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Abstract: The continued rise of global temperatures is causing a major climate crisis and this is leading to devastating and deadly
natural disasters. People use social media platforms to capture and share real-time incidents in the form of images, videos and text.
However, sharing too much information at once makes it harder for first responders to determine where exactly individuals are in
need and whether they require immediate assistance. In the past, machine learning techniques were used to automatically identify
and infer disaster response from images, as manually identifying disaster types is currently challenging. Therefore, in this work,
deep learning models are used to investigate how well they can classify the images according to their disaster type by learning
the features extracted from the input images on their own. Seven categories of disaster were considered in this study. These were:
cyclones, earthquakes, floods, droughts, landslides, wildfires and urban fires. Two existing datasets namely the Comprehensive Disaster
Dataset (CDD) and the Natural Disaster Dataset (NDD) were customised into a single dataset which we named as the Customised
Disaster Dataset (CDD). The Customised Disaster Dataset comprises of a total of ten classes, three of which are images which
are not related to disaster. These three classes are: regular images of buildings and streets, wild forest and sea. Three pre-trained
deep learning models such MobileNetV2, VGG16 and InceptionV3 were used to train the datasets to allow for further comparison
with existing studies. Along with that, a customised neural network model was created and trained on the datasets. Different
scenarios were devised to assess the top performing models. The InceptionV3 had the best classification accuracy of 96.86% when
the trainable layers were set to false. We also obtained an accuracy of 96.86% with the MobileNetV2 model but this time the
trainable layers were set to true. In this study, we have demonstrated the effectiveness of CNN models as a tool for the automatic
classification of disaster-related images. Most studies have used only two categories (disaster-related and non-disaster related images)
or are restricted to only one type of disaster (water-related, land-related, etc.) while in our studies we have used seven categories
of disasters. However, the accuracy of the models may be less if the images are taken at night or when the weather conditions are very bad.
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1. INTRODUCTION
In an era where natural calamities endanger human lives

and destroy infrastructure, the ability to reliably catego-
rize disaster-related images is critical for disaster response
management and mitigation operations. Earthquakes, floods,
landslides, and other natural calamities generate massive
destruction. The Emergency Event Database (EM-DAT)
reported 387 natural disasters in 2022, resulting in the
deaths of 30,704 persons [1]. Natural catastrophes cause
infrastructure damage, a high death toll, and economic
losses. Following a tragedy, millions of people use social
media platforms to post videos, pictures, and tweets about
the incident in hopes of receiving support from the rightful
authorities to provide relief (food, safe drinking water,
shelter), sanitation, and medical treatment to the victims.
This is critical for first responders, disaster management,
and non-governmental organizations (NGOs), as they are

the ones that infer appropriate emergency responses based
on the type of disaster [2]. In such times, it is very important
to ensure that critical services remain operational so that
a rapid assessment of the situation can be made. Such
assessments may include the ability to carry search and
rescue operations for the immediate protection of lives,
assessment of critical infrastructures such as transportation
networks and building, how prepared is the community to
respond to the crisis, whether there are any environmental
hazards that can occur, and what technologies could best be
used in response. Disaster response is critical in alleviating
the immediate and long-term impacts of such calamities.
Continuous investment in preparedness, response strategies,
and technological advancements is essential to protect com-
munities and foster resilience.

During disaster response, technologies such as Artificial
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Intelligence, deep learning and machine learning can be
used to assist first responders in quickly analysing vast
quantities of visual data which can be obtained from drones
and satellites. This can help to locate the most affected
regions more precisely thereby prioritising their response
actions so that the most impact areas receive the first
attention [2]. Image classification can also help to deploy
and allocate resources more efficiently. This can help the
responders to identify both safe and hazardous routes.
Rescue teams can use such images to identify survivors or
potential survivors in order to save their lives. Preparation
is an important element in responding to disasters. Images
from past disasters can also be used to train first responders
and to develop best practices to react to real scenarios in
order to reduce the overall impact of natural disasters.

However, manually filtering all disaster-related postings
among other irrelevant posts such as random movies and
advertisements is very challenging for a large number
of reasons. Firstly, this is a time consuming process as
collecting and analysing a large number of images can take
a significant amount of time [3]. This can lead to delays in
response which can worsen the impact of the disasters. If
the disaster has occurred on a very large scale, using manual
methods would be highly impractical. Important elements
from images may be missed or wrongly interpreted which
can lead to an inadequate response. Remote or dangerous
areas are difficult to reach and therefore manual methods
would not be practical in such cases. Properly analysing
disaster images requires some training and such skilled
personnel may not be available at that time. Working during
natural disasters is physically exhausting and stressful and
this can lead to human error in the manual assessments.

To ensure an efficient emergency response, it is critical
to first classify the images according to their disaster type.
This has resulted in the need to use deep learning algorithms
to automate the disaster image classification process [3].
Deep learning is a branch of Artificial Intelligence which
can be used to understand text, images and videos. In
the context of disaster response, this technology can be
used to analyse images received from different sources
such as drones, satellites or social media. Since a lot of
historical data already exists, these can be used to create
robust deep learning models which can then be deployed
in times of natural disasters. Deep learning models can be
used to quickly analyse large quantities of images which
can enable first responders to act quickly. Moreover, since
this is an automated system and offers reasonably high
accuracies especially for the classification of images, it
reduces subjective assessments and biases when the same
is done by humans.

This study attempts to address the disaster image clas-
sification problem by developing a robust deep learning
model that can automatically recognize and categorize
disaster-related images based on disaster categories such
as ‘Cyclone’,’ Earthquake’, ‘Flood’, ‘Drought’, ‘Landslide’,

‘Wild Fire and ‘Urban Fire’ with the intention to improve
the efficiency and efficacy of disaster response activities by
automating the image classification process. By adopting
deep learning algorithms, the time and necessary resources
such as human intervention are reduced drastically allowing
for a faster and more informed decision-making during
crucial situations [4]. This study has a dual focus on de-
veloping a custom image classification model and utilizing
pretrained convolutional neural network (CNN) models sep-
arately for the classification of seven major disaster types:
‘Earthquake’, ‘Cyclone’, ‘Wildfires, Urban fires’, ‘Land-
slide’, ‘Drought’ and ‘Flood’ along with three non-damage
classes labelled as ‘Non Damage Buildings Streets’,
‘Non Damage Wildforest’ and ‘Sea’. These non-damage
classes are added to test the model’s ability to differentiate
between catastrophe images like earthquakes, floods, and
wildfires and non-disaster images like buildings, forests, and
seas. These non-damage categories are chosen specifically
since the class Earthquake and non-damage building both
contain images of buildings but in different scenarios.
Similarly, flood and sea contain comparable patterns, as do
wildfires and wild forests.

This research encompasses a wide range of imagery
sources, including satellite imagery for the category ‘flood’
and ground-based images for the other categories, to ensure
a comprehensive understanding of disaster classification
across different data types. For the custom model, a neural
network architecture is designed to accurately classify the
different disaster types. In addition, the research leverages
pre-trained CNN models for disaster type classification.
These pre-trained models such as VGG16, MobileNetV2,
and InceptionV3, are fine-tuned and adapted to the spe-
cific disaster-related dataset, enabling the extraction and
utilization of generic visual features relevant to the different
disaster types. This approach aims to benefit from the pre-
trained models’ knowledge of generic visual patterns while
incorporating the domain-specific information required for
accurate classification [5].

This paper proceeds as follows. In the next section, we
provide an overview of recent works that have been done
on disaster image classification using computer vision and
machine learning techniques. The methodology is described
in section 3 while the implementation details, the results
and their evaluation are provided in section 4. Section 5
concludes the paper with some ideas for future works.

2. RelatedWorks
Amit et al. [6] created an automated approach for

identifying catastrophes by analyzing satellite photos with
convolutional neural networks (CNN). Three convolutional
layers, two max-pooling layers, and two fully linked layers
comprised their CNN design. Using 40,000 picture patches
from Google Earth aerial photographs, they generated a
training dataset for landslides and floods in Japan and
Thailand. Using a raster scan approach, the CNN was
trained for fast extraction of disaster zones. To show the
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occurrence of a disaster, regions with high forecast values
were highlighted by creating a 32x32 rectangular box and
labeling it with 1. Both catastrophes had F1-scores ranging
from 80% to 90%. For feature extraction, the model utilised
six RGB channels, prevailing over previous techniques that
only used two grayscale channels. It should be pointed
out, however, that their dataset only comprised images
captured in bright weather conditions. Tackling the difficulty
of diverse color changes associated with varying weather
conditions remains a work in process [6].

Liu and Wu [7] used wacDAE-2 (Wavelet Auto-Encoder
with 2 Hidden Layers) to build a deep learning-based
approach to detect landslides in optical remote sensing
images. They used a wavelet transformation to capture
hidden characteristics. They also used a corrupting and
denoising strategy to increase the resilience of the model in
recognizing landslides. To learn high-level characteristics
and representations for each picture, a deep autoencoder
network with several hidden layers was employed. For
class prediction, a softmax classifier was applied. Google
Earth remote sensing images were used in the evaluations.
The approach suggested by Liu and Wu surpasses SVM
and ANN classifiers in terms of efficiency and accuracy,
reaching a classification accuracy of 97.40%. They intend
to test the approach on real-world optical remote sensing
datasets, compare it to existing methods, and investigate
network optimization methodologies. They also intend to
create a robust deep autoencoder network for high perfor-
mance computation on CUDA-enabled GPUs [7].

Dunnings and Breckon [8] implemented a real-time,
automatic fire detection in videos using modified versions of
AlexNet and InceptionV1 models, called the InceptionV1-
OnFire. They used superpixel localization techniques. The
implemented CNN architectures obtained a maximum ac-
curacy of 93% for binary fire detection in images, and
an accuracy of 89% within their superpixel localization
framework. The models process frames at a rate of 17
frames per second. However, this study focused only on
fire-related disasters [8].

Ofli et al. [9] proposed an early fusion multimodal
deep learning architecture for joint representation learning
of text and picture modalities. For text and pictures, they
employ two parallel architectures, including the VGG16
model for image classification and a customised CNN
model for text. The multimodal architecture uses a shared
dense layer to aggregate data from both modalities and
softmax to predict the output. The studies make use of
the CrisisMMD dataset, which contains pictures from seven
natural disasters in 2017. In unimodal experiments, image-
only models outperform text-only models by 2.5% and 6.4%
in informativeness and humanitarian categorization tasks
respectively. The multimodal technique, on the other hand,
performs marginally better, with a 1.1% improvement in
informativeness classification and a 1.6% improvement in
humanitarian categorization tasks [9].

Asif et al. [10] created a disaster taxonomy and emer-
gency response pipeline for automated decision-making in
emergency circumstances using deep learning algorithms.
They also used the CrisisMMD dataset. Card sorting was
used to validate the taxonomy’s correctness and complete-
ness. The authors classified and identified objects found
in disaster-related pictures using the VGG-16 and YOLO
algorithms. The analytic hierarchy process (AHP) mapped
disaster images to the taxonomy and chose relevant emer-
gency response categories. With YOLOv4, the technique
obtained a classification accuracy of 96% [10].

Zou et al. [11] investigated how to identify disaster
images from social media using the VGG16 model and
the FastText framework. Using the CrisisMMD dataset,
they developed a data fusion model that used visual and
linguistic features to categorize relevant photos. In Task 1,
the multimodal approach outperformed unimodal methods,
with an accuracy of 87.6% against 83.3% for image-only
approaches and 85.2% for text-only approaches. In Task 2,
the multimodal technique outperformed unimodal methods
by 0.4%, with an accuracy of 92.6% against an accuracy of
90.7% for text-only and 92.2% for image-only approaches.
The study recognizes the problem of imbalanced data and
intends to solve it in a future work [11].

Dinani and Caragea [12] investigated capsule networks
against convolutional neural networks (CNNs) for clas-
sifying disaster photographs as useful or uninformative.
They used images from the CrisisMMD dataset to compare
capsule network models to ResNet18 models both for in-
domain and cross-domain situations. The results demon-
strated that capsule networks performed better when the
training datasets were small or imbalanced, outperforming
the ResNet18 models. The researchers intend to perform
controlled experiments to further understand the effects of
sample size and class imbalance, as well as adapt CapsNet
models to additional multi-class classification challenges,
such as classifying different types of disasters [12].

Hossain et al. [13] created a multimodal disaster infer-
ence system from tweets that uses textual and visual infor-
mation. They extracted textual data using a bidirectional
long-term memory (BiLSTM) network with an attention
mechanism, while visual characteristics were extracted us-
ing a pretrained convolutional neural network (ResNet50).
To better capture word token dependencies, the researchers
compared BiLSTM with attention mechanisms to CNN-
based approaches. The multimodal system outperformed
conventional unimodal and multimodal models, improving
performance by around 1% and 7%, respectively [13]. Table
I provides a summary of the research papers.

This section has explored previous studies along with its
techniques and approaches used for disaster image classi-
fication. This study aims to explore different deep learning
models using existing disaster image datasets and integrate
them into a single dataset for disaster image categorisation.
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TABLE I. Summary of papers

References Datasets Classifier Accuracy/F1-Score

Amit et al. [6] Google Earth aerial images CNN 80 90

Liu and Wu [7] Google Earth remote sensing images WacDAE-2 97.4

Dunnings and Breckon [8] Fire related images Alexnet & InceptionV1 93.0

Ofli et al. [9] CrisisMMD VGG16 83.3

Asif et al. [10] CrisisMMD VGG-16 & YOLOV4 96.0

Zou et al. [11] CrisisMMD VGG16 & FastText 92.2

Dinani and Caragea [12] CrisisMMD Capsule network & ResNet-18 92.2

Hossain et al. [13] Twitter ResNet50 & BiLSTM 81.88

3. Methodology
The main objective of this study is to identify the type

of disaster from images. In this section, a solution has
been proposed to overcome the main challenge of manual
classification of disaster type. Figure 1 depicts an overall
system architecture of the stages involved in creating the
image disaster classification.

Figure 2 demonstrates the flowchart for the proposed
system. The two datasets, namely the Comprehensive Disas-
ter Dataset (CDD) and the Natural Disaster Dataset (NDD)
are combined into a new dataset. Two variations of the
dataset will be employed, one comprising 350 images and
the other consisting of 700 images, to examine the impact
of dataset size on model training. The dataset will be
divided into two different ratios to observe how varying
the number of images in the training and validation sets
affects the outcomes. Three different pre-trained models,
namely VGG16, MobileNetV2, and Inceptionv3 will be
utilised for training the model through transfer learning. The
model’s performance will be evaluated using the test set.
The evaluation metric employed will be the classification
accuracy. The best performing model will be then integrated
into a web application.

A. Dataset and Preprocessing
The Natural Disaster Dataset (NDD) and the Com-

prehensive Disaster Dataset (CDD) were integrated into
another dataset named as the ’Customised Disaster Dataset’
to focus on various disaster categories. To produce this
customised dataset, a subset of pictures from the NDD
dataset were merged into some of the classes in the CDD
dataset, excluding certain classes such as ’Human’ and
’Human Damage’. Furthermore, the class ’Water Disaster’
was renamed ’Flood’ to conform to the Natural Disas-
ter dataset’s naming convention. Because the images for
the classes ’Infrastructure Damage’ and ’Earthquake’ were
similar, rather than considering them as different classes,
several pictures from the ’Infrastructure Damage’ folder
were added to the ’Earthquake’ category. Figure 3 shows
some one sample image for each of the seven disaster

type categories from the Customised Disaster dataset while
Figure 4 shows some sample images for the non-damage
categories.

These non-damage classes are incorporated in the cus-
tomised disaster dataset so that the model can better dis-
tinguish between disasters and non-disaster categories that
may share similar visual patterns. Both the datasets with
350 photos per class and the other one with 700 images per
class, were split into various versions using the following
split ratios shown in Table II.

B. Classification Phase Using Convolutional Neural Net-
work
Convolutional Neural Networks (CNNs) are a type

of artificial neural network designed to recognise visual
patterns from pixel images with minimal pre-processing.
Convolutional neural networks consist of two simple el-
ements: convolutional layers and pooling layers. Convo-
lutional layers and pooling layers work together to allow
CNNs to automatically learn hierarchical data representa-
tions, making them extremely effective for tasks such as
image classification [14]. Convolutional neural networks
are popular due to their architecture, which eliminates the
need for manual feature extraction. Instead, the system
uses convolution of image and filters to generate invariant
features, which are then passed on to the next layer. The
features in the next layer are convoluted with different filters
to generate more invariant and abstract features. Common
convolutional neural network architectures include LeNet,
AlexNet, ZFNet, GoogLeNet, VGGNet, and ResNet [15].

The convolutional layer uses filters to extract features
from the input image. It involves identifying edges, colors,
and textures [16]. The activation function (e.g. ReLU)
introduces non-linearity to the model and helps decide if
neurons should be activated. The pooling layer reduces
computational complexity by downsampling feature maps
while retaining important information. The flatten layers
convert pooled feature maps into a flat vector hence prepar-
ing data for input to a Fully Connected Layer (FCL). The
FCL is a neural network layer that performs classification
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Figure 1. Proposed System Architecture

TABLE II. Split ratios

Train (%) Validation (%) Test (%)

80 10 10

60 30 10

or identification based on extracted features. The Softmax
function is used to convert raw scores to probability distri-
butions while Cross-entropy is used as the loss function for
training [17].

Call back functions are functions that are called repeat-
edly to evaluate the performance of the model during the
training. ModelCheckpoint and EarlyStopping are inbuilt
callback functions that are used in this work. During the
training phase, ModelCheckpoint is used to preserve the
best model as well as the best model weights at each epoch
interval [18]. The parameters that are associated with the
function involves a file path to specify the model file path
for saving, a ‘monitor’ to be used as a metric for early
stopping detection and the ‘save best only’ parameter can
be set to ‘True’ to save the best model and weights [19].

If the model achieves optimal performance sooner than
expected, the Early Stopping function stops the training
process. ‘Patience’ is one of the function’s parameters.
A number must be assigned to it. This value denotes
the number of epochs to wait for, if no improvement in
performance is noted before halting the training [20].

C. Experimental Setup
This section aims to describe the different components

of the system, the hardware and software requirements
that are required to perform the disaster image recognition.
Table III lists the libraries and tools utilised in the system’s
development

All the codes were trained on Google Colab since it
provides access to Tesla T4 GPU hardware for 12 hours
a day for free. Furthermore, Google Drive may be readily
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Figure 2. Flowchart for the proposed system

TABLE III. Tools and Technologies used

Tools Description(%)

OpenCV Open-Source library for image processing
and machine learning.

Numpy Matrix and multidimensional arrays.

TensorFlow Allows the implementation
of deep learning models.

Keras API used for deep learning.

Google Colab Platform to train deep learning models.
Provides usage of free GPU (e.g., T4).

mounted on top of the Google Colab platform, from which
the dataset can be accessible instantly

D. Feature extraction using pre-trained models
In this section, various pre-trained models were utilised

to extract features from the data. The pre-trained models
employed include MobileNetV2, VGG16 and InceptionV3.
Freezing the base model layers prevents their weights from
being updated during training, allowing them to be used as

fixed feature extractors. Transfer learning is a technique that
uses a pre-trained deep neural network model to perform
tasks like image classification. These models are trained on
large datasets like the ImageNet and COCO datasets. This
technique yields better results than training with limited
data, as the model leverages learned features to perform
a new task. It helps to prevent overfitting and reduces the
computational burden during training since the gradients
are not calculated or applied to these layers. If the value
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Figure 3. Sample Images from the Customised Disaster dataset

Figure 4. Sample Images for the Non-Damage classes

of the ‘trainable.layer’ is set to ‘True’, the weights will be
updated during the training phase. Both scenarios are tested
in this work. Different image sizes were utilised depending
on the specific pre-trained model used. Table IV provides
a summary of the models used.

The base layer of a pre-trained model has been enhanced
with custom layers such as the Global Average Pooling,
Dense layers, and Dropout layer to reduce overfitting. The
last dense layer uses the Softmax function to generate
probability values for the dataset’s 10 classes. A custom
CNN model is implemented using the Sequential API
in Tensorflow, consisting of Conv2D layers for feature
extraction and Maxpooling2D layers for reducing spatial
dimensions. Global AveragePooling2D layers average fea-
ture map values, which are converted to 1D vectors by
the flatten layer. The custom model has 4,472,970 trainable
parameters.

This study uses the callback functions, ModelCheck-
point and EarlyStopping, to modify model parameters dur-
ing training. A ’lr schedule’ learning rate schedule func-
tion is created, adjusting the learning rate value exponen-
tially based on epoch count. If the epoch count is less than
10, the learning rate value remains intact. Otherwise, if the
epoch count is larger than 10, the learning rate value is
lowered exponentially at a rate of 0.1. This fine tunes the
model’s parameters and improves performance. The Adam
optimizer is used, with an initial learning rate of 0.001 and
a decay rate of 1e-6. The loss function is categorical cross
entropy which is best suited for multi-class classification
instances.

The computational complexity for a deep learning model
depends on several factors. The computational complexity
is directly related to the number of convolutional layers,
pooling layers and fully connected layers that are present

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


1480 Anisha Coopen, et al.: Image Classification Based on Disaster Type using Deep Learning.

TABLE IV. Summary of pre-trained models used

Feature Extraction Image Size Trainable Layer Classifier

MobileNetV2 224*224
True

Softmax
False

VGG16 299*299
True

Softmax
False

InceptionV3 224*224
True

Softmax
False

in the forward and backward passes in the model. Moreover,
the number of parameters used will also influence the time
complexity. Thus, the size of the images used also has a di-
rect impact on the computational complexity. Nevertheless,
our proposed method is designed to balance accuracy and
efficiency as the classification needs to be done in real-time
and there is also the need to scale-up in order to classify
thousands of images within minutes if such is available.

4. Results and Evaluation
The models that were tested with the different dataset

versions and split ratios are evaluated in this section. For
each dataset version, its classification accuracy is calculated
and compared with all the models.

A. Results for Pre-Trained Models
The results for the pre-trained models trained on the

different ratios for both the small and large dataset are
presented in the tables below.

1) Large Dataset
Tables V shows the results for the large dataset for the

ratios 8:1:1 and 6:3:1.

For the MobileNetV2 when the trainable layers were set
to ‘False’, an accuracy of 92.00% was obtained. When the
trainable layers were changed to ‘True’, the accuracy in-
creased by 4.86%. Additionally, for the VGG16 model, the
accuracy has increased from 86.57% to 92.86% when the
trainable layers were changed from ‘False’ to ‘True’. The
InceptionV3 model has achieved an accuracy of 96.86%
with the trainable layers being set to ‘True’. However, when
setting the trainable layers to ‘False’, its accuracy decreased
by 2%. For the MobileNetV2 when the trainable layers were
changed from ‘False’ to ‘True’, the classification accuracy
increased from 93.71% to 96.86%. However, for the VGG16
model, the classification accuracy decreased from 77.71%
to 65.71% when the trainable layers were changed from
‘False’ to ‘True’. The InceptionV3 model has achieved an
accuracy of 95.71% with the trainable layers tables set to
‘False’. The accuracy remained the same when the trainable
layers were set to ‘True’. There is no general increase or
decrease in the classification accuracy when the training
data is reduced from 80% to 60%.

2) Small Dataset
Table VI shows the results for the small dataset for the

ratios 8:1:1 and 6:3:1.

For the MobileNetV2 when the trainable layers were
set to ‘True’, an accuracy of 93.43% was obtained. When
the trainable layers were changed to ‘False’, the accuracy
increased by 2.28%. However, for the VGG16 model, the
accuracy has dropped from 84.86% to 84.29% when the
trainable layers were changed from ‘False’ to ‘True’. The
InceptionV3 model has achieved an accuracy of 95.71%
with the trainable layers set to ‘False’. However, when
setting the trainable layers to ‘True’, the accuracy decreased
by 0.28%.The accuracy of the MobileNetV2 model was
96.00% when the model’s trainable layers were set to
’True’. But when the trainable layers were set to ”False,”
the accuracy fell by 3.71%. On the other hand, the VGG16
model’s accuracy decreased from 85.71% to 74.86% when
the trainable layers were changed from ‘False’ to ‘True’.
Setting the trainable layers to ‘True’ produced an accuracy
of 93.43% for the InceptionV3 model while setting it
to ‘False’ produced an accuracy of 94.86%. There is no
significant increase or decrease in the classification accuracy
when the training data is reduced from 80% to 60%.

The results reveal that setting the trainable layers to
‘True’ improves accuracy only for MobileNetV2 while this
is not true for the other two models. This is perhaps
because MobileNetV2 is more lightweight in terms of layers
compared to the two other models. We also noticed that
there was not much difference in accuracy when the dataset
was increased from 3500 to 7000 images, suggesting that
350 images per category was adequate for the pre-trained
models to learn the required features from the data.

B. Custom CNN Model Results
The findings for the custom model are tabulated in Table

VII.

An accuracy of 71.11% was obtained using the Cus-
tom Small 8 1 1 dataset. The model’s accuracy de-
creased to 69.14% when the training data was reduced from
80% to 60%. An accuracy of 88.57% was obtained using
the Custom Large 8 1 1 dataset. Again, the accuracy
decreased by a significant amount when the training data

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


Int. J. Com. Dig. Sys. 16, No.1, 1473-1483 (Sep-24) 1481

TABLE V. Results for the large dataset

Model Trainable
Accuracy (%)

8:1:1

Accuracy (%)

6:3:1

MobileNetV2
False 92.00 93.71

True 96.86 96.86

VGG16
False 86.57 77.71

True 92.86 65.71

InceptionV3
False 96.86 95.71

True 94.86 95.71

TABLE VI. Results for the small dataset

Model Trainable Layers
Accuracy (%)

8:1:1

Accuracy (%)

6:3:1

MobileNetV2
False 93.43 92.29

True 95.71 96.00

VGG16
False 84.86 85.71

True 84.29 74.86

InceptionV3
False 95.71 94.86

True 95.43 93.43

TABLE VII. Results for the custom model

Model Name
Classification Accuracy (%)

8:1:1

Classification Accuracy (%)

6:3:1

Custom Small 8 1 1 71.11 69.14

Custom Large 8 1 1 88.57 82.29

was reduced. The difference in accuracy between the Cus-
tom Small 8 1 1 and Custom Large 8 1 1 models
is 17.46%, indicating a significant overall improvement
in the model’s performance when the dataset has been
doubled from 3500 to 7000 images. However, it is still
quite far from the best performance of the pre-trained
MobileNetV2 model which was 96.86%. The three best
models were further evaluated under different conditions.
The MobileNetV2, InceptionV3, and Custom models are
assessed in this section under various situations such as
variable light intensities, reduced picture quality, rotation,
and occluded images for a test set of 160 photos with 40
images per scenario. Table VIII lists the various scenarios
used along with their descriptions.

Table IX shows the results from the test set under
various situations on the MobileNetV2 model. It can be
observed that the MobileNetV2 and the InceptionV3 pre-
trained models work quite effectively in varied conditions,

particularly in low light, with a classification accuracy of
97.5%, i.e., with just one misclassified image out of 40.
Overall, the results indicate that the InceptionV3 model is
most robust to disturbance in the images, especially with
respect to rotation where the accuracy is still at 87.5%.
The custom model delivers the worst performance in all
the scenarios showing that it would be better to rely on pre-
trained models for the identification of disaster type from
images.

In terms of computational complexity, MobileNetV2
is designed for efficiency, making it particularly suitable
for applications with limited computational resources such
as mobile devices. The model contains approximately 3.4
million parameters, which is relatively low compared to
more complex models such as VGG16 or ResNet50. This
efficiency enables MobileNetV2 to achieve high-speed in-
ference with reduced computational demands, making it
ideal for real-time image classification tasks.
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TABLE VIII. Description for the various scenarios adopted

Scenario Description

Light Intensity The image clarity is reduced to up to 100% using Windows’ Photos Editor

Image Clarity IThe image clarity is reduced to up to 100% using Windows’ Photos Editor

Viewpoints Images are rotated and flipped to various angles and orientations ranging from 0 to 180 degrees

Occlusions For each category, images with a noisy background are selected

TABLE IX. Results for the three best models

Scenarios Number of images in the test set
Accuracy

MobileNetV2

Accuracy

InceptionV3

Accuracy

Custom Model

Light Intensity 40 97.5 97.5 70.0

Reduced Image Clarity 40 92.5 92.5 82.5

Different rotation angles 40 77.5 87.5 65.0

Occlusion 40 85.0 87.5 80.0

Figure 5. A sample classification result from the web application

A web application was also implemented as part of
this study in order to deploy the model. The InceptionV3
model was selected for deployment due to its robustness to
noise. A user may select and upload an image by clicking
the ‘Upload Image’ button. The user can then click on
the ‘Predict’ button to perform the classification. Figure 5
shows that the model has correctly identified an uploaded
picture as belonging to the wildfire category.

5. Conclusion
In this study, CNN models such as MobileNetV2,

VGG16, and InceptionV3 were trained along with a custom
neural network model to identify disasters. The models
were trained on a customised dataset called the ‘Customised
Disaster Dataset’ with ten classes with three of them
consisting of non-disaster images. This study generated
two versions of the Customised Disaster Dataset: a small
dataset with 350 pictures per class and a large dataset with
700 images per class. The experiments were carried out to
determine the most effective model in terms of performance

and robustness. The MobileNetV2 and the InceptionV3
models performed well on the large dataset with a split
ratio of 8:1:1 achieving the highest accuracy of 96.86%. In
terms of robustness, we found that the InceptionV3 model
delivered the best scores followed closely by MobileNetV2.
The InceptionV3 model was then integrated into a web
application to automate the disaster classification process.
This research demonstrates the potential of deep learning
models for automating the disaster images classification
process. In the future, we intend to work on a model that
can identify the disaster type from short videos.
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