average
pooling layer, thus, emerges as a pivotal tool in ensuring that
the model excels in handling the inherent heterogeneity of
chest X-ray data.

Freezing of Pretrained Layers: In our quest to craft the
OSAN model, we strategically chose to freeze the weights
of the pre-trained layers within the AlexNet architecture.
This strategic decision is executed through the code snippet
‘for param in model.parameters(): param.requires grad =
False‘, carries profound implications for the model’s per-

formance and training dynamics. By freezing these layers,
we preserve the knowledge encapsulated in them during
pretraining on largescale datasets, such as ImageNet. Simul-
taneously, we halt further updates to these layers during the
finetuning process, thereby ensuring that the model retains
its potent feature extraction capabilities, which are vital for
discerning TB-related patterns in chest Xrays. This delicate
balance between knowledge transfer from pretraining and
specialization for TB classification underlines the sophisti-
cation and pragmatism of our architectural customization.

Custom Classifier Design: The crux of our architectural
customization lies in the creation of a meticulously de-
signed, task-specific classifier. While the original AlexNet
architecture culminates in a classification head tailored to
ImageNet’s extensive array of 1,000 classes, we embarked
on a journey to craft a classifier optimized explicitly for
TB classification. Our custom classifier comprises two fully
connected (linear) layers, interspersed with rectified linear
unit (ReLU) activations and a dropout layer. The strategic
orchestration of these elements is illustrated in the code
snippet ‘model. classifier = nn.Sequential(...)‘, endows the
model with the capacity to discern subtle patterns and
intricate features that are indicative of TB in chest X-rays.
The choice of ReLU activations ensures that the model can
capture non-linear relationships within the data, while the
dropout layer enhances generalization by mitigating over-
fittinga common challenge in deep learning. The final layer
outputs a singular value, signifying the binary classification
nature of our TB detection task. This bespoke classifier
empowers our model with the precision and adaptability
required to excel in the intricate realm of TB classification.

In summary, the architectural refinements made to the
AlexNet model for TB classification are a testament to
our commitment to excellence in the domain of medical
image analysis. The adaptive average pooling layer enables
the model to gracefully handle spatial variations in chest
X-ray images. The strategic freezing of pre-trained layers
preserves valuable knowledge while allowing for special-
ization. Lastly, our customized classifier represents the pin-
nacle of our architectural prowess, meticulously designed
to extract and recognize TB-related patterns in chest X-ray
data. Together, these architectural enhancements propel our
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model to the forefront of TB diagnosis, promising enhanced
accuracy and reliability in clinical settings.

5. MATHEMATICAL CONCEPTS IN OSAN
Mathematical Functions used in the Xception architec-

ture and it explains how the inputs are passed to the next
layer.

A. Adaptive Average Pooling Formula
The adaptive average pooling layer dynamically resizes

the output dimensions of the feature map. The formulas to
express this process are as follows:

Output Height = Input Height/Output S ize (4)

Output Width = Input Width/Output S ize (5)

In equation 5 Output Height‘ and ‘Output Width‘ are the
dimensions of the output feature map.‘

• Input Height‘ and ‘Input Width‘ are the dimensions
of the input feature map.‘

• Output Size‘ is the specified size for the output
feature map, which is (15, 15) in our customization.

B. Dropout Formula
Dropout is a regularization technique that randomly sets

a fraction of neuron activations to zero during training to
prevent overfitting. The formula for dropout on a single
neuron is

y = x ∗ mask (6)

In equation 6 ‘y‘ is the output of the neuron after dropout.‘

• x‘ is the input to the neuron.

• mask is a binary mask with randomly set elements to
0 or 1 during training. The ‘mask‘ values are typically
generated with a probability distribution defined by
the dropout rate (‘p‘).

• A dropout rate of 0.05, for example, indicates that,
on average, 5% of neuron activations will be set to
zero during training.

.

C. ReLU Activation Function
The Rectified Linear Unit (ReLU) activation function is

a fundamental element of neural networks. While not a tra-
ditional formula, you can briefly mention its mathematical
representation:

ReLU(x) = max(0, x) (7)

In equation 11 Where ‘x‘ is the input to the ReLU
function, and it returns the input value if it’s positive, or
0 otherwise.

6. WORKFLOW OF OSAN MODEL
The suggested method in Fig.5 uses OSAN architecture,

a personalized deep-learning model to diagnose tubercu-
losis (TB) from medical photos. A heterogeneous dataset
encompassing both normal and TB patients is first gath-
ered and preprocessed. Subsets for training and validation
were created using this dataset. Convolutional layers, ReLU
activations, adaptive average pooling, and fully connected
layers with sigmoid activations for binary classification are
the fundamental components of the OSAN, which was
created particularly for the classification of medical images.
By using binary cross-entropy loss and optimizer-driven
parameter changes during training, the model develops the
ability to differentiate between TB instances and normal
cases. Its performance is then assessed using validation
metrics and a confusion matrix. The trained model helps
healthcare workers throughout the deployment phase by
identifying the possibility of TB in unlabeled medical
images. By streamlining diagnoses, this automated approach
may improve patient outcomes and hospital productivity.
Due to its versatility, it may be updated in the future to
take into account new datasets and medical knowledge,
guaranteeing its usefulness in TB detection.

• Input Size Specification
◦ Start by defining a fixed input image size of

512x512 pixels. This accommodates the re-
quirements of medical images, which often
demand higher resolution and precision than
generic images.

• Convolutional Feature Extraction
◦ Create a series of convolutional layers for fea-

ture extraction.
◦ In the first layer, use 11x11 filters to capture

large-scale, low-level features within the input
images.

◦ Apply Rectified Linear Units (ReLU) as activa-
tion functions to introduce non-linearity, aiding
in the modeling of complex patterns.

◦ Incorporate Max-Pooling layers with 3x3 win-
dows and suitable strides to red

• Adaptive Average Pooling for Versatility
◦ Add an Adaptive Average Pooling layer after

the convolutional layers.
◦ This layer adapts to variable spatial dimensions

encountered in medical images, ensuring the
model’s effectiveness across images of varying
sizes.

◦ Generate compact feature representations, a cru-
cial step for efficient and meaningful feature
processing.

• Fully Connected Layers for Learning
◦ Modify the fully connected layers to align with

binary classification requirements.
◦ Tailor these layers to anticipate the model’s
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Figure 3. Architecture of OSAN

Figure 4. Workflow of OSAN

task of distinguishing between normal and
tuberculosis-infected instances.

◦ These layers play a pivotal role in learning
complex relationships within the feature repre-
sentations.

• Output Layer Design
◦ Design the output layer with a single neuron.

[H] •AlexNet base = keras.applications.Alexnet(include top =
includetop,weights = weights, input shape =
input shape, pooling = pooling)

initialization include top: Dichotomous, whether to

comprise the extensively-tetter layer at the pinnacle of the
meshwork or not weights: String, pre-training weight to
be loaded input shape: Tuple of integers, the input shape
of the images in (height, width, channels) pooling: String,
the type of pooling to be applied to the last convolutional
layer output classes: Integer, the number of output classes

the model starts AlexNet( (features): Sequential(Layer
0,1,2))

layer=64

1) Conv2d(3, 64, kernel size=(11, 11),
stride=(4, 4), padding=(2, 2))

2) ReLU(inplace=True)
3) MaxPool2d(kernel size=3, stride=2, padding=0, di-

lation=1, ceil mode=False)
4) Conv2d(64, 192, kernel size=(5, 5),

stride=(1, 1), padding=(2, 2))
5) ReLU(inplace=True)
6) MaxPool2d(kernel size=3, stride=2, padding=0,

dilation=1, ceil mode=False)
7) Conv2d(192, 384, kernel size=(3, 3),

stride=(1, 1), padding=(1, 1))
8) ReLU(inplace=True)
9) Conv2d(384, 256, kernel size=(3, 3),

stride=(1, 1), padding=(1, 1))
10) ReLU(inplace=True)
11) Conv2d(256, 256, kernel size=(3, 3),

stride=(1, 1), padding=(1, 1))
12) ReLU(inplace=True);
13) MaxPool2d(kernel size=3, stride=2, padding=0,

dilation=1, ceil mode=False)

return model

Activation layer

1) (avgpool): AdaptiveAvgPool2d(output size=(15,
15))

2) (classifier): Sequential( (dropout1): Dropout(p=0.05,
inplace=False)

3) (fc1): Linear(in features=57600,
out features=510, bias=True)

4) (relu): ReLU()
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5) (fc2): Linear(in features=510, out features=1,
bias=True)

7. EXPERIMENTAL RESULTS

Figure 5. Experimental results flow of OSAN

The flow of the system from input to output is shown
in Fig.6. This study presents a chest X-ray image classi-
fication model that demonstrates exceptional performance
in distinguishing between normal and tuberculosis cases.
Our model achieved an outstanding overall accuracy of
99.67%. To delve deeper into its performance, we conducted
a thorough analysis using a subset of 600 images. The re-
sulting confusion matrix showcases the model’s remarkable
accuracy, with 499 true negatives (TN) and 98 true positives
(TP). Impressively, the model showed only 1 false positive
(FP) and 2 false negatives (FN), underlining its minimal
misclassification rate as shown in Fig.4. These findings
affirm the model’s robustness and reliability in medical
diagnosis, positioning it as a valuable asset in the field of
healthcare.TP = 98, TN = 499, FP = 4, FN = 1.

True Positives (TP) are cases where the model correctly
identifies patients with tuberculosis, which is crucial for
accurate diagnosis. True Negatives (TN) are cases where
the model correctly identifies individuals without tubercu-
losis, indicating a correct negative diagnosis. False Positives
(FP) represent cases where the model incorrectly predicts
tuberculosis, potentially leading to unnecessary concern or
further testing. False Negatives (FN) represent cases where
the model misses identifying tuberculosis when it’s present,
which could delay treatment.

In the Fig. 6 given below is the set of images for which
the model predicted as NO indicating the absence of tumor.
These are the resulted ratios of training and validations with
regard to different metrics: TP = True Positive, FP = False
Positive, TN = True Negative, FN = False Negative

Fig.8 depicts accuracy versus epochs graph reveals that
our model achieved a remarkable training accuracy of 100%
by the third epoch, showcasing its proficiency in capturing
intricate training data patterns. Concurrently, the validation
accuracy, nearing 99.57%, signifies the model’s capacity for
robust generalization to previously unseen data. The early
convergence, observed at epoch 3, implies efficient learning,
while the consistency of the graph highlights the model’s
resilience. These findings hold promising implications for

Figure 6. Confusion matrix

practical applications, although comprehensive validation
and potential improvements warrant further investigation.

Figure 7. Accuracy vs. Epochs

The resultant ROC curve in Fig.9 vividly illustrates the
model’s proficiency in distinguishing between tuberculosis
and non-tuberculosis cases, with the AUC value near 1.0
indicating robust discriminatory ability. Additionally, the
inclusion of a black dotted line in the visualization serves
as a reference for a random classifier, highlighting the
substantial gap between the ROC curve and this baseline,
reaffirming the model’s exceptional capacity to minimize
false positives while maximizing true positives. Our model
demonstrates outstanding performance, as evidenced by
an impressively high Area Under the Receiver Operating
Characteristic Curve (AUC) of 0.99. Additionally, the in-
clusion of a black dotted line in the visualization serves
as a reference for a random classifier, highlighting the
substantial gap between the ROC curve and this baseline,
reaffirming the model’s exceptional capacity to minimize
false positives while maximizing true positives.

As plotted in Fig.9 the model achieves an Area Under
the Curve (AUC-PR) of 0.97, indicating its proficiency in
predicting positive cases. Precision remains high, nearing
1 for most values, while recall stabilizes at approximately
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0.99. These metrics reflect the model’s capacity to balance
precision and recall effectively, while the subtle variations
are consistent with the precision-recall trade-off observed
when fine-tuning the classifier’s decision threshold. These
findings suggest the model’s potential for tuberculosis de-
tection in medical applications, with a commitment to
maintaining high precision and recall.

Figure 8. Precision-Recall curve

Figure 9. ROC curve

We utilized a PyTorch-based deep learning model,
comprising a Sequential classifier with named layers, for
our classification task as depicted in Fig.11 and Fig.12.
To unravel the inner workings of our model and gain
deeper insights into its feature representations, we adopted
a visualization technique to scrutinize the weight matrices
of its fully connected layers, namely ’fc1’ and ’fc2’. As
an integral part of the neural network architecture, ’fc1’
represents the first fully connected layer, responsible for
learning intricate relationships between extracted features.
’fc2’, on the other hand, signifies the second fully connected
layer, further refining the model’s feature representations.
Our visualization process involved iterating through these
layers, extracting their weight matrices, and rendering them
using ’imshow()’ with the ’viridis’ colourmap. These visu-
alizations offer a valuable window into how our model pro-
cesses and transforms information at these specific layers,

contributing to our understanding of its hierarchical feature
extraction capabilities and guiding potential enhancements
for improved performance.

Figure 10. Fully connected layer-1 weights

Figure 11. Fully connected layer-2 weights

In our research, we meticulously monitored the training
progress of our model over multiple epochs in Fig.13. The
results revealed a significant enhancement in both training
and validation accuracy. The training accuracy exhibited
remarkable growth, surging from an initial level of approxi-
mately 0.98 to a perfect 1.0. This progression illustrates the
model’s increasingly adept capacity to correctly classify the
training data, signifying substantial learning and possible
convergence. Equally promising, the validation accuracy,
which began at approximately 0.96, displayed substantial
improvement, reaching an impressive 0.98. This ascent
suggests that our model excels not only in fitting the train-
ing data but also in generalizing effectively to previously
unseen data. These developments underscore the model’s
robustness and growing capability, reflecting its potential
utility in practical applications.

To delve deeper into potential overfitting concerns,
we introduced the graph as shown in Fig.14, portraying
the accuracy difference between training and validation
data across epochs. This graph was instrumental in our
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analysis, as it helped us gauge the consistency of the
model’s performance. Remarkably, the accuracy difference
remained within narrow bounds throughout the training
process. To ascertain the presence of significant overfitting,
we established a conservative overfitting threshold at 0.03.
Our results revealed that, at no point during training, did
the accuracy difference exceed this threshold. Thus, our
analysis indicates the absence of noteworthy overfitting in
our model. These findings underscore the model’s stabil-
ity and its potential for reliable performance in practical
applications, assuaging concerns about overfitting.

Figure 12. Accuracy v/s Epochs

Figure 13. Training-Validation accuracy difference v/s Epochs

In the radar chart presented in Fig.15, we conduct a
comprehensive comparison of model performance across
various critical metrics, including Accuracy, Recall, F1-
score, Precision, and AUC. Each model, such as ConvNet,
Exception, Inception V3, ResNet50, VGG16, VGG19, and
OSAN, is represented by a unique radar chart. This visual-
ization succinctly illustrates the relative strengths and weak-
nesses of these models in different performance aspects.
Notably, OSAN emerges as a top-performing model with
exceptional scores across all metrics, reflecting its superior
overall performance. Meanwhile, models like VGG19 and
Exception exhibit slightly lower AUC scores. The radar
chart effectively distills complex performance data into an
easily interpretable format, offering quick insights for model
comparison and evaluation.

8. CONCLUSION AND FUTURE WORK
In our pursuit of tuberculosis classification from chest

X-ray images, we employed the OSAN architecture that
achieved an accuracy of 99.67%. While the success of our
approach is encouraging, we acknowledge that challenges

Figure 14. Model Performance Comparison Radar Chart

persist in the field of medical image analysis. Further
validation and extensive clinical trials are essential before
any practical deployment. Nonetheless, our study under-
scores the potential of deep learning in assisting medical
professionals with early disease detection, and we remain
committed to advancing this promising avenue of research.
In conclusion, our study presents a significant technical
stride in the application of AI to medical imaging for
tuberculosis classification. Despite the noteworthy accu-
racy achieved, we acknowledge the necessity for rigorous
validation and the exploration of advanced techniques to
further improve diagnostic precision. Our aim is to catalyze
continued technical exploration and innovation within the
medical imaging community, with the overarching objective
of advancing healthcare outcomes worldwide.

The performance of various proposed models was as-
sessed and compared using a set of performance metrics.
These metrics include accuracy, sensitivity (also known as
recall), precision, area under the curve (AUC), and F1 score,
as indicated by equations (5) through (8).

Accuracy = T P + T N/(T P + T N + FP + FN) (8)

Recall = T P/(T P + FN) (9)

Precision = T P/(T P + FP) (10)

F1 S core = 2 ∗ (Precision ∗ Recall)/(Precision + Recall)
(11)

Figure 15. Comparison chart of existing models v/s OSAN

In evaluating the performance of various models for a
specific task, it is evident from Table.2 that the ConvNet,
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Inception V3, and ResNet50 models exhibit consistent and
strong performance with precision, recall, and F1-score of
0.88, 0.91, and 0.89, respectively, along with an accuracy of
0.91. These models also achieve an AUC of 0.90, 0.91, and
0.88, respectively. VGG16 and VGG19, while maintaining
high accuracy at 0.91, exhibit slightly lower precision and
recall at 0.91 and 0.88, resulting in an F1-score of 0.89.
On the other hand, the Exception model delivers a strong
balance between precision (0.91) and recall (0.88), resulting
in an F1 score of 0.89 and an accuracy of 0.91. However,
the OSAN model stands out as the top performer with
remarkable precision (0.96), recall (0.99), F1-score (0.97),
accuracy (0.99), and an impressive AUC of 0.99, making it
the optimal choice for the task at hand due to its outstanding
classification performance.

Our study’s success in tuberculosis classification
through AI-driven analysis of chest X-ray images opens
up promising avenues for further research. In the coming
phases, we aim to prioritize two key areas of development.
First, we will focus on enhancing the model’s robustness
and generalization capabilities. This involves refining the
model’s performance across diverse patient populations,
demographics, and medical settings, ensuring that it remains
consistently reliable in real-world clinical scenarios. Addi-
tionally, we plan to invest in explainability and interpretabil-
ity techniques, making AI-driven diagnoses more transpar-
ent and comprehensible for healthcare professionals. This
commitment to improving model interpretability aligns with
our goal of building trust and facilitating the integration of
AI assistance in clinical decision-making.

Secondly, we recognize the critical importance of large-
scale clinical trials. These trials will provide comprehensive
validation of the model’s efficacy under real-world con-
ditions. Collaborating with medical institutions to collect
extensive data and clinical feedback will be a priority.
Such trials are essential steps towards obtaining regula-
tory approval and facilitating the practical deployment of
AI-assisted tuberculosis detection systems. These strategic
directions underline our dedication to advancing healthcare
outcomes globally while addressing the practical and ethical
considerations inherent in the integration of AI technology
into the medical field.
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