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Abstract: One of the important areas of machine intelligence research today is human activity recognition (HAR), with the goal of
automatically identifying human activities from various types of sensor data. Most of the existing human activity recognition methods
use hand-crafted features and labelled data, but these methods fail to identify new activities not defined in the training dataset. As human
activities are numerous and executed in various ways, it is challenging to obtain enough labelled data to train a model to recognize
the different activities. In this paper, the performance of five different supervised learning algorithms on the human activity recognition
task with skeleton-based features has been evaluated, using five publicly available datasets and an experimental dataset. Accuracies
of above 90% are achievable on datasets with a limited number of samples using commonly available classification algorithms and
simple skeleton-based features. Subsequently, the same feature sets are used on unsupervised learning methods for an unsupervised
clustering task. Using the unsupervised learning algorithms, an average of 74% f1-score on the publicly available CAD60 dataset and
61% f1-score on the experimental dataset, are obtained. These results demonstrate the effectiveness of simple skeleton-based features,
coupled with common supervised and unsupervised learning algorithms in human activity recognition tasks.
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1. INTRODUCTION
Extensive work has been carried out in the field of

Human Activity Recognition (HAR) due to its broad ap-
plications, including in Active and Assisted Living (AAL),
surveillance and monitoring, human-computer interaction,
healthcare and more. Commonly, HAR researchers use vari-
ous sensing technologies to collect activity data and identify
suitable methods to accurately predict activities. Different
types of sensor data are frequently used to analyse human
activities, some of which have been shown to give a good
performance in identifying a limited range of activities.
For instance, a mobile phone kept in a person’s pocket
[1] can be used to efficiently identify activities, including
standing, walking, sitting, lying down and standing up.
Other researchers have used wearable devices [2] to monitor
different types of activities. As seen in the previous survey,
wearable devices are effective in collecting accurate data on
the movement of the human body [3][4]; however, they are
limited in identifying a handful of activities only, and the
wearers may experience discomfort [4] over an extended
period of time.

The emergence of RGB-D sensors on the market has
stimulated the advancement of innovative methods to create

cost-effective and improved solutions with vision technolo-
gies [5][6] [7]. A depth image is a relatively reliable source
of data that is not influenced by changes in ambient light,
and subsequently, can mitigate human identification and
segmentation problems [8]. In fact, skeleton joints obtained
from a depth map can be used as an accurate representation
of a human body without actual sensors being attached to
the human body. Additionally, privacy is a crucial aspect
in AAL, that may be significantly impacted by HAR lead-
ing to consequences [9]. Depth images are more privacy-
preserving than standard colour images due to their abstract
representation of a humanoid figure from the depth stream
and it is possible to only use the skeleton figure to depict
a person [10]. This skeleton data can be used to recognise
human activities.

The majority of existing works on human activity recog-
nition focus on hand-crafted features from depth maps or
RGB images, which are often aimed at improving the accu-
racy of an existing set of activities [11]. These approaches
do not normally address the identification of activities,
which have not been presented in the training dataset [12].
Consequently, there is increasing interest in the use of
unsupervised approaches for human activity recognition or
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detection [13]. Most of the works, in this respect, have
utilised colour images, depth images, body sensors and
environment sensors, with a very limited number of works
in semi-supervised [14] and unsupervised human activity
detection based on skeleton data [12] [15] are available.
Additionally, it has been observed that the majority of
works in the research literature have performed extensive
feature extractions and proposed complex learning models
to achieve high recognition accuracy [11]. The ease of
extracting skeleton data from a depth camera has provided
efficient ways for investigating the effectiveness of simple
skeleton-based features with both classical and deep learn-
ing algorithms for human activity recognition.

Classical machine learning and deep learning are dis-
tinct paradigms of machine intelligence, differing in their
fundamental approaches to learning patterns from data. In
classical machine learning, algorithms rely on mathematical
models that are explicitly designed to map input features to
output action labels [16]. Typically, this is represented as
a function f that takes input features X and maps them to
output labels Y:Y = f (X). This mapping function is learned
by optimizing model parameters to minimise a predefined
loss function that quantifies the disparity between predicted
and actual activity labels.

Conversely, deep learning employs neural networks, a
hierarchy of interconnected layers of neurons or nodes.
Each layer computes a weighted sum of its inputs and
applies an activation function, often denoted as h(z), to
produce an output. The transformation from one layer to
the next is represented mathematically as h(WX+b), where
W represents weights, X represents inputs, and b represents
biases. Deep learning models consist of multiple layers
(hence, the term ”deep”), enabling them to learn complex
and hierarchical features from the data. The learning process
involves optimising the weights and biases to minimise
the loss function, typically represented as L(Y, Ŷ), where
Y is the actual output and Ŷ is the predicted output. This
optimization is often achieved through backpropagation and
gradient descent algorithms. In summary, classical machine
learning focuses on explicit feature engineering and the
optimization of predefined models, while deep learning
leverages neural networks to automatically learn features
and hierarchical representations from data through the it-
erative adjustment of network parameters. Both approaches
aim to minimize a loss function but differ in their underlying
architectures and learning mechanisms.

Both machine learning and deep learning methods are
based on the assumption that an activity can be considered
as a comprehensive series of skeleton postures, and these
postures can be used to identify different activities. As seen
in the literature [17][18], either a defined collection of main
poses has been derived for each activity or extensive and
sophisticated features have been extracted. These poses and
features are often over-engineered to improve the accuracy
of an existing set of activities, where the necessity of

identifying new incoming activities is often overlooked.
In this study, a more straightforward set of features for
supervised and unsupervised activity detection has been
investigated.

The organization of this paper is structured to provide
readers with a clear understanding of our research approach
and findings. In the subsequent sections, a thorough ex-
ploration of the relevant prior work in the field of human
activity recognition, discussing key methodologies and their
implications, is given. The Materials and Methods section
details the datasets employed for the study, describing the
features extracted from data, the classification of activities,
and the performance measures used for evaluation. Moving
forward, the Results section presents a comprehensive anal-
ysis of the outcomes obtained from the application of both
supervised and unsupervised learning algorithms, offering
insights into the strengths and limitations of each approach.
This organization ensures a logical flow of information,
guiding readers through the background, methodology, and
outcomes of the research in a systematic manner.

2. RELATED WORK
Several studies have attempted to recognize human ac-

tivities by utilizing different sensors. As seen in the previous
surveys [17][18], modalities often include wearable devices,
mobile phones, RGB cameras, stereo images constructed
from 2D sensors, motion capture systems (MoCAP), range
sensors, and 3D input sensors, such as Microsoft Kinect.
Due to the affordability and potential performance benefits,
depth cameras are increasingly utilized in human activity
analysis research. Authors in references [19] [20] have
reviewed several skeleton joint-based methods for human
activity recognition. Brief literature reviews on human ac-
tivity recognition work that have used skeleton data derived
from skeleton images are described in the following section.

Many techniques have been developed for human activ-
ity recognition, and a number of them are geared towards
extracting skeleton features from depth data, where the key
concept is to evaluate subvolume descriptors of spatiotem-
poral depth. Yang et al. [21] proposed using a collection
of hypersurface normal (polynormal), including details of
geometry and local motion that have been derived from
depth sequences. The polynormal elements are integrated to
construct the final depth map representation, named Super
Normal Vector (SNV). In reference [22], depth images have
been interpreted as a series of features and these have been
briefly modelled as subspaces that lie on the Grassmann
manifold. Beginning with the direction of the usual vector at
each surface level, this description represents the geometric
structure and dynamics of the human body without using
the joint location. Devanne et al. [23] suggested portraying
human activities through spatio-temporal trajectories of
motion in a sixty-dimensional space. Each activity involves
20 joints, with each joint represented by 3 coordinates. An
elastic metric (a metric which is insensitive to speed and
time of motion) has been used to describe the difference
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among multiple activities in a Riemannian form of space.
Subsequently, action recognition has been performed in the
Riemannian domain using a K-Nearest-Neighbour (K-NN)
classifier. The portrayal of APJ3D [24] is represented with a
subset of 15 skeletal joints, from which the relative locations
and local radial angles are determined. The activity is
partitioned using an evaluated Fourier Temporal Pyramid
[25] after a set of key positions and the classification is
rendered by a random forest classifier (RF).

A joint representation named HOJ3D has been proposed
by Xia et al. [26], in which the 3D space is segmented
into n bins and a Gaussian weight feature is applied to
associate the skeletal joints to each bin. The data is then
reprojected into lower dimension by using Linear Discrim-
inant Analysis (LDA), before using a k-means clustering
algorithm to select k-posture visual words to represent each
activity. A distinct Hidden Markov Model (HMM) has also
been used to model the temporal evolution of postures to
classy different activities [27]. To portray the skeleton, Taha
et al. [27] took advantage of joint spherical coordinates,
and a framework consisting of a multiclass support vector
machine (SVM) and a discrete HMM, was used to clas-
sify human activities. Cippitelli et al. [6] used a k-means
clustering algorithm to select the most insightful postures
for each activity sequence, choosing a separate set of k
postures that construct the feature vectors for each activity.
Finally, action recognition has also been performed using
a multiclass SVM. The study in reference [28] presented
a comparative study of human activity recognition using
2D and 3D human postures extracted from depth images,
and the findings show that the Random Forest classification
model yields the highest accuracy among eight classification
models; demonstrating the effectiveness of both 2D and
3D postures in achieving accurate activity classification.
Most works have utilised shallow classification models
such as SVM for skeleton-based activity recognition tasks.
On the other hand, other shallow classification models
including decision trees, random forest classifier, K-nearest
neighbourhood and multi-layer perceptron classifier with
only two hidden layers, were additionally used in this paper,
and compared with some of the research that have used
handcrafted features.

HON4D, introduced by authors in reference [29], is a
global feature representation that encapsulates the geom-
etry and motion of human actions in a 4D space con-
sisting of spatial coordinates, depth, and time. Similarly,
the HDG method proposed by Rahmani et al. [30] uses
depth sequences which were first separated into smaller
sections; with depth derivatives and histograms of depth
calculated for each section. Another feature-based method
called HOPC [31] has also been proposed. The approach
model’s depth images as 3D point clouds and introduces
two types of support volumes: spatial support volume and
spatio-temporal support volume. The HOPC descriptor is
computed by extracting features from the point cloud data
within the support volume of each point. Key points, known

as spatio-temporal Key points (STK), are identified based
on eigenvalue ratios exceeding a threshold. Likewise, the
LARP-SO algorithm known as the Lie Algebra Relative
Pairs via SO(3) was employed by Vemulapalli and Chel-
lappa [32] for action recognition. The 3D action recognition
algorithm in the study utilized the concept of a rolling map,
which illustrates the movement of one Riemannian manifold
over another along a smooth rolling curve. To represent
each skeleton sequence, the algorithm analyses the relative
3D rotations between different body parts and models each
action as a curve in the Lie Group. Additionally, the
algorithm incorporates Fourier Temporal Pyramid (FTP)
representation [33] to enhance the descriptor’s resilience to
noise and reduce sensitivity to temporal misalignments.

Dictionary learning and unsupervised feature learning
have found applications in the domain of human activity
recognition, offering valuable tools for extracting discrim-
inative features from skeleton data. Dictionary learning
methods, such as Sparse Coding [34][35], enable the rep-
resentation of activity data as a linear combination of basic
elements in a learned dictionary. This approach has proven
effective in capturing spatiotemporal patterns in activity
sequences, enhancing recognition accuracy. Likewise, un-
supervised feature learning techniques, strive to discover
meaningful representations directly from raw sensor data,
reducing the need for handcrafted features. However, both
dictionary learning and unsupervised feature learning meth-
ods are not without limitations. One significant challenge
is their reliance on extensive labelled data for training,
which can be impractical or costly to obtain in real-world
scenarios. Additionally, these techniques may struggle to
handle high-dimensional sensor data, leading to increased
computational complexity.

In recent years various researchers have proposed deep
learning-based methods for activity sequence learning,
which is inspired by the effectiveness of deep learning
in applications, including video captioning [36], audio
recognition [37], neural machine translation [38], image
recognition [39], and speech recognition [40][41][42]. Other
deep learning approaches based on skeletal data include
Recurrent Neural Network (RNN) [5][43], Convolutional
Neural Network (CNN) [44], and Graph Convolutional Net-
work (GCN) [45]. Notably, Graph Convolution Networks
(GCNs) have gained prominence in this field. GCNs enable
the modelling of skeletal joint connections as a graph,
allowing for the propagation of information across the
skeleton structure.

Researchers have harnessed the power of GCNs to cap-
ture both spatial and temporal dependencies among skeletal
joints, achieving state-of-the-art results [46]. Concurrently,
Convolutional Neural Networks (CNNs) have been adapted
for skeleton data by treating it as a sequence of 2D or
3D heatmaps. CNNs excel at automatically learning hier-
archical features from these heatmaps, enabling accurate
action recognition [47]. Authors in reference [47] intro-
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duced PoseConv3D, an alternative approach that relies on a
3D heatmap volume rather than a graph sequence to repre-
sent human skeletons. PoseConv3D attains state-of-the-art
performance on multiple skeleton-based action recognition
benchmarks and outperforms existing methods when fused
with other modalities in multi-modality action recognition
benchmarks. Additionally, Transformers, known for their
self-attention mechanisms, have demonstrated promise in
capturing long-range dependencies in skeleton sequences
[48]. The attention mechanism allows Transformers to
focus on relevant joints and their interactions, leading to
improved recognition accuracy. These recent advancements
in deep learning techniques have significantly enriched the
landscape of skeleton-based human activity recognition,
offering promising avenues for future research. Although
deep learning-based methods have achieved unprecedented
performance improvement in action/activity recognition as
shown in a comprehensive review by the authors in [49],
deep learning-based methods commonly require abundant
labelled data.

Naturally, understanding unseen activity is more compli-
cated than modelling existing activities. Many researchers
have proposed clustering-based methods for discovering
unseen activities from accelerometer-based data [50], and
have utilized various metrics for performance evaluation.
Accelerometer-based data generates distinctive patterns for
a set of daily activities, such as climbing stairs, walking,
running, jogging, lying down, and standing up, making it a
popular choice for unsupervised human activity discovery,
however, this approach fails to identify high-level activities
such as talking on the phone and drinking. Ironically, very
little work has been done on unsupervised human activity
detection from skeleton data. Hoda et al. [51] proposed an
unsupervised 3D action recognition method based on the
sparseness embedding of time and space for unsupervised
action learning. However, their approach focuses more on
learning various activities from labelled data instead of
grouping activities without labelled data. Ong et al. [52]
used k-means clustering for unsupervised activity detection.
The human ranges of motion have been used as a feature
for activity detection. However, the work only used k-means
clustering, where it has been shown that k-means clustering
performs better when clusters are spherical. However, in
actual reality, cluster shapes and distributions may vary.
Reference [15] assessed the performance of various clus-
tering algorithms, including k-means, spectral, hierarchical,
and BIRCH clustering, in distinguishing different daily
activities for human activity discovery from unlabelled
observations, however, the investigation has not proposed
any new method.

In this study, 3D joint information, obtainable from an
RGB-D camera, was harnessed to extract straightforward
yet informative features. While both handcrafted features
and shallow classifiers have found utility in human ac-
tion recognition, a comprehensive comparison of action
recognition algorithms, specifically assessing the efficacy of

shallow classifiers combined with simpler features, has been
notably absent in the existing literature. Our study bridges
this research gap by conducting a meticulous evaluation of
five state-of-the-art methods for human action recognition.
Particular emphasis has been placed on comparing the
efficiency of handcrafted features versus skeleton-based
features, recognizing the scarcity of such comprehensive
comparisons in the domain of human action recognition.
Furthermore, we recognize the crucial role that dataset
size plays in the performance of machine learning and
deep learning models. As such, our investigation extends
to assessing these algorithms’ performance across datasets
of varying sizes. Through this endeavour, we aim to shed
light on the suitability of different algorithms and features
for human action recognition, considering the practical im-
plications of dataset size and the existing literature’s focus
on either handcrafted features or deep learning approaches.

3. MATERIALS AND METHODS
A. Scheme for Human Activity Recognition

Figure 1 depicts an overview of the activity recogni-
tion scheme adopted in this paper. A sequence of depth
images is illustrated in Figure 1(a), and skeleton joint
coordinates were extracted for each depth image using
the method proposed by the authors in reference [53],
which is available in the Microsoft Kinect software devel-
opment kit (SDK) package and also used by the authors
in references [28][15]. Subsequently, joint orientation and
pairwise Euclidean distance (PED) between the hip center
and other joints were derived from the skeleton joints, as
shown in Figure 1 (b). Features from multiple frames were
concatenated sequentially to represent a particular activity
(Figure 1(c)); these activity instances were used as input to
train activity classification models. Prior to classification,
each dataset was partitioned into training and testing sets
using an 80:20 ratio. Furthermore, a 10-fold cross-validation
technique was applied to the cross-subject scenario with a
random shuffle of the training data. Final evaluation was
performed on the test dataset. Algorithms that contained a
random factor were evaluated 10 times, and the mean result
was reported. Multiple classification algorithms such as k-
nearest neighbors, decision tree, support vector machine,
random forest, and multi-layer perceptron classifier with
two hidden layers are evaluated in this paper.

Skeleton joint coordinates derived from the depth im-
ages are real-world joint positions. The coordinates are
first translated from the real-world coordinates to camera
coordinates centring the hip centre joint and then a rotation
based on the left and right shoulder joint is applied to
achieve view invariance. The first frame of an activity
sequence is rotated facing the viewer while the rotation in
the subsequent frames is relative to the first frame. The
rotation method is almost similar to the one proposed in
reference [5]. However, while reference [5] applied a view
adaptive recurrent neural network, the proposed method
automatically derived the rotation angle for each frame
by calculating the angle formed by translating the line

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1, 10407-10421 (Oct-23) 10411

Figure 1. Overview of the activity recognition scheme. (a) multiple depth frames in sequence (b) skeleton joints positions are extracted features
extracted from each frame (c) features from multiple frames are concatenated to construct an activity vector (d) a model is trained to classify
activities.

Figure 2. Skeleton joint transformations (a) and (b) represent real-world skeleton joint coordinates in two different positions. (c) Skeleton joints
are translated to the camera coordinate system, centered on the hip-center joint, and rotated by an angle θ degrees.

TABLE I. Publicly Accessible Datasets And An Experimental Dataset Used For 3d Action Recognition Experiments.

Datasets Year Actions Subjects Views Videos Device Sense modality Joints Frames

MSR Action3D [33] 2010 20 10 1 567 Kinect v1 Depth + 3DJoints 20 59
CAD60 [54] 2011 14 4 1 68 Kinect v1 RGB + Depth + 3D Joints 15 30

F3D [55] 2013 9 10 1 215 Kinect v1 RGB + Depth + 3D Joints 15 30
3D Action Pairs [29] 2013 12 10 1 360 Kinect v1 RGB + Depth + 3D Joints 20 30

UWA3D Multiview Activity II [31] 2015 30 9 4 1070 Kinect v1 RGB + Depth + 3D Joints 15 70
NTU RGB+D 120 [56] 2017 120 106 155 114480 Kinect v2 RGB + Depth + IR + 3D Joints 25 300

Experimental dataset [15] 2019 18 3 1 2295 Kinect v1 RGB + Depth + 3D Joints 20 70

formed by connecting the shoulder left, shoulder centre and
shoulder right to the x-axis centring the shoulder centre
joint. Skeleton joint transformation is shown in Figure 2.
In the first instance, labelled activity instances are used
for training the different classification models, which are
then used for the supervised and unsupervised activity
classification tasks.

B. Dataset
There are a number of publicly available datasets [40]

that contain skeleton joint data which may be used for
human activity recognition works. The list of datasets used

for this study is shown in Table I 1, which includes the
MSRAction3D [33] dataset, Florence 3D dataset (F3D)
[55], 3D action pairs dataset [29], CAD-60 [54], UWA3D
Multiview Activity II [32] dataset, and NTU RGB+D 120
[56] dataset.

Additionally, an experimental dataset, used in reference
[15] for human activity discovery has been used. The aim of
using the dataset was to evaluate recognition performance
with similar activities. The dataset contains seventeen activ-
ities performed by three subjects. All of the activities have

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


10412 M. A. Hossen, et al.: Supervised vs. Unsupervised Human Activity Analysis.

Figure 3. Top row: skeleton frames from the 15 joints skeleton
dataset, a) talking on the phone, b) drinking, c) working on the
computer, d) writing on the whiteboard, and e) cooking (chopping).
Sample frames from the 20 joints skeleton dataset in row 2. (f) kick
right leg (g) kick left leg (h) jumping jacks (i) seated (j) drinking.

been performed and recorded indoors employing a single
stationary Microsoft Kinect sensor, and thus, are represented
as RGB-D form. Each activity lasted between 3-4 minutes,
with the data recorded at 30 frames per second (FPS). The
dataset comprises the following activities: standing (STN),
raising the right hand (RRH), raising the left hand (RLH),
kicking with the right leg (KRL), kicking with the left leg
(KLL), waving with the right hand (WRH), waving with
left hand (WLH), performing jumping jacks (JJK), walking
(WLK), sitting down (SDN), being seated (SIT), standing
up (STU), making a phone call (TPN), drinking (DRK),
pick object from the floor (PKU), sitting and reading book
(RBS), and sweeping the floor (SWP). A few skeleton
representations of the selected activities from the CAD60
and experimental datasets are shown on the top and bottom
rows, respectively, in Figure 3.

C. Features
Selected features, including skeleton joint locations

[26][6], joint orientation [57], and Euclidean distance be-
tween joints [58]. Figure 4 depicts the joint skeleton system
at a particular frame instance comprising a set of m joints
i = {1, 2, . . . ,m}. Each dataset contains a different value
for m due to different skeleton tracking systems being used
while recording the datasets. Each skeleton joint Ji may be
described by its 3-dimensional (3D) positional information
in the 3-dimensional space, pi = (xi, yi, zi) ∈ R3 : Ji ∈

{J1, . . . , Jm}, as well as by its orientation information in
Quaternion form, oi = (q1i, q2i, q3i, q4i) ∈ R4 : Ji ∈

{J1, . . . , Jm}.

The skeleton posture of a subject is formed by joining
the 3D positional information of the skeleton joints at a

Figure 4. Skeleton joints used for this study (a) 15 skeleton joints
(b) 20 skeleton joints (c) 25 skeleton joints.

Figure 5. Pairwise Euclidean distance between the hip centre joint
and the remaining joints in (a) fifteen skeleton (b) twenty skeleton
and (c) twenty-five skeleton joints dataset.

specific frame. To ensure view invariance, this information
is typically transformed to a selected centre of coordinates.

pre f i =
(
xre f i, yre f i, zre f i

)
= phc − pi,∀ Ji ∈ J1, . . . , Jm (1)

Where prefi is the translated 3D positional information of
joint i with respect to the reference hip joint phc. Euclidean
distance between a reference skeleton joint to other joints
may be extracted from prefi . Again, the hip-center joint
phc is chosen as the reference joint, giving a total of m
Euclidean distances, as depicted in Figure 5, representing
the relative distance from the hip-center joint, denoted as
di.

di =

√
xre f i

2 + yre fi
2 + zre fi

2,∀ Ji ∈ J1, . . . , Jm (2)

From the orientation information oi of joint i, the
more familiar Euler form orientation representation orefi =
{ϕi, θi, ψi} can be obtained, where ϕi, θi, and ψi are roll,
pitch, and yaw angles of joint i, respectively.
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orefi =


ϕi

θi

ψi

 =


tan−1
(

2(q1i .q2i+q3i .q4i)
1−2(q12

i +q22
i )

)
sin−1 (2(q1i.q3i − q4i.q2i))

tan−1
(

2(q1i .q4i+q2i .q3i)
1−2(q32

i +q42
i )

)
 ,∀ Ji ∈ {J1, . . . , Jm} (3)

pref i, di, and oref i of the joint Ji may be used as features
to represent each joint. For a specific frame instance,
denoted as I j, the instances in that particular frame j may
be represented as a set of features fi ∈

{
pref i, di, oref i

}
of the

different skeleton joints ∀Ji ∈ {J1, . . . , Jm}.

I j = fi,∀ Ji ∈ J1, . . . , Jm (4)

The kth activity, Ak can then be represented as a
sequence of n of these frame instances, I j, which are
composed of a collection of selected features from the joint
skeletons:

Ak = I j,∀ Ji ∈ J1, . . . , Jm (5)

D. Classification of Activities
The representation of the activity Ak may then be used as

input into classification models, for activity recognition and
activity pattern discovery. Activity recognition is essentially
a supervised process, which identifies an activity Ak as
belonging to either one of a set of K-recognised activities.
This requires the presence of labelled training data to
train the classification models before they can be used
for activity recognition tasks. On the other hand, activity
pattern discovery only attempts to group activities with
almost similar characteristics. However, it can be used in
an unsupervised manner and does not require pre-training.

1) Human activity recognition
For a dataset D ∈ {A1, A2, . . . , Ak} where Ak = {I j}

contains k number of activity representations, with cor-
responding class label C ∈ {c1, c2, . . . , ck} where ck ∈

{1, 2, . . . ,K}. Each activity Ak has a corresponding class
label ck, belonging to one of the K activity classes. The aim
is to train a classification model using the training samples,
such that for a new activity representation A∗, it can be
classified as one of the K activity classes, i.e., to have a
corresponding class label c∗ ∈ {1, 2, . . . ,K}. Five supervised
classification models from the Scikit-learn machine learning
library [59] were used for evaluation, including multiclass
Decision Tree (DT), Random Forest (RF), K-Nearest Neigh-
bor (KNN), Support Vector Machine (SVM) with RBF
kernel, and Multi-Layer Perceptron (MLP) with two hidden
layers classification models. Hyperparameter tuning was
avoided, with only the default parameter values used for
each algorithm. The classification process has been divided
into the training and testing phases, with each dataset
divided into 80% training and 20% testing. A 10-fold cross-
subject validation was performed to validate the training

dataset. During the training phase, activity representations
Ak with their corresponding class label ck have been used
to train the classifiers. The trained classification models are
then used to classify unknown activity representations A∗
into one of a set of K recognized activities and determine
the performance of the different classification models.

2) Unsupervised human activity pattern discovery
While the supervised models try to learn a function from

labeled activity data to accurately predict a new activity
sample, the goal of the unsupervised method is to discover
the patterns of the data. Typically, clustering involves the
method of organizing similar objects from a given collection
of objects based on specific patterns, aiming to maximize
similarity within each class while minimizing similarity
between different groups. The activity representations Ak
may also be used for an unsupervised pattern discovery task.
Five clustering algorithms, including K-means, spectral,
agglomerative, Balanced Iterative Reducing and Clustering
using Hierarchies (BIRCH), and Gaussian Mixture Models
(GMM) clustering algorithms, have been considered for this
study. As the task can be performed in an unsupervised
manner, no training data is required, and the dataset can be
directly used for testing the models. The clustering of the
activities within the dataset is based on a known k number
of activities.

E. Performance measure
Accuracy score was used as a performance measure

for supervised human activity recognition, while F1-score
and Silhouette coefficient score were used as performance
measures for unsupervised classification tasks. Accuracy
score considers the correctly predicted observations out of
the total number of observations and is defined as follows:

Accuracy S core =
T P + T N

T P + FP + FN + T N
(6)

where, TP = true positive, TN = true negative, FP =
false positive, FN = false negative.

F1-score considers the precision and recall for each class
and can generate a better assessment of performance for
some cases. In situations where the costs of false positives
and false negatives significantly differ, relying solely on
accuracy may not provide an accurate assessment. Instead, it
is advisable to consider both precision and recall. Precision
measures the proportion of correctly identified positive
cases among all cases predicted as positive, while recall
measures the proportion of correctly identified positive
cases among all actual positive cases. For this study f1-score
was used as an evaluation metric for evaluating clustering
performance utilizing the available true labels.

F1 − score = 2 ∗
Recall ∗ Precision
Recall + Precision

(7)
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where Recall and Precision are defined as:

Precision =
True positive

True positive + False positive
(8)

Recall =
True positive

True positive + False negetive
(9)

Cluster validation index is used to approximate the
number of activities which clustering algorithms are able
to distinguish assuming true labels are unavailable. The
silhouette coefficient can be described as follows:

s =
b − a

max(a, b)
(10)

where a is the average distance between all data points
in the same cluster and b is the average distance between all
activity clusters. The silhouette coefficient ranges between
0-1 and the highest score is considered the best number of
clusters.

4. Results
A. Features used

3D positional pi and orientation oi information of all
joints were obtained and used to derive three different
features: pref i, di, and oref i, which may be used to encode a
particular frame instance I j. The kth activity, Ak, can then be
represented as a sequence of n of these frame instances, I j.
These representations of activities were used as input to the
classification and clustering models for supervised activity
recognition and unsupervised pattern discovery tasks. In this
paper, the effectiveness of simple features, including the
transformed joint position, Euclidean distance between the
hip-center to other body joints, as well as joint orientation
features, has been evaluated for different cases:

1. Features using the 3D translated positional informa-
tion, fi =

{
pref i

}
, for all i, while considering activities to be

represented with a fixed n number of frame instances from
Table I. Henceforth, this set of features shall be referred to
as transformed joint positions.

2. Features using the relative distance from the hip-
center joint, fi = {di}, for all i, while considering activities
to be represented with a fixed n number of frame instances
from Table I. Henceforth, this set of features shall be
referred to as the pairwise Euclidean distance between the
hip-center (PED-HC) joint to other body joints feature sets
or PED-HC.

3. Features using the orientation information of the joint,
fi = {oref i}, for all i, while considering activities to be
represented with a fixed n number of frame instances from
Table I. Henceforth, this set of features shall be referred to

as joint orientations.

B. Supervised Classification Task
Classification results of the supervised classification

models, using transformed joint positions, joint orientations,
and pairwise Euclidean distance between the hip-center
(PED-HC) joint to other body joints feature sets for activity
representations on the different datasets are shown in Figure
6.

Random forest classifier with the transformed joint
positions achieved the highest accuracy of 68% on the NTU
RGB+D 120 dataset among all the features and algorithms
used, as shown in Figure 6(a). The NTU RBG+D 120
dataset is the most challenging dataset with a large number
of activities and human subject variations, containing 120
activities performed by 106 subjects. Most classifiers strug-
gled to model the large number of activities in the dataset.
Accuracies were lower with the joint orientation and PED-
HC features.

With the transformed joint features, KNN, SVM, and RF
achieved over 95% accuracy on the CAD60 dataset, with the
lowest accuracy of 93% achieved by the DT classifier. Simi-
larly, average accuracy on the Florence 3D dataset using the
transformed joint features was above 95%. Other features
(PED-HC and joint orientations) demonstrated lower overall
accuracies. The highest and lowest accuracy were 98% and
92%, respectively, achieved with RF and DT classifiers.
The SVM and KNN classifier with the transformed joint
position achieved the highest accuracy of over 90% on the
MSR Action dataset while the RF classifier achieved 89%
accuracy. Accuracy scores on the experimental dataset with
the same feature set varied between 87% - 98%. The RF
classifiers achieved 98% accuracy while the lowest was
87% with the DT classifier. Transformed joint and joint
orientation features achieved overall higher accuracy.

K-Nearest Neighbour (KNN), Random Forest (RF), and
support vector machine (SVM), classifiers achieved rela-
tively high accuracies for all the feature sets on most of the
datasets that have a limited number of actions performed
by a smaller number of actors. The performance of the
DT classifier was lower on most of the datasets for all the
features used. Among the three features used, the pairwise
Euclidean distance between the hip centre joints and all
other joints i.e. PEF-HC, demonstrated the lowest overall
accuracy on all of the datasets. Results from the datasets
used indicate that the transformed joint positions can be
used to model most of the activities efficiently.

The random forest (RF) algorithm achieved the highest
overall accuracy on most of the datasets, with the lowest
RF accuracy obtained on the NTU RGB+D 120 dataset.
One can possibly tune the hyperparameters and apply a
feature reduction technique similar to the one used by
authors in [60] to further improve classification accuracy
on the NTU RGB+D 120 dataset. However, since the study
focused on investigating simplistic features and learning
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Figure 6. Average classification accuracy of the six datasets used (a) NTU RGB+D 120 dataset (b) CAD60 dataset (c) F3D dataset (d) MSR Action
3D dataset (e) 3D action pairs dataset, and (f) Experimental dataset.

Figure 7. Confusion matrix of the SVM classifier on the experimental
dataset, using features on joint position.

algorithms with the availability of data labels, we avoided
hyperparameter tuning.

The performance of SVM is of particular interest since
it has been widely used for various classification tasks as
shown in the literature. For this study, the performance of
SVM has shown varying results between the two consid-
ered datasets. Over 95% accuracy was obtained using the
transformed joint position and joint orientation features,
whilst the PED-HC feature gave an accuracy of 92% on
the experimental dataset. The confusion matrix of the SVM
classifier using the joint position feature on the experimental
dataset is plotted in Figure 7. It can be seen that a few
activity instances for drinking (DRK) and standing up

(SDN) have been wrongly classified as talking on the phone
(TPN) and sitting down (STU), respectively.

A comparison of our findings with state-of-the-art algo-
rithms that used hand-crafted features listed in the review
in reference [19] is shown in Table II. The authors have
made the source codes available, with hyperparameter val-
ues available in reference [17]. HON4D, HOPC, LARP-
SO-FTP, and HDG-jpd belong to the category of state-
of-the-art skeleton features-based methods. These methods
primarily rely on extracted skeletal joint information for
action recognition. Among them, LARP-SO-FTP stands out
with impressive performance across most datasets, demon-
strating its effectiveness in capturing meaningful skeletal
information. HON4D and HOPC also perform reasonably
well, demonstrating the robustness of these skeleton-based
techniques. However, HDG-jpd lags behind in terms of
accuracy on several datasets, indicating that its approach
may not be as effective in handling the complexities of
different action recognition scenarios.

DT, RF, KNN, MLP, and SVM represent machine-
learning methods that leverage transformed skeleton joints
for recognition. In this category, Random Forest (RF)
consistently performs exceptionally well across multi-
ple datasets, showcasing its ability to harness skeletal
information effectively. Support Vector Machine (SVM)
also demonstrates strong performance, especially on the
MSRAction3D dataset. KNN and MLP show competitive
results but may have limitations in dealing with com-
plex action recognition tasks. Decision Trees (DT), on the
other hand, exhibit mixed performance, with some notable
disparities across datasets. These findings underscore the
significance of carefully selecting the machine learning
algorithm depending on the specific dataset characteris-
tics and requirements for skeleton-based action recognition
tasks.
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Graph Convolutional Network (GCN) [46], 3Mformer
[48], and PoseConv3D [47] fall into the category of deep
learning-based methods that utilize skeleton joints. These
deep learning approaches are inherently more complex and
capable of capturing intricate patterns, delivering competi-
tive performance even when compared to well-established
machine learning algorithms. Additionally, the dataset NTU
RGBD, renowned as one of the largest 3D skeleton-based
datasets available, played a crucial role in enabling these ad-
vancements. While all of the deep learning-based methods
achieve remarkable accuracy on the NTU RGBD dataset,
3Mformer stands out among them with an accuracy of
92.3%. All of the deep learning-based methods had shown
mixed results on smaller datasets. PoseConv3D leads the
table with an accuracy of 97.1% on the 3D Action Pairs
dataset. These results indicate that deep learning methods
have the potential to excel in 3D action recognition tasks,
particularly when dealing with complex and diverse datasets
such as the NTU RGBD dataset.

It was observed that machine learning algorithms with
the transformed skeleton data outperform some of the state-
of-the-art algorithms that used extracted skeleton features.
In many cases, the random forest algorithms performed
better than other algorithms, followed by KNN. The DT
classifier achieved the lowest accuracy score. In summary,
our findings emphasize the substantial progress achieved in
skeleton feature-based action recognition, with a shift to-
wards deep learning methods, and highlight the importance
of large and diverse datasets such as NTU RGBD in driving
innovation in this domain.

C. Unsupervised Classification Task
As shown in the previous section, simplistic features

and machine learning algorithms can achieve good accuracy
scores when the dataset is labeled. In this section, we
present the results of grouping activities using clustering
methods assuming data labels are unavailable. In order to
simplify the unsupervised activity pattern discovery task,
the clustering process was first evaluated based on a known
number of clusters for datasets, i.e., K=10 and K=17 clus-
ters for the CAD60 and experimental datasets, respectively.
For the CAD60 dataset, only 10 actions were used for clus-
tering since two activities were only performed once by all
actors. F1-scores of all the considered clustering methods,
using the feature sets used for activity representations, are
summarized in Figure 9 and Figure 10, on the CAD60 and
experimental datasets, respectively. The highest F1-score
achieved on the CAD60 dataset is 87% with the K-means
clustering using the transformed joint position feature. The
K-means clustering achieved an average F1-score of 79%,
whilst the agglomerative clustering gave an average F1-
score of 77% on the CAD60 dataset.

The agglomerative clustering using joint position scored
the highest F1-scores of 71% on the experimental dataset,
whilst the K-means and GMM clustering achieved the high-
est F1-score of 69% using the transformed joint position

Figure 8. Comparison of average f1-score of all clustering methods
on the CAD60 dataset

Figure 9. Comparison of average F1-score of all clustering methods
on the experimental dataset

feature. Overall, the highest F1-scores were achieved using
transformed joint position features on the experimental
dataset.

Comparing the F1-scores of the clustering algorithms in
Figure 8 and Figure 9 shows that the unsupervised activity
detection performs better on the CAD60 dataset than the
experimental dataset; due to the fact that the experimental
dataset contains activities with almost similar postures and
complex activities involving longer time duration. Conse-
quently, the clustering algorithms have failed to cluster these
almost similar activities into respective groups. Since k-
means and agglomerative clustering have demonstrated the
highest F1-score on both datasets, only the performances of
these two methods were further evaluated.

Since the number of expected clusters is known and
the ground truth is available, this knowledge has been
used to plot the confusion matrix by replacing the cluster
membership with true labels. These are given in Figure
10(a) and Figure 10(b) for the K-means and agglomerative
clustering, respectively. Though the aim of the clustering
is to identify ten clusters from the CAD60 dataset, it can
be observed that only seven clusters can be identified with
the k-means algorithm; with activities with almost similar
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TABLE II. Comparison of our findings with state-of-the-art algorithms

Method MSRAction3D 3D Action Pairs CAD-60 F3D NTU RGBD Experimental Dataset

HON4D [29] (Depth) 82.1 96.1 72.6 - 30.8 81.5
HOPC [31] (Depth) 85.51 92.42 47.65 - 40.0 73.12

LARP-SO-FTP [32] (Skel.) 89.45 94.65 78.66 64.2 52.2 71.02
HDG-jpd [30] (Skel.) 55.5 53.84 56.08 83.5 39.8 58.15

DT 81.15 84.15 92.5 71.42 54.5 87.36
RF 89.5 94.2 99.8 88.41 68.1 98.8

KNN 91.01 93.2 99.1 80.5 50.1 98.1
MLP 86.2 93.5 97.2 74.3 55.7 94.77
SVM 93.1 92.1 99.6 92.04 53.2 97.01

GCN [46] 92.03 96.03 - - 89.5 98.3
3Mformer [48] 90.5 92.0 - - 92.3 94.21

PoseConv3D [47] 96.5 97.1 - - 91.7 96.15

(a) (b)

Figure 10. Confusion matrix of the CAD60 dataset with K=10, with (a) K-means clustering. (b) Agglomerative clustering

postures clustered into one larger cluster. For instance,
on the CAD60 dataset, talking on the phone (labelled
1) activity has been confused with drinking (labelled 3)
and brushing teeth (labelled 4) activities, whilst cooking
(chopping) (labelled 7) and cooking (stirring) (labelled 8) in
CAD60 dataset have been clustered into the same cluster as
depicted in 10. The confusion matrices on the experimental
dataset with the K-means and agglomerative clustering are
given in Figure 11(a) and Figure 11(b), respectively.

The goal is to identify the 17 activities; however, only
10 clusters have been identified with the k-means algorithm,
whilst only eleven clusters have been identified with the
agglomerative clustering. Walking (labelled 8) activities
have been confused with Standing (labelled 0) activities,
and raising right hand (labelled 1), Phone call (labelled 12),
and drinking (labelled 13) activities have been clustered into
a single large cluster with both k-means and agglomerative
clustering algorithms. Likewise, inaccurate clustering has
been detected for sitting down (labelled 9), standing up
(labelled 11) and picking up from the floor (14) activities.

Figure 12 shows the number of clusters K, ranging from
2-20 and accuracy scores for both datasets. Investigations
have shown that accuracy increases when the number of
clusters is higher than the actual number of activities, due
to the label shifting mechanism used. For instance, if true
labels for a dataset with 3 activities are [1,1,1,2,2,2,3,3]
and predicted labels are [1,1,2,2,3,3,4,4], label shifting may
label them as [1,1,1,2,2,2,3,3] despite the presence of the
fourth clusters; which may increase the accuracy of the
clustering algorithms.

An individual may perform a variety of activities. It
is therefore essential to validate the effectiveness of the
unsupervised learning methods without specifying a known
number of clusters. An internal cluster validation index,
namely the silhouette coefficient score has been used to
approximate the number of activities in both datasets to
identify activities which clustering algorithms are able to
distinguish. The silhouette coefficient scores for clusters
ranging from 2-20 on both datasets are shown in Figure 13,
for clustering performed using the k-means algorithm. The
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(a) (b)

Figure 11. Confusion matrix of the CAD60 dataset with K=10, with (a) K-means clustering. (b) Agglomerative clustering

(a) (b)

Figure 12. Number of clusters and accuracy score on both datasets (a) CAD60 dataset (b) Experimental dataset

best score on the CAD60 dataset was 0.58% with 7 clusters,
whilst, on the experimental dataset, the highest score of
0.39% occurred with 10 clusters. Seven and ten clusters
for the CAD60 and experimental datasets, respectively,
as given via the highest silhouette coefficients, are cross-
validated with the confusion matrix shown in Figure 11(a)
and Figure 11(b). As can be seen, the confusion matrix
has indicated that the clustering algorithms clustered the
activities into 7 and 10 clusters in Figure 11(a) and Figure
11(b), respectively, while the expected number of clusters
were 10 and 17 clusters, for the CAD60 and experimental
datasets, respectively. Some of the activities have been
clustered well whilst similar activities have been grouped
into larger clusters in both datasets. This knowledge of
clustering can be used to group activities from a dataset
which does not have labels and each cluster can be labelled
as an activity which simplifies the labelling task.

Figure 13. Comparison of average F1-score of all clustering methods
on the experimental dataset
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5. Conclusion
In this study, investigations have been presented using

both supervised and unsupervised learning methods for
human activity detection using skeleton data employing
six different datasets. Analyses have shown that commonly
used supervised learning algorithms such as random forest
or KNN classifier can accurately model activities from
the skeleton features derived from RGB-D sensors without
extensive feature engineering/feature learning on smaller
datasets. The average classification accuracies on some of
the datasets were above 90% for most of the classifiers.
While the state-of-the-art deep learning methods achieved
over 90% accuracy on larger datasets. It is worth noting
that our study is in line with a growing body of evidence
suggesting that machine learning models excel with hand-
crafted features on smaller datasets, while deep learning-
based models perform better on larger datasets.

On the other hand, unsupervised learning algorithms
for activity detection using the same set of features have
been proven to be more challenging with the highest f1-
score of 87% on the CAD60 dataset without using any
labelled data. It remains challenging for unsupervised learn-
ing algorithms to distinct activities, which can only be
differentiated by subtle differences when represented as
skeleton posture. There are other issues to be addressed
in addition to enhancing clustering performance, which
indicates possible future research directions. Datasets used
in the literature are manually segmented and labelled into
respective activities, which remains an unresolved problem
in human activity research. This investigation contributes to
the broader understanding of the strengths and weaknesses
of different methods in human action recognition, offering
valuable insights for future research in this field.
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