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ABSTRACT: 

The Wireless Sensor Networks (WSNs) advances a variety of ground-breaking applications, 

including localization, target tracking, etc. The bulk of these applications make use of a large 

number of sensor devices that are linked to the base station, which functions as a gateway to link 

cloud computing environments and other settings. The primary functions of WSNs are data 

gathering, data sensing, and data transmission; however, sensor devices collect data and 

communicate it episodically across the intermediate node in order to make wise decisions from 

time to time. The main goal of target tracking applications using WSNs is to increase tracking 

prediction accuracy, network reliability, and lifetime performance for data collected. This study 
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proposes a model for dependable target tracking (RTT) that makes use of WSNs. First, a modified 

Kalman Filter (MKF) is implemented to increase forecast accuracy. Next, multi-objective-based 

route optimization and better CH selection are demonstrated. The findings of the experiment 

demonstrate that the RTT model outperforms the current target tracking approach using WSNs 

in terms of energy efficiency, tracking accuracy, latency reduction, and communication overhead. 
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1. INTRODUCTION 

Target tracking applications greatly benefit from wireless sensor networks' compact size, low 

cost, self-configurability, and self-organization [1] features. has a significant impact on target 

tracking applications in both military and civilian settings. The location of the malicious object 

can be easily and quickly determined using WSNs, but there are certain drawbacks, including 

energy limitations and poor tracking precision [2]. Researchers have recently concentrated on 

finding trade-offs between tracking accuracy and energy efficiency [3].Among them, cluster-based 

target tracking methods are very efficient in addressing limitations such as quality-of-service, 

latency reduction, and energy efficiency [4]. In dynamic cluster-based routing, the CH collects 

tracking prediction from a member, performs a fusion of state estimation, and transmits it to the 

base station for finalizing target state estimation; thereby balancing the energy load of whole 

networks through dynamic CH selection [5]. In [5] showed the benefit of using Fuzzy optimization 

in enhancing lifetime performance for homogenous networks only; thus, target tracking 

application requires heterogeneity performance optimization. In [6] designed a data collection 

scheme using cluster-based [7] and prediction-based [8]. In [9] the latency is reduced for data 

collection by employing an evolutionary computing model. However, failed to address the loss of 

connectivity issue impacting the overall lifetime performance of WSNs [10]. In [11] designed a 

routing model emphasizing heterogeneous networks; the model showed the necessity of reducing 

latency and meeting energy constraints. In addressing such issues various heterogeneous 

optimization such as industrial-WSN [12], dynamic medium access control [13], software defined 

network, [14], and dynamic traffic optimization [15]. In [16] a multi-path routing method and 

Fuzzy-rule-based multi-objective optimization for CH selection [17] are designed for reducing 

latency with minimal energy dissipation [18]; Hence, did not consider the dynamic nature of the 

environmental of the target tracking application [19], [20]. Thus, inappropriate scheduling leads 

to loss of packet and energy loss and affects overall target tracking performance [21]-[23]. The 

existing tracking method is presented for the linear model using the Kalman filter; however, in 

[24] showed an improved KF for a non-linear environment; However, the model is not tested for 

WSNs and induces significant computational overhead. 

This research work presents a novel design for building energy-efficient routing for the target 

tracking (RTT) model for WSN. First, the RTT model deploys sensor devices across WSNs. 



Secondly, the RTT model presents selection of cluster head efficiently that balances network 

coverage and improves energy efficiency; thereby reducing latency and communication overhead. 

The model also presents a modified KF algorithm for predicting the location of maneuvering 

objects considering non-linear system dynamics using WSNs.  

2. ENERGY-EFFICIENT ROUTING DESIGN FOR TARGET TRACKING 

IN WIRELESS SENSOR NETWORKS   

The energy-efficient routing for target tracking (RTT) design for Wireless sensor networks is 

discussed here.  The target tracking applications is done using Modified Kalman Filter (MKF) 

model presented in this section. The sensor node  𝒦 are surrounded with an object tracking sensor 

nodes with battery for performing data sensing. Hence, the WSN nodes are randomly deployed 

across the sensing region and gathered data is transmitted to the base stations for further 

processing.  The energy efficiency of WSNs is enhanced by using cluster communication which 

is of two phases. Firstly, intra-cluster communication phase where sensor devices will transmit 

data with its cluster head. Secondly, inter cluster communication phase, the cluster head will 

convey data to its neighboring cluster head device to base stations.   

2.1 Modified Kalman Filter for target tracking:  

Similar to [24] in this work we consider a non-linear maneuvering object environment [34], 

where defining measurement model is difficult (i.e., establishing computation of matrices and 

vectors are difficult). The modified Kalman Filter (MKF) offers a novel way of dealing nonlinear 

maneuvering object system dynamics. The MKF is designed consider energy-constraint nature of 

WSN with less computational overhead for performing tracking operations. The proposed MKF 

algorithm optimize the current estimate of linear KF into non-linear tracking environment; 

therefore, the state transition and measurement are estimated through following equations 

𝑦𝑙 = 𝑓(𝑦𝑙−1. 𝑣𝑙−1) + 𝑥𝑙−1 (1) 

 

𝑎𝑙 = 𝑖(𝑦𝑙) + 𝑤𝑙 (2) 

where 𝑓  defines previous state, 𝑦𝑙−1 , function, and the control input, 𝑦𝑙−1 , that gives the 

current state 𝑦𝑙 . 𝑖  defines the measurement function that relates the current state, 𝑦𝑙 , to the 

measurement 𝑎𝑙 . 𝑥𝑙−1and 𝑤𝑙  defines noise through Gaussian process and measurement model 

with covariance 𝑄 and 𝑅, respectively. 

2.1.1 Cluster head Selection:  

Using standard LEACH-based CH selection using threshold function significantly induces 

overhead to node that is close to base station. In addressing number of multi-objective parameter-

based CH selection model are emphasized using different optimization algorithm with good effect. 

However, failed to address energy-hole and improving network coverage problem. In addressing 

research issues this work presents an CH selection scheme making use of multi-objective 

parameters like node position and residual energy. The optimal CH 𝒟 selection metrics is obtained 

through below equation 



𝑂𝒟 = 𝛾 ∗ 𝑇ℎ
𝒟 + (1 − 𝛾) ∗ 𝑇𝑚

𝒟 (3) 

where 𝛾 defines constant parameter used for optimization process, 𝑇ℎ
𝒟 represent the parameter 

defining average remaining energy ratio between CH and the member nodes, and 𝑇𝑚
𝒟 represent the 

parameter defining average distance ratio between non-CHs-sinks and between CH-base stations. 

In Eq. (3) the parameter defining remaining energy 𝑇ℎ
𝒟 is estimated through following equation 

𝑇ℎ
𝒟 =

�⃗� 𝒟
�⃗� �̃�

⁄  
(4) 

where �⃗� �̃� and �⃗� 𝒟 defines the average residual energy of member nodes and CHs, respectively. The 

sensor node having higher 𝑇ℎ
𝒟 are chosen as CHs. In similar manner to Eq. (4), the parameter 𝑇𝑚

𝒟 

is estimated through following equation,  

𝑇𝑚
𝒟 =

�⃗� �̃�
�⃗� 𝒟

⁄  
(5) 

where�⃗� �̃� defines average distance among CHs to sink and �⃗� 𝒟 defines average distance among 

members and CHs. The parameter 𝑇𝑚
𝒟 is maximized for achieving enhanced cluster formation and 

CHs selection. 

2.1.2 Fusion and Inter-cluster communication:  

Once CH is selected, every member joins the respective CH. Then, the member node sense 

for the target within its range and communicate the sensed information to nearby CHs using 

TDMA-based schedules. The CHs fuses the tracking information collected from its member and 

for carrying out tracking operations. The fused data ℬ𝒽 is mathematical defined through following 

equation  

ℬ𝒽 = ∑𝒷𝑜

𝒽

𝑜=1

 

(6) 

where 𝑜𝑡ℎsensor node communicated sensed tracking information of 𝒷𝑜 bits to its cluster head 

and 𝒽 defines cluster member size. Therefore, the packet failure probability 𝐿′
𝑝
 considering cluster 

density 𝒽 is estimated as follows 

𝐿′
𝑝 = 1 − (1 − 𝐿′

𝑏)ℬ𝒽 . (7) 

where 𝐿′
𝑏 defines mean bit error rate of intra and inter cluster communication.  

In reducing overhead of CHs, certain intermediate nodes (i.e., CHs) are chosen for 

transmitting packet to the base station. The intermediate node is defined as 𝔻 =

{𝔻1, 𝔻2, 𝔻3, … ,𝔻𝑢, … ,𝔻𝑣} and set of normal sensor devices as 𝕊. In selection ideal intermediate 

nodes for inter-cluster communication; first, the intermediate CHs node should have higher energy 

than normal node; second, the node should be much closer to CH and base stations. The 

intermediate CHs selection for inter-cluster communication is obtained through following equation 

𝑂 𝔻 = 𝜑 × 𝑇ℎ
 𝔻 + (1 − 𝜑) × 𝑇𝑚

 𝔻 (8) 

where 𝑇ℎ
 𝔻 defines the ratio of inter-cluster intermediate nodes residual energy with respect to 

member nodes are obtained through following equation 

𝑇ℎ
𝔻 =

�⃗� 𝔻

�⃗� 𝕊
 

(9) 



where |𝕊| defines the number of member nodes, |𝔻| defines inter-cluster intermediate nodes, 

�⃗� 𝔻 represent the average residual energy of inter-cluster intermediate nodes. The node having 

greater energy level are chosen as inter-cluster intermediate node by maximizing 𝑇ℎ
𝔻. On same 

term with Eq, (9) the 𝑇𝑚
 𝔻 is obtained through following equation 

𝑇𝑚
𝔻 =

𝑍 𝕊

𝑍 𝔻
 

(10) 

For cluster head selection 𝒟𝑦and its corresponding inter-cluster intermediate CHs mode 𝔻𝑢, 

the base station position 𝒮  and cluster head 𝒟𝑦  is considered. The communication efficiency 

among CH and inter cluster hop device are improved through maximizing 𝑇𝑚
𝔻. 

2.1.3 Multi-objective route optimization:  

After CH selection and finding packet failure probability, then efficient path 𝐿ℳ  is established 

that minimize energy dissipation with less latency using following equation 

𝐿ℳ = min(𝑂 𝔻 + 𝒢𝑙 + �⃗� ′
𝑝) (11) 

where 𝒢𝑙  describe the predictable hop size. The proposed energy efficient routing for target 

tracking model reduces the latency and energy dissipation for communicating data in WSN 

network. 

3. SIMULATION ANALYSIS AND RESULT  

The experimental study using SENSORIA simulation environment [27] is discussed here. 

Experimental results are showed on Intel quad core processor with 8 GB RAM on Windows 10 

operating system. The proposed RTT algorithm and LEACH-based routing design [16], [17] is 

implemented using C++ and C# programing language. The RTT and LEACH evaluation study is 

carried through simulation with the parameters shown in Table 1. 

Table 1: The performance analysis of LEACH and RTT 

Parameter Value 

Simulation area 50𝑚𝑒𝑡𝑒𝑟𝑠 ×  50𝑚𝑒𝑡𝑒𝑟𝑠 

Base stations 1 

Sensor devices 300 𝑡𝑜 2400  

Transmission range 5 𝑚𝑒𝑡𝑒𝑟𝑠 

Sensing range  3 𝑚𝑒𝑡𝑒𝑟𝑠 

Initial energy 0.05 − 0.2 𝐽𝑜𝑢𝑙𝑒𝑠 (𝑗) 

 Radio energy  50 𝑛𝑗/𝑏𝑖𝑡 

Control packets length 248 𝑏𝑖𝑡𝑠 

Data packets length 2000 𝑏𝑖𝑡𝑠 

Data transmission speed 100 𝑏𝑖𝑡/𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

Bandwidth 10000 𝑏𝑖𝑡/𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

Sensing event time 0.1𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

Idle phase energy consumption (𝐸𝑒𝑙𝑒𝑐) 50 𝑛𝑗/𝑏𝑖𝑡 

Signal amplification energy (Emp) 100 𝑝𝐽/𝑏𝑖𝑡/𝑚2 



3.1 Tracking Accuracy study:  

This section studies the tracking prediction performance achieved using proposed modified KF 

tracking method over existing KF-based tracking [24] method. The Fig. 1, shows the complex two-

dimensional maps of non-linear maneuvering of objects considered for target tracking in WSNs. 

The Fig. 2 defines the target prediction outcome of KF-based (shown in blue) and MKF-based 

(shown in red) tracking methods. The Fig. 3 shows object location prediction using KF-based 

(shown in blue) and MKF-based (shown in red) tracking methods. Similarly, the Fig 4 shows the 

object maneuvering prediction using KF-based (shown in blue) and MKF-based (shown in red) 

tracking methods. The Fig. 5 shows the tracking error obtained for predicting location using KF-

based and MKF-based tracking methods. The Fig. 6 shows the tracking error obtained for 

predicting maneuvering using KF-based and MKF-based tracking methods. The research work  

discussed here is proved and authenticated through different experimental processes. 

 

 

 
Fig. 1. Target moving trajectory in two-dimensional space. 

 

 



 
Fig. 2. Target moving prediction using KF-based (blue) and proposed MKF-based (Red). 

 

 
Fig. 3. Target position prediction with varying time instance. 

 

 



 
Fig. 4. Target velocity prediction. 

 

 
Fig. 5. Target position prediction error. 

 

 



 
Fig. 6. Target velocity prediction error. 

 

3.2 Network performance Analysis:  

This section studies the outcome achieved using RTT over LEACH-based routing method 

using network performance such as lifetime, communication overhead, and latency. The Fig. 7 

shows lifetime performance when the node in entire network dies. The node size is varied between 

300 and 2400. RTT improves lifetime by 80.43% on an average in comparison with LEACH-based 

routing method. Similarly, The Fig. 8 shows lifetime performance when loss of connectivity occurs 

in network. The node size is varied between 300 and 2400. RTT improves lifetime by 85.1% on 

an average in comparison with LEACH-based routing method.    

The Fig. 9 shows communication overhead i.e., defining control channel overhead under 

varied node size varying between 300 and 2400. RTT reduces overhead by 34.32%% on an average 

in comparison with LEACH-based routing method.   The Fig. 10 shows latency under varied node 

size varying between 300 and 2400. RTT reduces latency by 52.7% on an average in comparison 

with LEACH-based routing method.    



 
Fig. 7. Network lifetime-Death vs varied node size. 

 

 
Fig. 8. Network lifetime-connectivity vs varied node size. 
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Fig. 9. Communication overhead varied node size. 

 

 
Fig. 10. Latency vs varied node size. 

3.3 Comparative analysis:  

The experiment is shown for RTT evaluation over state-of-art routing WSN practices. The 

table 2 shows the RTT evaluation results and different recent routing methodologies over LEACH 

by considering Total node death, respectively.  The RTT model proves to have better lifetime 

performance with existing routing methodologies [20], [26], and [27] comparatively as shown in 

Table 2. 

 

 

 

0.077 0.081

0.118
0.128

0.105 0.1

0.211

0.244

0

0.05

0.1

0.15

0.2

0.25

0.3

300 600 1200 2400

C
O

M
M

U
N

IC
A

TI
O

N
 O

V
ER

H
EA

D

NUMBER OF Nodes

COMMUNICATION OVERHEAD 

RTT LEACH

129.51 130.89
159.82 163.41

301.91
276.75

377.05

288.62

0

50

100

150

200

250

300

350

400

300 600 1200 2400

La
te

n
cy

NUMBER OF Nodes

DATA PROCESSING LATENCY

RTT LEACH



Table 2: Network lifetime comparative study  

Algorithm Lifetime improved over 𝑳𝑬𝑨𝑪𝑯  

Energy efficient dependable routing 

[10] 

15.0% 

Multipath data transmission [16] 66.35% 

PFuzzyACO [17] 36.48% 

Multi Sink Routing, 2020 [18] 60.25 

RTT 80.43% 

 

4. CONCLUSION AND FUTURE WORK  

Minimization of sensor device energy is achieved for target tracking application using WSNs. 

The big data is the future application and WSN requires real-time data access with low latency. 

Current approaches will not be applicable for provisioning heterogeneous application that require 

less latency. Number of optimization technique adopting fuzzy and swarm optimization for 

transmitting data through multipath has been presented. However, these models don’t consider 

dynamic varying nature of WSN environmental condition. Hence, resulting in higher number 

packet being lost. This work presented 𝑅𝑇𝑇 model that enhances energy efficiency of WSN with 

computation overhead and less latency in comparison with state-of-art routing strategies. Future 

work would consider validating the routing performance of tracking applications considering 

different filters.  
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