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Abstract:  Texture analysis, a vital component of computer vision and image processing, plays a pivotal role in fields such as 

decoration and art. This study focuses on the classification of regular textures into 17 distinct wallpaper patterns based on 

their symmetry operations. Utilizing computer vision techniques and a filter bank approach, we compared three methods: 

Gabor filter bank, CNN-trained filters, and ImageNet pretrained filters, in conjunction with a random forest model. The results 

revealed that ImageNet pretrained filters performed exceptionally well, achieving 87% accuracy in the 'wallpaper17' dataset 

and 81% in the 'wallpaper04' dataset. 
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1. INTRODUCTION 

 
Texture recognition is an important topic in the field of 

computer vision. Various schools of thought have attempted 
to define texture, and numerous definitions have been 
proposed. One of these definitions posits that texture can be 
defined as an arrangement of basic patterns according to a 
rule of repetition [3]. According to this definition, texture 
can be categorized into three major categories: regular 
texture, non-regular texture, and near-regular texture. 
Regular texture often includes human-made textures, such 
as art and decorative patterns, although it is rarely found in 
nature. Regular texture is characterized by the repetition of 
a basic motif to cover a plane. Regular texture falls into 17 
classes based on the rules governing pattern repetition [2]. 
These classes are referred to as 'wallpaper patterns. 

A wallpaper pattern is a two-dimensional design that 
repeats itself. It is created by replicating a fundamental motif 
using basic geometric transformations. These symmetry 
transformations include translation, rotation, mirror 
reflection, and glide reflection. It is believed that any 
wallpaper pattern in Euclidean space can be categorized into 
one of the 17 crystallographic classes based on its 
symmetries [1]. These classes were initially introduced by 
the mathematician Evgraf Fedorov in the late 19th century. 
Each wallpaper group is defined by its complex symmetry 
operations, and they are crucial for comprehending a wide 
range of man-made patterns, including art and decorative 
designs [9][10]. 

 

Figure 1: different type of symmetry operations. 

The 17 wallpaper classes are commonly represented by a 

notation introduced by the French crystallographer Charles-

Victor Mauguin. This notation employs four letters: 'p,' 'c,' 

'g,' and 'm,' which describe the symmetries within the group. 

'P' signifies a primitive pattern, which has the simplest 

lattice with lattice points only at the corners. 'C' indicates 

that the lattice has additional points at its center. 'M' denotes 

the presence of mirror reflections within a pattern. Lastly, 

'G' signifies the existence of glide reflections. So These 

wallpaper groups are denoted as p1, p2 , p3, p3m1,p31m, 

p4, p4m , p4g , pm , pg, pmg , pgg , p6, p6m , cm , cmm  

and pmm. Where the number that is presented in some 

patterns indicates the highest order of rotational symmetry 

that is 1-fold, 2-fold, 3-fold, 4-fold or 6-fold[1]. The 

simplest pattern, denoted as P1, is generated using only two 

translations to cover the plane. P2 consists of a pattern 

generated using one translation and four rotations of order 

two. PM is generated using translations and mirror 

reflections with parallel axes. PG is generated using glide-

reflections with parallel axes. Cm includes mirror 

reflections and glide-reflections where the axes of the 

mirror reflections are parallel. PMM, on the other hand, is 

generated with two reflections with perpendicular axes and 

a two-fold rotation. PMG combines a two-fold rotation, 
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glide reflection with perpendicular axis, and a mirror 

reflection. PGG combines two rotations of order two and 

glide reflections with perpendicular axes, without mirror 

reflections. CMM combines a mirror reflection in two 

perpendicular axes and a two-fold rotation. P4 is generated 

with a rotation of order four. P4M has two four-fold 

rotations and mirror reflections in four axes. P4G includes 

rotations of order four, mirror reflections, and glide 

reflections with axes parallel to the mirror reflection axes. 

P3 contains rotations of order three (120°). P3M1 is a group 

that combines a three-fold rotation and mirror reflection. 

P31M is a group generated by a three-fold rotation, mirror 

reflection, and glide reflections, with the axes of the glide 

reflections midway between parallel mirror reflection axes. 

P6 contains a six-fold rotational axis. P6M has six-fold 

rotations, as well as rotations of order two and three. It also 

includes mirror reflections and glide reflections in six 

directions, with the axes of the glide reflections midway 

between parallel mirror reflection axes. 

These 17 patterns can be further categorized into four major 

groups based on their fundamental properties. The first class 

is the 'Regular' class, which contains only one type of 

symmetry operation. This group includes P1, P3, and P6 

classes. The second group is 'Semi-Regular,' which contains 

patterns generated with multiple types of symmetry 

operations in their unit cells. This group includes P2, P4, 

P3M1, and P31M. The third group is called the 'Dihedral 

Group,' which includes patterns that have only mirror 

reflection and translation operations in their unit cells. This 

group includes PMM, PMG, PGG, and CMM. The fourth 

group is the 'Miscellaneous Group' and contains the 

remaining wallpaper patterns: P4G, P4M, P6M, P6G, P3, 

and P2MG 

In this work, the objective is to automatically recognize and 

classify wallpaper patterns based on their respective 17 

groups and the four major categories to which they belong. 

While this is an important topic, particularly in the field of 

decoration, there have been few studies conducted in this 

area. To achieve this goal, supervised machine learning and 

deep learning techniques were employed. A dataset 

consisting of 170 images of wallpaper patterns was created. 

From this data, we created two datasets based on the 

challenge at hand. In the first dataset, the data  is divided 

into 17 classes representing the wallpaper's symmetric 

groups. The other dataset has four classes representing the 

major categories into which wallpaper classes fall. 

The recognition of wallpaper symmetry classes and regular 

textures can be approached from various angles. Some 

methods involve initially extracting the primitive pattern 

and subsequently identifying repetitions [1][6]. Another 

approach to addressing this challenge involves analyzing 

the overall appearance of the texture [7]. The 17 wallpaper 

classes represent textures that are distinctive and exhibit 

varying degrees of dissimilarity in appearance. Some 

classes may exhibit similarities to others, while some 

display significant differences. Effectively capturing these 

differences will be crucial for distinguishing between these 

classes. Motivated by this, we conduct the classification of 

wallpaper patterns based on their overall textural 

appearance. 

It has been widely acknowledged that filter banks are highly 

suitable for addressing many challenges in texture 

recognition [4][5]. In this approach, a set of filters is 

generated, and these filters are then applied to the input 

image through convolution. The responses obtained from 

this operation are utilized as features for machine learning 

and deep learning models. Filters designed for texture 

analysis can capture valuable information, including details 

about the directionality and frequency of repetitive patterns, 

while disregarding irrelevant block information. This 

makes filter banks a valuable tool for texture description 

In this study, with the aim of determining the class of 

wallpaper patterns, we propose the use of a filter bank 

approach for describing regular textures, the features 

extracted from the filter bank will feed a random forest 

classifier [28]. To describe texture, we undertake and 

compare three strategies. The first strategy involves 

employing a handcrafted Gabor filter bank [8], which is 

widely used in the literature. Gabor filter banks can capture 

both the orientation and frequency of a texture, rendering 

them highly effective tools for distinguishing among the 17 

wallpaper patterns. this approach proved to be very efficient 

achieving a very good accuracy.  

The second strategy involves using filters trained from the 

constructed dataset. This is done by training a shallow CNN 

on top of the dataset and then using the convolutional layers 

as feature descriptors. This approach achieves good 

performance; however, the design of the CNN should differ 

from one task to another, making it non-generalizable. 

To overcome this problem, another CNN-based approach 

was conducted. Instead of using filters pretrained on our 

dataset, ImageNet pretrained filters are used. it is believed 

that the middle layers of a CNN pretrained on ImageNet are 

capable of capturing rich information about texture, as 

texture is a mid-level abstract feature. This approach proved 

to be efficient on both datasets, achieving very good 

accuracy. 

The level of challenge presented by both datasets varies, 

and it has been observed that the performance of classifying 

wallpaper patterns into 17 symmetry groups is better than 

classifying them into the four major categories. The best 

accuracy was achieved by the ImageNet pretrained filter 

bank approach on both datasets, with an 88% accuracy in 

classifying the wallpaper into 17 classes and an 81% 

accuracy in classifying them into the four major groups. 

In this study, the aim is to advance the recognition and 

classification of wallpaper patterns based on their symmetry 

and textural properties. By exploring various approaches, 

including filter banks, we seek to contribute to the field of 

2



texture recognition and provide valuable insights for 

applications in decoration, design, and beyond. 

The remaining sections of this paper are organized as 

follows: the 2nd section investigates the related works 

covering some of the recent studies relating to regular 

textures classification using computer vision. The 3rd 

section looks at the material and methodology design. This 

section states the context of the recognition and 

classification of wallpaper patterns based on their 

respective 17 groups and the four major categories to which 

they belong. The 4th section discusses and includes an 

analysis of the expected results. The last section concludes 

the study and outlines the future works. 

 

2. RELATED WORKS 

 

Texture classification is a robust field with numerous works 

dedicated to material classification [20], texture description 

[19], and medical image analysis based on texture [11], 

among others. Regular texture recognition is a highly 

significant topic, and it has been thoroughly investigated by 

numerous researchers. Regular texture can be defined as an 

arrangement of repetitive basic motifs following strict rules. 

It has often been studied in the analysis of decorative 

images [17] and the examination of fabric defects [16]. 

The process of analyzing regular textures often 

involves the extraction of the basic pattern, followed by the 

definition of the repetition rule. The work by [12] utilizes 

forward differences in the superposition of distance 

matching functions to determine the size of basic motifs in 

fabric textures. This method was employed in the process 

of detecting fabric defects. DMF (Distance Matching 

Functions) was also used in [13], in conjunction with Haar 

wavelets for periodicity detection. In [14], the analysis 

relies on the peaks of the autocorrelation function to 

determine regular texture primitives and extract periodicity. 

The peaks of the autocorrelation function are also 

employed, in combination with genetic algorithms, in the 

research conducted in [15] to extract basic repetitive motifs 

in Islamic geometric patterns. Gabor filters are employed in 

[18] to detect fabric defects in regular textures belonging to 

wallpaper symmetric groups. The output of Gabor wavelets 

is divided into blocks, which are used for the automated 

detection of defects. The approaches undertaken in these 

studies all analyze textures from a local-to-global 

perspective. In these approaches, the initial step involves 

locating the primitive pattern and subsequently analyzing 

its distribution to determine the repetition rule. Another 

approach to tackle this challenge is to analyze the overall 

appearance of the texture. This is driven by the observation 

that each class of regular texture within the wallpaper group 

possesses a unique appearance, which can be 

comprehensively described using texture descriptors.  

Filter bank is widely used technique in texture 

recognition and segmentation. This approach has many 

advantages over other approaches as it can captures various 

information about the content of the image.  It was also 

shown that filter bank can capture orderless features that 

represents most the texture of an image. the author in [25] 

showed that CNN is like bank of filters with increasing 

complexity going deeper with the network. they exploit this 

propriety by developing a CNN that focuses more on texture 

information. Their idea was that overall shape information 

extracted by the fully connected layers of a classic CNN is 

of minor importance in texture analysis. The complexity of 

the features trained by CNNs increases with the depth of the 

network. Therefore, the last convolution layer extracts 

complex features which respond to objects such as a nose, 

a face or a human body. The fully connected layers use the 

response to these features to obtain information about the 

overall shape of the image and calculate a probability 

distribution over the different classes in the last fully 

connected layer. This design is suitable for exploring the 

arrangement of less complex features from the previous 

layers and their sparse spatial response for an object 

recognition scheme. In the work [29], Gabor filters are 

employed to automatically detect urban and tree features in 

aerial and LIDAR images. To achieve this, a set of Gabor 

filters is created by adjusting two parameters of the Gabor 

function: the standard deviation and the orientation. A 

thresholding operation is applied to the Gabor filter 

responses to obtain segmented images that separate trees 

and urban features from the rest of the images. 

The study presented in [30] has demonstrated the 

effectiveness of deep convolutional layers in Convolutional 

Neural Networks (CNN) as robust texture descriptors when 

used as a filter bank. These deep layers are combined with 

traditional texture encoders such as the bag of visual words 

and Fisher vectors, yielding promising results. In [31], the 

authors utilized a Gabor filter bank for texture 

segmentation. To enable highly efficient feature extraction, 

they maximized the frequency variance in the Gabor 

function, capturing rich and distinctive features. 

The primary focus of the work [32] was regular textures. To 

begin, they created a new dataset specifically for regular 

textures. Following this, they tested several algorithms for 

texture classification. These algorithms ranged from fine-

tuning pretrained models to utilizing Fisher vectors 

encoders on top of the convolutional layer filters. These 

approaches achieved excellent performance in the 

classification of regular textures. 

In this work, we conduct a three-strategy process for regular 

texture recognition. We were inspired by these studies to 
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use filter bank approach as we think it the best suitable to  

tackle texture classification challenges. we used Gabor filter 

bank, CNN filters, and ImageNet filters to address the 

challenge of the classification of regular texture based on 

their symmetry, into corresponding wallpaper geometric 

groups 

 

3. MATERIAL AND METHODS  

A. data 

To classify wallpaper geometric patterns, a dataset 

comprising seventeen (17) distinct wallpaper classes, each 

of which contains 100 images is utilized. These images 

were generated using the website [21], ensuring high quality 

with no noise or lighting discrepancies. such high-quality 

numerical images are opted to solely focus on the task of 

classifying 2D geometric patterns into their respective 17 

wallpaper classes, without distractions from other 

challenges such as pattern localization, noise, scale, and 

viewpoint variations. 

From the same pool of collected images, two datasets were 

created. The first one encompasses the aforementioned 

seventeen wallpaper classes, while the second comprises 

the four major categories within these classes (as previously 

explained). figure 2 represent samples from each class.  

To comprehend the distribution of classes in the two 

datasets, t-distributed stochastic neighbor embedding (t-

SNE) is employed. 

 

 

Figure 2: example of patterns belonging to 17 wallpaper classes 

 

Figure 3: T-SNE visualization of the datasets the upper one represents the 

WAMMPAPER17, the bottom is for WALPAPER04  
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 T-SNE [33] is a dimensionality reduction machine learning 

algorithm often utilized to visualize high-dimensional data 

in a lower dimension. The advantage T-SNE holds over 

other dimensionality reduction techniques is its focus on 

preserving the relationships between data points. Similar 

data in a higher-dimensional space is represented by closely 

positioned points in the lower-dimensional space. The 

distribution of our two datasets using T-SNE is illustrated 

in figure 3. Observing the figure, it's evident that for the 

WALLPAPER04 dataset, the classes overlap, and some 

classes lack density in a particular region, indicating a lack 

of inter-class similarity in the initial data. The same trend is 

observed in the WALLPAPER17 dataset, where the 

majority of classes overlap. All these findings imply that 

classifying these two datasets is challenging, requiring the 

utilization of perfect features to separate the classes. 

B. Filters bank  

A bank of filters is a transform-based approach widely 

utilized in texture classification literature. This method 

involves creating a set of various filters, each designed to 

extract specific information from the image. Each filter is 

convolved with the image, resulting in a response that 

contains information about the image's content, such as 

edges, corners, and spatial frequencies. The bank of filters 

extracts a multitude of details from the image and combines 

these responses to describe the image comprehensively. In 

the field of texture recognition, the bank of filters is one of 

the most popular descriptors. 

In this work, our objective is to classify wallpaper group 

patterns using a filter bank. To achieve this, we employ and 

compare three different approaches: Gabor filter bank, 

CNN filters and CNN’s pre-trained filters on ImageNet. We 

will delve into the details of each of these methods in the 

following sections. 

 

Gabor filters 

 

The Gabor filter, named after Nobel laureate Dennis Gabor, 

stands as one of the prominent methods for texture analysis. 

The fundamental concept behind this approach involves 

computing the local feature transform. This method 

comprises creating a bank of filters generated by the Gabor 

function. The Gabor function itself consists of two essential 

components: a sinusoidal function modulated by a Gaussian 

window [8]. The sinusoidal part determines the orientation, 

while the Gaussian component assigns the weight to the  

filter. The popularity of the 2-D Gabor filter has grown 

because it mimics the visual system of mammals in 

analyzing and extracting complex patterns. It responds to 

patterns at specific frequencies and orientations. 

 

In texture feature extraction, the Gabor filter isolates texture 

based on frequency and orientation [22], utilizing various 

parameters as indicated in the following equation 

 

 

𝐺(𝑥, 𝑦, σ, θ , λ , γ, φ) = exp [−
𝑥′2 + 𝑦′2 γ2

2𝜎2
] . exp [𝑖 (2𝜋

𝑥′

𝜆
+ 𝜑)](1) 

Where x’=x cosθ+y sinθ  and y’=x sinθ+y cosθ 

σ describe the standard deviation of the Gaussian function 

and it controls the width of the Gaussian window, γ is the 

aspect ratio, θ controls the direction of the filter. λ is the 

wavelength of the sinusoidal factor and φ represents the 

phase offset. 

 

𝑂 = 𝐺(𝑥, 𝑦) ∗ 𝐼(𝑖, 𝑗) (2) 

 

An input image is convolved with a Gabor filter, resulting 

in a response that captures texture with a specific frequency 

and orientation while blocking out other textures. To 

account for various scenarios, a bank of filters is 

constructed by altering the parameters of the Gabor function 

G(x, y, σ, θ, λ, γ, φ). Different combinations of these 

parameters can characterize distinct textures within an 

image. 

An example illustrating the creation of different filters by 

manipulating the parameters of the Gabor function is 

presented in figure 4. As depicted, changes in σ, θ, λ, and γ 

yield different filters. This set of filters serves as the 

descriptor used for extracting texture features. 

CNN filters 

one approach to extracting features from texture images is 

through the use of CNN descriptors, which involve utilizing 

the convolutional layers of Convolutional Neural Networks 

(CNNs). CNNs have gained popularity in recent years for 

various computer vision tasks, including texture 

recognition. One key advantage of CNNs over traditional 

methods is their ability to learn descriptors. 

 

 

 

Figure 4: illustration of the impact of changing different parameters in the 

gabor function. 
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This means that CNNs do not require meticulous design of 

image descriptors; instead, they autonomously construct 

their descriptors based on the available data. These 

descriptors are learned from the data through 

backpropagation and gradient descent [23], making them 

well-suited for the problem at hand. 

 Another advantage of CNNs over traditional methods is 

their hierarchical nature of feature extraction.  

A CNN can generally be divided into two parts: the feature 

extraction part, which learns suitable descriptors for the 

given problem, and the classification part, which utilizes the 

extracted features to make decisions. The feature extraction 

part consists of a series of layers, each containing a set of 

filters. Each layer extracts features and constructs a feature 

map, which is then passed to the next layer of filters for 

further feature extraction. This process continues 

hierarchically until the final layer is reached. This 

hierarchical approach means that the deeper a layer is in this 

process, the more abstract the features become [24]. For 

example, the first layer extracts low-level features such as 

edges and color blobs, while intermediate layers extract 

more complex features like textures, and the last layer 

extracts features that are specific to the problem, becoming 

increasingly abstract. 

However, despite the power of CNNs, they have some 

significant drawbacks that need to be addressed and 

rectified. One such drawback is their data dependence. As 

mentioned earlier, CNNs learn descriptors directly from the 

data, and constructing a robust CNN often necessitates a 

substantial number of trainable parameters. This, in turn, 

requires access to a significant volume of training samples. 

In many instances, including our own, only a limited 

amount of data is available. 

The convolutional layers of CNNs are believed to extract 

orderless features that are well-suited for texture 

recognition challenges [25]. These convolutional layers 

function as filter banks, and research has indicated that the 

initial layers act as Gabor-like filter banks [29]. In this 

study, the aim is to delve deeper into this assumption within 

the context of the demanding task of classifying wallpaper 

group patterns. this challenge is approached from a texture 

perspective, where we consider the global appearance and 

differences among wallpaper group patterns. Consequently, 

two CNN approaches were employed to tackle this problem, 

considering the constraints posed by limited data. 

The first approach is illustrated in figure 5, it involves 

utilizing the CNN filters trained on the wallpaper dataset. 

Essentially, the CNN was trained through gradient descent 

and backpropagation using the wallpaper dataset, and then 

these trained filters were employed to extract features from 

the dataset, which are subsequently fed into a machine 

learning classifier. To adapt the CNN to the limited data 

available, we opt for a shallow CNN. It has been 

demonstrated that texture features are predominantly 

extracted in the initial layers [24]. After conducting a series 

of experiments, the best results were achieved using a CNN 

with few convolutional layers, surpassing even deeper 

architectures.  

In the initial step, a CNN is trained on both datasets. After 

several experiments two CNN models were used depending 

on each performance on each dataset. 

architecture with only a few parameters. It has been 

demonstrated that texture features are predominantly.   

  for ‘wallpaper04’ dataset The CNN comprises three 

convolutional layers stacked on top of each other. Max 

pooling is deferred until the last layer, following the 

approach outlined in [29], to maximize performance 

 

 

 

 

Figure 5: CNN filter bank approach, the weights of the filters are obtained from training a CNN in the top of the data.  
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. The first layer employs filters with a receptive field of 5x5, 

which has been shown to be more effective than 3x3 or 7x7 

filters. Meanwhile, the second- and third-layers use 3x3 

filters to reduce the number of parameters. The extracted 

features are then passed to a softmax layer and trained for 

30 epochs using the 'rmsprop' optimizer. Data augmentation 

techniques are applied to mitigate overfitting. 

For ‘wallapaper17’ dataset. The CNN depicted in the figure 

employs a 4-layer architecture with 32 filters in the first two 

layers and 64 filters in the last two layers. Batch 

normalization [34] is applied after each convolutional layer, 

and max pooling follows every two layers. Sigmoid serves 

as the activation function for the network. The network 

undergoes training for a duration of 60 epochs. 

After training, the features extracted by the convolutional 

layers are input into a random forest classifier for 

classification. 

 

ImageNet pretrained filter bank. 

 

The second strategy (presented in figure 6) involves using 

filters that have been trained on a large-scale dataset, a 

commonly referred-to approach in the literature as transfer 

learning. Transfer learning entails leveraging knowledge 

from a model trained on a dataset with abundant data to 

enhance a model's performance in a task where data is 

limited [26]. This approach is analogous to human 

experience, where, for example, an individual proficient in 

playing one musical instrument (such as the piano) can 

relatively quickly learn to play another musical instrument 

(like the violin) compared to someone with no prior musical 

expertise. In the context of image classification, models 

trained on ImageNet are frequently employed, given their 

numerous advantages.  

ImageNet boasts an extensive array of classes 

encompassing various objects, ranging from fine-grained to 

coarse-grained categories. Furthermore, ImageNet 

comprises an extensive image collection, totaling 1.3 

million images, which makes it highly suitable for training 

deep and wide CNN models. This abundance of data 

contributes to the transferability of knowledge gained from 

training these models on ImageNet, extending to diverse 

domains, including texture classification. In this study, 

VGG16 network [27] is chosen for its simplicity. 

The rationale behind selecting this model lies in its 

simplicity, as the focus is primarily on the filter bank 

provided by this model. The VGG16 model, depicted in the 

figure, consists of 16 convolutional layers grouped into 5 

blocks. We leverage features from the third middle layer, 

specifically the third block, as previous research has 

indicated that texture features reside at an intermediate level 

within the network. Our experiments also substantiate this 

hypothesis. 

 

Random forest: 

 

After the feature extraction, the classification stage is 

performed. In this work, we use a Random Forest classifier 

[28]. Random Forest, as its name indicates, is composed of 

a set of decision trees. Each tree is constructed from the data 

and is used to make decisions. The final decision is  

determined by averaging all the outputs or by a majority 

vote. Random Forest enhances the classification capability 

by randomly assigning input data to each tree. 

4. RESULTS AND DISCUSSION 

     

In this section, the key results of the experiment conducted 

to classify wallpaper geometric patterns into their 

respective wallpaper geometry groups are presented. The 

wallpaper patterns are classified into the 17 wallpaper 

groups and the four major groups, as explained previously. 

To achieve this, bank of filters approach is employed to 

extract texture from images. These features were then input 

into a random forest classifier for the final classification. 

Figure 6: ImageNet pretrained filter bank approach, the weights of the filters are obtained from training a CNN in the top of the ImageNet dataset.  
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Three different banks of filters-based approaches were 

conducted in this experiment: the Gabor filter bank, CNN 

filters, and ImageNet pretrained filters. The dataset was 

divided into an 80% training set and a 20% testing set for 

evaluating classification accuracy. 

• Gabor filter results. 

 

As explained in the 'Materials and Methods' section, the 

Gabor filter is a highly effective tool for texture recognition. 

In this study, a filter bank is built by manipulating the 

parameters of the Gabor function. This set is created using 

various combinations of Gabor function parameters. 

TABLE 1: the accuracy of Gabor filter bank approach in % 

Dataset Accuracy  

Wallpaper17 83 

Wallpaper04 78 

While Gabor filters are a traditional method for texture 

recognition, they yield impressive results in classifying the 

challenging task of wallpaper pattern classification, 

achieving 83% accuracy in the wallpaper17 dataset and 

78% accuracy in the wallpaper04 dataset. The variation in 

results reflects the complexity of the task, with the 

wallpaper04 classes exhibiting high intra-class variance. 

However, achieving a 78% accuracy rate is still remarkable. 

Gabor filters successfully capture the frequency, 

orientation, and repetition rules of repetitive patterns within 

the wallpaper group, which explains their strong 

performance in this task. 

• CNN filter bank 

For this approach , CNN filters trained on top of two 

datasets are utilize. After conducting numerous 

experiments, we have determined that two CNN models 

produce the best results, as explained in the 'Materials and 

Methods' section. The first model, CNN-17, designated for 

the wallpaper17 group, is a shallow CNN comprising four 

convolutional layers with 16, 16, 32, and 32 filters, 

respectively. This CNN undergoes training for 60 epochs. 

The second model consists of three convolutional layers 

with 16, 16, and 32 filters and is trained for 30 epochs. The 

reason for employing different CNN models for each 

dataset, despite having identical training samples, is 

because they address distinct problems with varying 

complexities, class inter-variance, and differing numbers of 

samples per class. The output from the final convolutional 

layer is used to extract features, which are subsequently 

input into a random forest model. The results are presented 

in the table. 

TABLE 2: the accuracy of CNN filters approach in % 

Dataset  CNN-17 CNN-04 

Wallpaper17 88 23 

Wallpaper04 20 77 

From the table, it is evident that each CNN is specifically 

designed for its respective problem, and it performs poorly 

when applied to the other problem, despite some similarities 

between the two tasks and the fact that they share the same 

set of images, albeit divided into different classes. This 

presents a significant limitation, especially considering that 

CNN features are expected to be generalizable and 

transferable across various tasks. These results can be 

attributed to the limited size of the dataset and the inherent 

complexity of the problems at hand. Achieving better 

generalization would likely require a much larger training 

dataset. 

• ImageNet pretrained filters 

This method involves utilizing filters from a model that was 

trained on ImageNet. We employ the VGG16 model for its 

simplicity and the fact that it comprises five blocks of 

convolutional layers. Consequently, we can readily assess 

the influence of feature levels, ranging from low-level to 

high-level, as illustrated in the table. 

TABLE 3: the accuracy of extraction features from different blocks of 

VGG16. 

VGG block Wallpaper17 Wallpaper04 

Block2 86 76 

BLOCK3 88 81 

BLOCK4 84 73 

BLOCK5 53 67 

The best results were achieved by employing the filters 

from the first, second, and third blocks of the VGG16 

network, which correspond to the features of the 8th layer. 

These features can be considered as being at a middle level 

of abstraction. This outcome can be explained by the 

observation that, in deeper networks, features become 

increasingly abstract. Early layers focus on extracting basic 

features like edges and corners, while later layers capture 

more task-specific features. The intermediate layers, in 

contrast, tend to extract middle-level features, such as 

textures.  

The best results are achieved with 88% accuracy in the 

wallpaper17 classification and 81% in the wallpaper04 

dataset, indicating the varying complexity of the problems. 

The pretrained filters approach outperforms the traditional 

Gabor filter approach by a slight margin, demonstrating that 
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the traditional approach still has relevance in the field. 

Additionally, the pretrained filters outperform the CNN 

filters approach in the wallpaper04 dataset by 9%, while 

they perform at the same level in the wallpaper17 dataset. 

This suggests that pretrained filters are more suitable as the 

complexity of the problem increases, with a particular 

advantage in their ability to generalize. Pretrained filter 

approaches utilize the same filters for both datasets, unlike 

the CNN filter approach, where each problem requires a 

carefully designed CNN architecture, resulting in distinct 

solutions for each problem. 

5. CONCLUSION  

Regular texture recognition holds significant importance in 

the field of texture analysis, finding applications in various 

domains such as decoration and art. All regular textures can 

be categorized into 17 distinct wallpaper patterns based on 

their symmetry operations. In this work, computer vision 

approaches are employed to automatically classify these 

wallpaper patterns. This challenge is approached from two 

angles: first, by classifying patterns into each of the 17 

wallpaper symmetric groups, and second, by grouping them 

into four major categories that share fundamental elements. 

For this purpose, two datasets comprising 170 wallpaper 

patterns are constructed. To facilitate classification, we 

adopted the filter bank approach, which is considered most 

suitable for this task. We compared three filter bank-based 

methods: Gabor filter bank, CNN-trained filters, and 

ImageNet pretrained filters. These methods were combined 

with a random forest model for classification. The best 

results were achieved using ImageNet pretrained filters, 

achieving 87% accuracy in the 'wallpaper17' dataset and 

81% in the 'wallpaper04' dataset. 

Several important conclusions were drawn, such as the 

continued effectiveness of traditional approaches like 

Gabor filters, which consistently produce impressive 

results. Furthermore, filters from a CNN pretrained on 

ImageNet not only deliver high performance but also offer 

stability and generalization when compared to CNN filters 

trained on shallow datasets. However, it's essential to note 

that the results obtained in this work apply to images with 

perfect conditions (with no noise or illumination 

differences) and when the texture fills the entire image. This 

can be seen as a foundational step, addressing real-world 

scenarios where images are not ideal, and patterns are more 

complex. 

In future work, we intend to enhance the dataset by 

increasing the number of samples and introducing greater 

challenges. This effort will help establish a baseline for a 

problem that is often overlooked. 

 

 

References 
 
 

1. Asha, V., Nagabhushan, P., & Bhajantri, N. U. (2012). Automatic 
extraction of texture-periodicity using superposition of distance 
matching functions and their forward differences. Pattern 
Recognition Letters, 33(5), 629-640. 

2. Schattschneider, D. (1978). The plane symmetry groups: their 
recognition and notation. The American Mathematical Monthly, 
85(6), 439-450. 

3. Tamura, H., S. Mori, and Y. Yamawaki, “Textural Features 
Corresponding to Visual Perception,” IEEE Transactions on 
Systems, Man, and Cybernetics, SMC-8, pp. 460-473, 1978. 

4. Randen, T. (1997). Filter and filter bank design for image texture 
recognition. 

5. Cimpoi, M., Maji, S., & Vedaldi, A. (2015). Deep filter banks for 
texture recognition and segmentation. In Proceedings of the IEEE 
conference on computer vision and pattern recognition (pp. 3828-
3836). 

6. Lin, H. C., Wang, L. L., & Yang, S. N. (1997). Extracting periodicity 
of a regular texture based on autocorrelation functions. Pattern 
recognition letters, 18(5), 433-443. 

7. Aoulalay, A., El Mhouti, A., & Massar, M. (2022, March). 
Classification of Islamic geometric patterns based on machine 
learning techniques. In 2022 2nd International Conference on 
Innovative Research in Applied Science, Engineering and 
Technology (IRASET) (pp. 1-6). IEEE. 

8. Turner, M. R. (1986). Texture discrimination by Gabor functions. 
Biological cybernetics, 55(2-3), 71-82. 

9. Grünbaum, B., Grünbaum, Z., & Shephard, G. C. (1986). Symmetry 
in Moorish and other ornaments. In Symmetry (pp. 641-653). 
Pergamon. 

10. Albert, F., Gomis, J. M., Blasco, J., Valiente, J. M., & Aleixos, N. 
(2015). A new method to analyse mosaics based on Symmetry Group 
theory applied to Islamic Geometric Patterns. Computer Vision and 
Image Understanding, 130, 54-70. 

11. Collewet, G., Strzelecki, M., & Mariette, F. (2004). Influence of MRI 
acquisition protocols and image intensity normalization methods on 
texture classification. Magnetic resonance imaging, 22(1), 81-91. 

12. Asha, V., Nagabhushan, P., & Bhajantri, N. U. (2012). Automatic 
extraction of texture-periodicity using superposition of distance 
matching functions and their forward differences. Pattern 
Recognition Letters, 33(5), 629-640. 

13. Asha, V., Bhajantri, N. U., & Nagabhushan, P. (2013). Periodicity 
Extraction using Superposition of Distance Matching Function and 
One-dimensional Haar Wavelet Transform. arXiv preprint 
arXiv:1311.3808. 

14. Lin, H. C., Wang, L. L., & Yang, S. N. (1997). Extracting periodicity 
of a regular texture based on autocorrelation functions. Pattern 
recognition letters, 18(5), 433-443. 

15. Nasri, A., Benslimane, R., & El Ouaazizi, A. (2014, November). A 
genetic based algorithm for automatic motif detection of periodic 
patterns. In 2014 Tenth International Conference on Signal-Image 
Technology and Internet-Based Systems (pp. 112-118). IEEE. 

16. Hamdi, A. A., Sayed, M. S., Fouad, M. M., & Hadhoud, M. M. (2018, 
February). Unsupervised patterned fabric defect detection using 
texture filtering and K-means clustering. In 2018 international 
conference on innovative trends in computer engineering (ITCE) (pp. 
130-144). IEEE. 

17. Aoulalay, A., El Mhouti, A., & Massar, M. (2022, March). 
Classification of Islamic geometric patterns based on machine 
learning techniques. In 2022 2nd International Conference on 
Innovative Research in Applied Science, Engineering and 
Technology (IRASET) (pp. 1-6). IEEE. 

9



 

 

18. NU, B. (2011). Automatic detection of texture defects using texture-
periodicity and Gabor wavelets. In International conference on 
information processing (pp. 548-553). Springer, Berlin, Heidelberg. 

19. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., & Vedaldi, A. 
(2014). Describing textures in the wild. In Proceedings of the IEEE 
conference on computer vision and pattern recognition (pp. 3606-
3613). 

20. Bell, S., Upchurch, P., Snavely, N., & Bala, K. (2015). Material 
recognition in the wild with the materials in context database. In 
Proceedings of the IEEE conference on computer vision and pattern 
recognition (pp. 3479-3487). 

21. https://math.hws.edu/eck/js/symmetry/ 

22. Recio, J. A. R., Fernandez, L. A. R., & Fernández-Sarriá, A. (2005). 
Use of Gabor filters for texture classification of digital images. Física 
de la Tierra, 17, 47. 

23. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proceedings of the 
IEEE, 86(11), 2278-2324. 

24. Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding 
convolutional networks. In Computer Vision–ECCV 2014: 13th 
European Conference, Zurich, Switzerland, September 6-12, 2014, 
Proceedings, Part I 13 (pp. 818-833). Springer International 
Publishing. 

25. Andrearczyk, V., & Whelan, P. F. (2016). Using filter banks in 
convolutional neural networks for texture classification. Pattern 
Recognition Letters, 84, 63-69. 

26. Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE 
Transactions on knowledge and data engineering, 22(10), 1345-
1359. 

27. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional 
networks for large-scale image recognition. arXiv preprint 
arXiv:1409.1556. 

28. Rigatti, S. J. (2017). Random forest. Journal of Insurance Medicine, 
47(1), 31-39. 

29. Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., 
& Keutzer, K. (2016). SqueezeNet: AlexNet-level accuracy with 50x 
fewer parameters and< 0.5 MB model size. arXiv preprint 
arXiv:1602.07360. 30. CIMPOI, M., MAJI, S., & KOKKINOS, 
I. Deep filter banks for texture recognition, description, and 
segmentation. arXiv, 2015: 1507.02620 [2020-11-03]. 

31. Bresch, M. (2002). Optimizing filter banks for supervised texture 
recognition. Pattern recognition, 35(4), 783-790. 

32. Liu, N., Rogers, M., Cui, H., Liu, W., Li, X., & Delmas, P. (2022). 
Deep convolutional neural networks for regular texture recognition. 
PeerJ Computer Science, 8, e869. 

33. Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-
SNE. Journal of machine learning research, 9(11). 

34. Ioffe, S., & Szegedy, C. (2015, June). Batch normalization: 
Accelerating deep network training by reducing internal covariate 
shift. In International conference on machine learning (pp. 448-456). 

 

 

 

 

 

 

 

 

 

 

 

 

 

10


