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Abstract: 

The mining of a subset of informative genes from microarray gene expression data is a 

significant data preparation task in the classification of breast cancer. Out of all the algorithms 

developed, CFS-BFS and CONSISTENCY-BFS are the two best ones for gene selection. For 

reliable prognostication of breast cancer subtypes, a ground-breaking 2-Stage Gene Selection 

algorithm has been developed. Using CFS-BFS in the first stage and CONSISTENCY-BFS in 

the second, the majority of the distracting, inappropriate, and redundant genes are removed. To 

improve algorithm efficacy, the 2-Stage GeS strategy gets around the uncertainty problem with 

CFS-BFS. Surprisingly, using Hidden Weight Naive Bayes to establish the 2-Stage GeS, more 

accurate and reliable results are obtained. The standings of recall, precision, f-score, and fallout 

show encouraging results. The top four genes E2F3, PSMC3IP, GINS1 and PLAGL2 were 

further verified by applying Kaplan-Meier Survival Model. E2F3 and GINS1 are likely targets 

for precision therapy. 

 

Keywords: CFS-BFS, Consistency-BFS, gene selection, micro-array gene expression dataset, 

breast cancer, Kaplan Meier Survival.  

 

 

1. Introduction  
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Breast cancer (BC) is a wide variety of diseases with highly adaptable medical behaviours, not 

a single disease. [1-2]. Diagnosticians have long recognised this morphological multiplicity, 

which is replicated in Histological Grades (HG) with dissimilar microscopic appearances and 

correlated with medical outcomes [3-4]. HG, which stands for the morphologic assessment of 

tumour genetic traits, is a well-established prognostic factor that has been successful in 

generating significant evidence regarding the clinical behaviour of the disease. [5-6]. The HG 

scheme shown in Table 1 typically takes the patient's severity into account. These anomalies 

give clinicians tasks to look for likely targets for the best BC detection and diagnosis. [7].  

 

 

 

 

 

Table 1. Description of histological grade. 

Grade 

Types 
Growth [8] 

Mitotic 

Count (per 

10 high 

power fields) 

Tubular 

Differentiati

on (tumour 

forms 

glands) 

Nuclear Pleomorphism 

Grade 1 
Slowly, well-

differentiated 
< 7 mitoses > 75% 

Small nuclei, no nucleoli, 

and uniform cells. 

Grade 2 Moderate 8-15 mitoses 10 - 75 % 

Bigger cells using open 

vesicular nuclei, moderate 

in shape and size, visible 

nucleoli. 

Grade 3 
Faster, poor 

differentiation 
> 16 mitoses < 10 % 

Cells with variation in size, 

shape, vesicular nuclei, and 

prominent nucleoli, marked. 

 

 

 

A higher grade may develop and quickly blow out, requiring immediate aggressive treatment. 

A lower grade denotes slow-growing cancer with a better prognosis. It is still impossible to 

develop an accurate medical indicator that will commit for improving prognosis and grade-

related data [7]. In order to express a tumor's antagonistic behaviour, HG aims to combine 

measurements of cellular differentiation and replicative potential into a composite score. 

The Nottingham Grading System (NGS) is the utmost extensively used technique for BC 

tumour grading. The grading system of tumour cells is grounded on a microscopic estimation 

of cytologic and morphologic characteristics, which also include nuclear pleomorphism, 

mitotic count, and degree of tubule formation [7-9].  

The summation of the grading scores classified breast tumours into the following grades: 

a. G1 - grade 1 (slow-growing, exceptionally differentiated) 

b. G2 - grade 2 (slightly differentiated) 



c. G3 - grade 3 (inadequately differentiated, highly proliferative) malignancies. 

 

HG acts as an imperative part in the prognosis, diagnosis, and survival of BC patients. It is 

becoming a key area to categorize the patients into the correct category and stage of BC. The 

Genetic Grade (GG) was consistently conceived in multivariate analyses to be a self-

determining prognostic symbol of disease reappearance proportionate to lymph node and 

tumour size status [10-13]. When combined with the Nottingham Prognostic Index (NPI), GG 

improved the identification of patients with less damaging and destructive tumours who would 

benefit sufficiently from adjuvant treatment. The findings of Anna et al. show that a GG 

signature can advance, improve, and facilitate prognosis planning for BC patients, as well as 

provide comfort that high-grade and low-grade ailment, as stated genetically, replicate separate 

pathobiological entities rather than a continuation of cancer development [10].  

 

In BC, Micro-Array Gene Expression (MAGE) has the potential to judge thousands of genes 

simultaneously. Machine Learning (ML) technique has optimized this analysis task. According 

to research, MAGE-based profiling can provide better and self-determining prognostic 

information for patients with BC. MAGE data contains many genes, the majority of which are 

irrelevant or unimportant in the diagnosis of BC. Gene selection will aid in the discovery of 

relevant genes, and it is useful in a variety of real-world applications, such as identifying 

relevant genes for a specific disease in microarray data [14-15]. The Best-First Search (BFS) 

method produces excellent results [13], even when accuracy rankings are average. It also has 

the greatest influence on the prognostication model. The CFS built on BFS selects the fewest 

possible features on its own. [16-19, 46-49]. To reduce the genes further with a motive to find 

biomarker genes, Consistency-BFS is beneficial. Integrating the Hidden Naïve Bayes with 2-

Stage GeS has been discussed in detail to predict BC accurately. 

 

This study aims to identify prognostic biomarkers on microarray datasets to forecast the 

diagnosis and prognosis of breast cancer based on histologic grade subtypes. In future cancer 

research, the proposed novel architecture demonstrates a cost-effective and powerful predictive 

tool.  

 

The literature review is covered in Section 2, the GeS method, Hidden Weight Nave Bayes, 

and the GeS method in detail are covered in Section 3, and the proposed model is highlighted 

in Section 4. Datasets and experimentation analysis are covered in Section 5. The conclusion 

and discussion are presented in the last section. 

 
2. Literature Survey 

 

Sankara et al. [9] presented a consolidative approach to recognize Grade-specific biomarkers 

for BC and constructed networks using grade-specific molecular interactions of cancer Grades 

1, 2, and 3 through DEGs (Differentially Expressed Genes). The author discovered a Grade 3 

molecular network that is primarily associated with cancer-related procedures. Amongst the 

top ten associated DEGs in Grade 3, the increment in the expression of the CCNB2 and UBE2C 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/molecular-interaction


genes was analytically noteworthy among dissimilar grades. Additionally, the expression of 

the genes CCNB2 and UBE2C, CDK1, KIF2C, CCNB2, and NDC80 is highly pronounced in 

various Grades and lowers the patient survival rate. Together, the recognised genes can serve 

as biomarkers for BC diagnosis and prognosis. 

 

Cases were rediverted as one of the following molecular subcategories: LumA; LumB (HER2-

); LumB (HER2?); Basal; HER2 subcategory; and five negative phenotypes, as discussed by 

Engstrm et al. in their discussion of immunohistochemistry and in situ hybridization as 

alternatives for analysing gene expression. The studies made use of Kaplan-Meier Survival 

(KMS) models and Cox proportional hazards models. HER2 had the worst prognosis and 

diagnosis based on molecular subcategory, while LumA had the best prognosis and diagnosis 

along with five negative phenotypes in the first five years following investigation. Only Grade2 

tumours exhibit subcategory-related changes in BC survival. According to histopathological 

grade or molecular subcategory, there was no difference in the survival of BC after the time of 

diagnosis. Lymph node, GG, and tumor size status are robust prognostic factors. The high grade 

related to the non-luminal subcategory [20-21]. The information on prognosis and prediction 

for the various factors can change after diagnosis [22]. An additional source of prognostic and 

predictive data regarding the patient's outcome may come from BC's molecular subtyping. 

Nevertheless, its clinical and medical ramifications have not yet been fully appreciated. The 

primary goals of the study were to ascertain whether classifying BC into molecular subtypes 

(Non-Luminal and Luminal) provides more precise and in-depth information regarding 

outcomes related to traditional HG and to examine BC-specialized survival in the various 

molecular and grade subcategories. The prognosis varied significantly by molecular subtype 

during the first five years following diagnosis, with the Luminal A subtype having the best 

prognosis and HER2 and the five negatives’ phenotypes having the worst [20]. While Grade 1 

tumours are linked to the best diagnosis, Grade 3 tumours are linked to the worst diagnosis. 

Although some cases of Grade 2 tumours may resemble Grade 3 and 1 and are more 

heterogeneous in nature, most cases have a transitional prognosis. [23-24]. Furthermore, 

examining patients' Gene Expression Profiles (GEP) across different grades and molecular 

subtypes of BC, aids in determining thoughtful pathogenesis and planning appropriate 

treatment strategies. 

 

Relating the Histologic Grade with the prognosis of breast cancer along with feature selection 

[25]. Where the first feature sent is either full or empty. By employing forwarding selection 

and gradually adding features, it expands the exploration space. Later, it uses backward search 

to reduce the exploration space by removing one gene at a time. 

Utilizing the two steps feature selection, the overall paper comprises of  

• The most appropriate genes related to breast cancer will be found through a thorough 

analysis of correlation and consistency measures with best-first search. Experimental 

evaluation of identified genes using different classification methods. 

• Generating the ranking of important genes by 2-stage GeS tactic. 

• Medical validation of identified genes using the Kaplan Meier survival model. 

 



3. GeS Technique 

 

The GeS approach to feature exploration concluded with the finest subgroups of features, and 

an attempt to discover a subgroup  amongst the challenging 2X candidate groups. The 

necessity of this approach is its stopping condition: it avoids comprehensive exploration of 

subgroups. The GeS technique (shown in Figure 1) primarily involves the following four steps 

[15]:  

 

1. Creating the succeeding candidate subgroup for the assessment using the generation 

technique 

2. Estimating the candidate subgroup utilizing the estimation function. 

3. When to stop exploring is indicated by the stopping condition, and 

4. Validate the subgroups using the validation technique. 

 

The generation technique employs an exploratory strategy to generate subgroups of features 

for evaluation. It begins by employing all or no features or a random subgroup of features. An 

estimation function helps in the generation of a subgroup, an optimum subgroup is constantly 

compared to an estimation function like the linear correlation coefficient [27]. In the absence 

of an appropriate stopping condition, the GeS procedure might run, repeatedly ending up as a 

liability for the exploration approach. The generation technique and estimation function can 

affect the judgment or preference aimed at a stopping condition. Instances of stopping 

conditions grounded based on the generation technique comprise either a predefined count of 

features or a predefined count of repetitions attained. Instances of a halting condition grounded 

in an estimation function either facilitate the deletion or addition of any feature, generating an 

improved subgroup, or an optimum subgroup is attained. The GeS procedure stands still by 

outputting the chosen subgroup of features. i.e., later authenticated. There are numerous 

variations to this GeS method, but the vital stages of generation, estimation, and stopping 

condition are performed in almost every procedure. The authentication practice is not an 

essential fragment of the GeS method itself. It attempts to examine the genuineness of the 

chosen subgroup by comparing and verifying the outcomes with earlier established outcomes 

or with the outcomes of challenging the GeS approach using real-world or artificial datasets. 

 

To deal with dimensionality reduction, Gene Selection [7,15,17,28] is a potent method. GeS is 

utilized to discover an “optimum” subgroup of significant features, therefore the 

comprehensive accuracy is amplified although the data size is made smaller, and the 

comprehensibility is enhanced in the case of classification. GeS approaches comprise two vital 

characteristics one is the estimation of a candidate feature subgroup and the second is 

exploration using the feature space.  

 

The GeS is implemented using two techniques named: 

 

a. Inconsistency measure corresponds to a feature subgroup i.e.  Unpredictable as at least 

two illustrations through equivalent feature principles through distinctive class markers.  



b. Correlation measures correspond to correlation either among features or among classes 

and features. 

  

Contrasting inconsistency measure with correlation measure and studying Best-First Search 

(BFS) as an inspecting approach. 

 

 

 

 

 

 

 

 

  

 

 

 

  

 

  

 

 

Figure 1. GeS approach 

 

To deal with dimensionality reduction, gene selection [7,15,17,28] is a potent method. GeS is 

utilized to discover an “optimum” subgroup of significant features, therefore the 

comprehensive accuracy is amplified although the data size is made smaller, and the 

comprehensibility is enhanced in the case of classification. GeS approaches comprise two vital 

characteristics one is the estimation of a candidate feature subgroup and the second is 

exploration using the feature space.  

 

The GeS is implemented using two techniques named: 

 

a. Inconsistency measure corresponds to a feature subgroup i.e.  Unpredictable as at 

least two illustrations through equivalent feature principles through distinctive class 

markers.  

b. Correlation measures correspond to correlation either among features or among 

classes and features. 

  

Contrasting inconsistency measure with correlation measure and studying best-first search 

(BFS) as an inspecting approach. 

 

 

 
4. Proposed Model  

Subgroup 

Finest of the 

Subgroup 

Generation Estimation 

Validation 
Stopping 

Condition 

Yes No 

Original  

Gene Set 



 
4.1 Data Pre-processing 

 
In the current study, an innovative 2-GeS model for BC categorization into Histologic Grade 

subtype is proposed with a Hidden Weight Naïve Bayes (HWNB) classifier shown in Figure 

2. In the beginning pre-processing of data is done in the form of Gene Mapping, replacing 

probe-ids with their corresponding gene IDs utilizing the GEOquery library of R Studio [29], 

systematizing the gene data employing the min-max method. After mapping, SMOTE and 

Discretization are performed on the datasets to beat the problem of class unevenness [28,30-

31]. The pre-processed data contains thousands of genes, of which only a small number are 

important. To generate the subgroup of relevant genes, 2-Stage GeS is performed where CFS 

(Correlation-Based Searching) and Best-First Search (BFS) is applied at the first stage.  

Consistency is used as an evaluator and best-first search is applied in the second stage to find 

the final genes after relevant genes have been chosen using CFS-BFS (Correlation Feature 

Selection and Best-First Search). Further, the classification of BC is carried out using different 

supervised machine-learning algorithms. Gene produced using 2-stage GeS has enhanced the 

performance of HWNB over other ML methods. 

 

Since the data is imbalanced, so it creates an extreme repercussion on the performance of the 

ML algorithms. To resolve this issue, SMOTE is executed after discretization; the inclusion of 

discretization and SMOTE aided in improving performance results.  

 

The problematic issue is concerning the imbalance in the datasets. In SMOTE, synthetic 

examples are generated with the k-NN (k-nearest neighbor) tactic for the smaller class to 

resolve the problem of imbalance data. The following steps are taken for the oversampling task: 

 

Step 1: Identifying the marginal class set 𝑄, for every 𝑏 є 𝑄, k-NN of 𝑏 is produced by 

calculating the distance between 𝑏 and each instance present in 𝐴. 

Step 2: For every  𝑏 є 𝑄, the sampling rate 𝑇 is calculated as liable on the imbalanced 

proportion. 

𝑇 instances 𝑡1, 𝑡2, … 𝑡 (𝑇 ≤  𝑚) are selected aimlessly amongst k-NN, therefore, producing the 

set 𝑄1. 

Step 3: For each example 𝑡𝑚 є 𝑄1 (𝑚=1,2,3,……,𝑇), the stated method is utilized to generate 

the new instances 

𝑡𝑛𝑒𝑤 = 𝑡 + 𝑟𝑎𝑛𝑑(0,1) ∗ ||(𝑡 − 𝑡𝑚)||                                                                                     eq. 1 

Where 𝑡𝑛𝑒𝑤 is a new instance, and 𝑟𝑎𝑛𝑑(0,1) will produce a number that lies on [0,1]. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flowchart of 2 Stage GeS 
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4.2 GeS Method 

 

To find out the subgroup of relevant genes, a combination tactic is utilized which includes two 

GeS methods. The first is CFS-BFS at the first stage and Consistency-BFS at the second stage, 

in which CFS and Consistency act as gene evaluators and BFS acts as an exploration method 

for gene subgroup. The BFS technique falls under the category of supervised Gene Selection 

(GeS). By indicating which genes, the algorithm thinks, fit the data the best,  chooses the 

relevant and significant genes. The algorithm encounters a number of difficulties as it learns to 

determine which genes are relevant and which ones to eliminate. Determining the best genes 

for the algorithm is therefore GeS's primary goal. The choice of the best gene for the ML 

technique by filter approach depends on the gene-to-gene correlation and gene subgroup 

selection, which are important to ascertain. The CFS method is a reliable one because it 

generates a ranking of genes grounded on associativity determined by the empirical valuation 

function. By examining each gene's unique ability to predict how much attrition will occur 

among them, CFS can estimate the value of a subgroup of an attribute. Although there is little 

association, the subgroup of highly interrelated genes with the class is selected. [17]. Though, 

a few extremely predictive genes were disregarded which might worsen the performance of 

ML. Ac signifies CFS’s gene subgroup assessment function given as: 

 

                                                                                                         eq. 2 

Ac is the experimental ‘merit’ of a gene subgroup , including of  genes,  𝐶𝑃𝑃
̅̅ ̅̅ ̅ demonstrates 

gene-gene intercorrelation and  epitomize the gene-class association. According to studies 

[32], CFS produces results that are comparable to those of the wrapper that outperformed them 

well on small datasets. In addition, CFS implements much more quickly than wrapper; as a 

result, CFS is used to select the final appropriate genes. 

Despite the fact that training occurrences in the subgroups of qualities are predictable, the 

Consistency BFS GeS method [33] estimates the value of a subgroup of qualities in the class 

standards by the level of uniformity. The consistency of the subgroup cannot, under any 

circumstances, be less than the consistency of the entire set of qualities. As a result, the standard 

training is to use this subgroup evaluator in aggregate with an exhaustive or random search, 

which looks for the smallest subgroup with consistency that is equal to the consistency of the 

entire set of qualities. Consistency measures (CM) are treated differently on the training dataset 

because of their strong backing and use of min-genes when selecting a subcategory of genes 

[34]. The goal of min-genes is to define consistency theories over the fewest number of genes 

possible. It looks for the smallest subgroup size that satisfies the required consistency rate, 

which is typically set by the user. It is a filter method because it is not dependent on any one 

classifier that the GeS approach might use to use the output from the carefully selected gene 

[34–35]. The suggested metric is the dataset's overall inconsistency rate for a particular gene 

set. A portion of an occurrence known as an outline lacks the class label subset in the 

explanation that follows. It consists of a gene’s subset. Aimed at a given gene subset Z with 



, , ,………..  count of values for genes , , ,…….,  correspondingly, 

there are at most , , ,……….,  outline.   

 

The inconsistency rate (CM) is determined by performing the calculations described below: 

a. For a sample, an inconsistency is obtained by the existences (0 1, 0) and (0 1, 1) where 

the two genes make the correspondent principles in the two existences even though the 

character of class fluctuates and the concluding value in the existence. A pattern is 

hypothetical to be inconsistent uncertain, there occur at least two occurrences like they 

associate all but with their class markers.  

b. The inconsistency count for a gene subgroup's outline is equal to the number of data 

epochs it examines minus the largest number of inconsistent class labels. For the sake 

of the sample, let's consider an outline that appears in instances of a gene subgroup 

where instances have class tags 1, 2, and 3, where  +  +  = .  

If  is the largest among the three, then the inconsistency count is ( − ). The sum of 

entirely s concluded by the different outline  that occur in the data of the gene 

subgroup X is the overall count of occurrences (𝑃) in the dataset, i.e., ∑y  = P. 

c. The sum of all the inconsistent overall designs of the gene subcategory which appears 

in the data divided by P is the inconsistency rate (IR) of a gene subgroup 𝑇 (IR(T)). The 

following is how CM is still being used for gene selection. CM remains utilized to the 

gene selection task as follows. Assumed a contender gene subgroup 𝑇, inconsistency 

rate IR(T) is calculated. If IR(T) ≤ 𝛼 where α is a user-specified IR threshold, the 

subgroup 𝑇 is called to be consistent. The characteristics of CM are gathered in the 

description. A gene subgroup may not be able to satisfy the strict condition at that time 

because real-world data is frequently noisy and uncertainty α is set to 0%. The hashing 

mechanism makes it possible to compute IR with time complexity. O(T) [33]. CM 

utilises data with discrete value features. In this case, features must first be discretized 

if the data is continuous [36].    

 

In order to identify the most advantageous genes, it is advantageous to correlate BFS with CFS 

and Consistency as a gene evaluator. It advocates eliminating unnecessary, obtrusive, and 

redundant genes once their significance is not largely dependent on other genes. Using greedy 

hill-climbing techniques that are aided by the ability to go back, BFS investigates the space of 

attribute subgroups. By combining BFS, CFS, and consistency, fifty percent of the genes are 

eliminated.  

The accuracy of classification is typically superior to or equal to the minimal set of genes in 

judgment to the complete set of genes in the vast majority of cases. BFS starts with a null group 

of genes and uses the entire set of genes to accomplish forward searching. Later, it initiates at 

any point, looks backward, and examines both ways, subsequently removing or including 

genes. Subsequently identifying suitable, minimised, and pertinent genes, the next step is to 

classify the samples in order to assess the significance of a smaller subset of important genes, 

independent of the entire gene cluster present in the datasets. By addressing some noise that is 

modelled as a proportion of data inconsistencies, CM helps to eliminate redundant and 



inappropriate genes. A subgroup of genes is continually being checked by this multi-variate 

measure. In light of this, CM is quick, multi-variate, monotonic, capable of handling data noise, 

and multi-variate before removing inappropriate genes. CM appears to be more expensive than 

CFS.  

4.3 Hidden Weight Naïve Bayes Classifiers 

Classification is an important task in pattern recognition and data mining [37]. Due to its 

easiness of construction but amazing effectiveness, Naïve Bayes (NB) seems to be the top 

machine learning tactic [38]. It provides pure semantics utilizing the knowledge of probability. 

The tactic is used in supervised initiation tasks which helps to achieve good accuracy with 

predicted class for testing and training data including class information [39]. This classifier is 

termed as naïve due to the postulation that foretold features are conditionally sovereign in each 

class and it concludes that no secluded (hidden) features influence the forecast method. These 

postulates reinforce efficient algorithms for learning as well as classification. 

Let 𝐴 be the arbitrary variable symbolizing the class of an example like gene name, 𝐵 be a 

vector of arbitrary genes symbolizing the experimental attribute values, 𝑎 symbolize a specific 

class label like types of Grades and 𝑏 signify the precise detected value vector. Assuming a test 

case 𝑏 to categorize, one uses Bayes’ rule to figure out the likelihood of each class given the 

vector of detected values for the foretold genes and then forecasts the utmost probable class. 

𝑃(𝐴 = 𝑎 ∕ 𝐵 = 𝑏) =
𝑃(𝐴=𝑎)𝑃(𝐵=𝑏∕𝐴=𝑎)

𝑃(𝐵=𝑏)
                                                                                eq. 3 

Now  𝐵 = 𝑏 signify the event that 𝐵1 = 𝑏 ∧ 𝐵2 = 𝑏2𝛬 … … 𝐵𝑘 = 𝑏𝑘 . Since the occurrence is 

a combination of gene value assignments, and because these genes are expected to be 

conditionally sovereign, one attains 

𝑃(𝐵 = 𝑏 ∕ 𝐴 = 𝑎) = 𝑃(∧ 𝐵𝑖 = 𝑏𝑖 ∕ 𝐴 = 𝑎),                                                                       eq. 4                 

                               =  𝜋𝑃(𝐵𝑖 = 𝑏𝑖 ∕ 𝐴 = 𝑎) 

i.e., is modest to calculate for test cases and to guess from training information. Usually, one 

does not evaluate the distribution in the denominator of Equation 3, as it is just a standardizing 

factor; as a substitute, one disregards the denominator and then standardizes so that the 

summation of 𝑃(𝐴 = 𝑎 ∕ 𝐵 = 𝑏) over all classes is one. For discrete features, 𝑃(𝐴 = 𝑎 ∕ 𝐵 =

𝑏) is demonstrated by a number amongst 0 and 1 that signifies the likelihood that the gene 𝐵 

will take on the value 𝑏 when the class is 𝑎. In opposition to each numeric gene is demonstrated 

by some continuous likelihood distribution over the range of that gene’s value. A mutual belief 

is that values of numeric genes are normally distributed, and can be characterized in terms of 

standard deviation and mean. For continuous attributes, equations 5 and 6 are framed, where 𝑑 

signifies the probability density function for a gaussian distribution. 

𝑃(𝐵 = 𝑏 ∕ 𝐴 = 𝑎) = 𝑑(𝐶; 𝜇𝐶 , 𝜎𝐶),   𝑤ℎ𝑒𝑟𝑒                                                    eq. 5 

𝑑(𝐶; 𝜇, 𝜎) =
1

√2𝜋𝜎
𝑒

−(𝐶−𝜇)2

2𝜎2                                                                                 eq. 6 

NB disregards the attribute dependencies. A method for learning an optimal Bayesian network 

that can avoid computational complications and take the inspirations from all the genes into 



account. The concept of creating a hidden parent for each gene that trusts the inspirations from 

all the genes is termed as Weight Hidden Naïve Bayes [40].  

Assume 𝑍 is a class node i.e., Histologic Grade and parent of all the attribute nodes. Figure 3 

defines the structure of NB and HWNB. Each attribute 𝑌𝑗  has hidden parent 𝑌ℎ𝑃𝑗
 , 𝑗 =

 1,2,3, … … . , 𝑚, signified by a dashed circle. The arc from the hidden parent 𝑌ℎ𝑃𝑗
 to 𝑌𝑗 is 

signified by a dashed line, to differentiate it from systematic arcs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Structural representation of Naïve Bayes and Hidden Naïve Bayes 

 

The joint distribution signified by HNB is defined as follows: 

𝑃(𝑌, … . , 𝑌𝑚, 𝑍) = 𝑃(𝑍) ∏ 𝑃 (𝑌𝑗 ∕ 𝑌ℎ𝑃𝑗
, 𝑍)

𝑚

𝑗=1
                                              eq. 7 

where, 

𝑃 (𝑌𝑗 ∕ 𝑌ℎ𝑃𝑗
, 𝑧) = ∑ 𝑇𝑏𝑎𝑎=1,𝑎≠𝑏 ∗ 𝑃(𝑌𝑏 𝑌𝑎⁄ , 𝑍)                                              eq. 8 
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and ∑ 𝑇𝑏𝑎𝑎=1,𝑎≠𝑏 = 1. 

The hidden parent 𝑌ℎ𝑃𝑗
 for 𝑌𝑗  is fundamentally a combination of the weighted impacts from all other 

attributes. 

Considering the attributes 𝑌1, … … , 𝑌𝑚, 𝑃 (𝑌𝑗 ∕ 𝑌ℎ𝑃𝑗
, 𝑍) can be thought of approximation of 

𝑃(𝑌1, … … , 𝑌𝑚). In Equation 6, an approximation is depending on single estimators.  Through 

the principle, arbitrary e-dependence estimators can be utilized to state hidden parents. If 𝑒 =

 𝑚 − 1, any Bayesian network is signified by HNB. HNB is considered equivalent to a 

Bayesian network in standings of expressive power.  It is favoured to outline hidden parents in 

demand to make the learning procedure well-organized, efficient, and simple. 

From equations 7 and 8, the method to regulate weights 𝑇𝑏𝑎 , 𝑏, 𝑎 = 1, … . . , 𝑚 and 𝑎 ≠ 𝑏, is 

decisive for learning HNB. There are two tactics to find it: one is executing a cross-validation 

grounded search, or second directly executing the estimated values from data. Adopted the 

latter, and made use of conditional mutual information amongst attributes 𝑌𝑎 and 𝑌𝑏 as the 

weight of the 𝑃(𝑌𝑎; 𝑌𝑏|𝑍). More precisely, the weight is defined in eq. 9 

𝑇𝑏𝑎 =  
𝑀𝑝(𝑌𝑏;𝑌𝑎|𝑧)

∑ 𝑀𝑝(𝑌𝑏;𝑌𝑎|𝑧)𝑎=1,𝑎≠𝑏
                                                                                eq. 9 

Where 𝑀𝑝(𝑌𝑏; 𝑌𝑎|𝑧) is a conditional mutual information defined as: 

𝑀𝑝(𝐴; 𝐵|𝐶) = ∑ 𝑃(𝑎, 𝑏, 𝑐) 𝑙𝑜𝑔
𝑃(𝑎,𝑏|𝑐)

𝑃(𝑎
𝑐⁄ )𝑃(𝑏

𝑐⁄ )𝑎,𝑏,𝐶
                                                               eq. 10 

where a,b and c are values of variables A,B, and C respectively.  

5 Datasets 

The experimentations are conducted on six microarray gene expression datasets extracted from 

National Centre for Biotechnology Information (NCBI) and is detailed in Table 2. At the initial 

stage, the count of genes in the datasets is in the thousands, so subsequently removing irrelevant 

genes is required to gained insights from data Table 3, shows Grade wise distribution of 

samples. The number of relevant genes selected in 2-Stage GeS is shown in Table 4. Histologic 

Grade-wise classification with three classifiers namely Naïve Bayes (NB), Hidden Weight 

Naïve Bayes (HWNB), and Correlation Weighted Feature Naïve Bayes (CWNB) in terms of 

precision, recall, f-score and fallout are given in Table 5-8. Out of these three classifiers, 

HWNB outshines in terms of precision, recall, f-score, and fallout highlighted in bold in Table 

6. Eleven classifiers have been used namely, Support Vector Machine (SVC), Deep Learning 

(DL), Decision Table (DT), Random Forest (RF), Logit Boost (LB), JRip, IBK, OneR, NB, 

CWNB, and HWNB.  

 

Table 2. Detailed Description of Datasets 

Datasets Genes Samples 

GSE7390 13516 196 

GSE10886 16380 74 

GSE25055 13515 302 



GSE25066 16383 486 

GSE29044 16384 98 

GSE42568 16384 104 

 

 

 

Table 3. Detailed distribution of different grades in each sample 

Datasets Grade 1 Grade 2 Grade 3 Grade 4 

 GSE7390 30 83 83 0 

GSE10886 7 25 42 0 

GSE25055 19 117 151 15 

GSE25066 32 180 259 15 

GSE29044 3 53 42 0 

GSE42568 11 40 53 0 

 

 

 

5.1 Experimentation Analysis 

The proposed model consists of 2-stage GeS techniques and Hidden Weight Naïve Bayes 

classifier in which the number of appropriate genes is chosen at the first stage utilizing the 

CFS-BFS method and Consistency-BFS at the second stage. The details of the count of genes 

chosen are presented in Table 4. The number of genes selected using CONSISTENCY-BFS is 

very few to the genes chosen by the CFS-BFS method. The genes obtained at the second stage 

are significantly reduced in comparison to the complete set of genes in the original datasets and 

genes selected by the CFS-BFS technique. All the genes chosen are relevant and perform a 

significant role in the analysis and prognosis of BC. The overall results of good f-score, recall, 

and precision are shown by datasets GSE10886 and GSE29044. The highest precision of 

96.4%, recall of 96.3%, and f-score of 96.3% with CWNB have been achieved in GSE10886. 

The second maximum precision of 96.1%, recall of 96%, and f-score of 96% with HWNB, was 

obtained in GSE29044. The third highest precision achieved is 95.2%, recall of 95%, and f-

score of 95.1% with Naïve Bayes (NB) in GSE9044. The minimum fallout of 1.4% with 

CWNB in GSE10886, followed by 2.2% with HWNB, and NB is achieved in GSE10886. The 

graphical description of results achieved by all the classifiers with six datasets is shown in 

Figure 4-7. Figure 4, shows the performance of various ML classifiers on six datasets in terms 

of precision. Figure 5, displays the superiority of CWNB classifier on Recall measure. Figure 

6 shows the performance of F-score with ML methods. Figure 7 shows the line graph 

comparing the fallout measure of six datasets with ML methods. The overall results show the 

superiority of HWNB with the remaining classifiers shown in Table 9. 

Considering all the selected genes by the 2-GeS tactic, in each dataset where the correlation 

coefficient is calculated to find the correlation among the genes. Considering all selected gene’s 

coefficients, a ranking of the genes is generated. Combining all the selected genes of six 

datasets, the ranking of genes is shown in Table 10. Dataset-wise ranking of the top three 

selected genes is shown in Table 11. As a result, the top four genes namely E2F3, PSMC31P, 

GINS1, and PLAGL2 were identified by 2-Stage GeS. Later discovered the serious effects of 



the top four genes in the existence of patients with BC. KMS Plotter tools were utilized to the 

existence of patients with BC by using publicly available datasets (2015 version; 

http://kmplot.com/analysis/index.php? p=service&cancer= breast) [40].  

The subcategory of Histologic Grade in MAGE can be distinguished into the category of good 

and bad prognosis. Patients with lower Histologic Grades typically have better survival rates 

than those with higher Histologic Grades. KMS Model is used to validate whether the proposed 

model can distinguish between patients with poor and good prognosis using the Relapse-Free 

Survival rate (RFS) data from the micro-array datasets. The R-Survival project's package was 

used to implement the survival scrutiny with the Histologic Grade factor, resulting in the RFS 

arcs of the proposed model, as shown in Figure 8-11, which shows a clear separation between 

the groups with good and poor prognoses based on grade. A log-rank test was estimated to 

determine the p-value, and it suggests that a lower p-value indicates a better separation between 

grade subtypes. Figure 8-11, shows the probability of survival analysis as high or low in BC 

patients depending on all Grades, Grade 1, Grade 2, Grade 3, and Grade 4 respectively.  

 

The grade of a BC is a predictor, a prognostic indicator, and a marker of the tumor's "hostile 

potential." Low-grade cancers tend to be less aggressive than high-grade cancers. Grade 

appears to be very important, and clinicians use this information to help and direct treatment 

options for patients. Looking at the prognosis of Histologic Grade, the proposed model has 

taken into consideration of grade parameters to check the importance of grade in terms of breast 

cancer prognosis and detection. The result substantiates that the proposed model is efficacious 

in separating BC patients into two prognosis groups depending upon the RFS rate, which can 

determine the patient’s expectancy level for an event (relapsed at any site). Accordingly aids 

in easy credentials of the patient’s group which might demand less or more aggressive 

medication strategy. The Kaplan-Meier curve and log-rank test scrutinizes discovered that the 

increased E2F3, PSMC3IP, GINS1, and PLAGL2 mRNA levels were meaningfully associated 

with the Relapse Free Survival (RFS) of all the patients with BC shown in figure 8-11. The 

patients with BC with high mRNA levels of the E2F3, PSMC3IP, GINS1 [40], and PLAGL2 

genes were predicted to have high RFS in Grade 1 and Grade 2. But the survival analysis is not 

significant with Grade 3.  

 

The expression levels of E2F3 and GINS1 were higher in BC tissues than in normal breast 

tissues. Survival analysis using the Kaplan-Meier Plotter database revealed that the high 

transcription levels of E2F3 were linked with low relapse-free survival (RFS) in all the patients 

with breast cancer. E2F3 is a potential target of precision therapy for patients with breast cancer 

[42]. Survival analysis exposed that increased expression levels of GINS1 were associated with 

poor prognoses in all patients with BC [43]. GINS1 was associated with detrimental relapse-

free survival (RFS) [44]. All the experiments are performed using the WEKA software [45] 

and RStudio [29]. 

 

 

Table 4. Count of features selected in both stages 

 First Stage Second Stage 



Datasets  

CFS-BFS 

  

CONSISTENCY-

BFS 

GSE7390 102 16 

GSE10886 46 7 

GSE25055 193 12 

GSE25066 212 13 

GSE29044 66 10 

GSE42568 91 8 

 

Table 5. Precision wise results of NB, CWNB and HWNB 

Precision NB CWNB HWNB 

Grade 1 78.58 78.58 84.53 

Grade 2 81.7 81.7 83.17 

Grade 3 90.05 90.05 91.02 

Grade 4 74.2 74.2 71.9 

 

Table 6. Recall wise results of NB, CWNB and HWNB 

Recall NB CWNB HWNB 

Grade 1 78.82 70.77 79.73 

Grade 2 83.53 83.62 86.57 

Grade 3 88.95 90.2 89.48 

Grade 4 71.7 50 68.35 

 

Table 7. F-Score wise results of NB, CWNB and HWNB 

F-Score NB CWNB HWNB 

Grade 1 80.07 76.87 81.93 

Grade 2 82.48 81.8 84.77 

Grade 3 89.48 88.93 90.2 

Grade 4 71.3 52.65 68.45 

 

Table 8. Fallout wise results of NB, CWNB and HWNB 

Fall out NB CWNB HWNB 

Grade 1 3.63 2.43 2.42 

Grade 2 10.06 11.6 9.77 

Grade 3 7.98 10.28 7.28 

Grade 4 1.95 2.8 1.9 

 



 

Figure 4. Performance of six datasets based on Precision 

 

 

Table 9. Performance of Proposed Model in comparison to remaining machine learning classifiers 

Classifiers Precision Recall F-score Fall out 

Proposed Model + DL 83.6833 82.5167 82.6167 9.01667 

Proposed Model + SVC 85.4667 85.5 85.3167 9.21667 

Proposed Model + DT 76 76.35 74.2333 15.9 

Proposed Model + RF 86.65 86.5333 86.35 8.28333 

Proposed Model + LB 85.5 85.4333 85.2333 9.15 

Proposed Model + Jrip 79.6 79.3833 79.2 12.8833 

Proposed Model + OneR 61.7333 59.7 59.0833 28.3333 

Proposed Model + IBK 85.0333 84.7167 84.6667 9.01667 

Proposed Model + NB 85.8333 85.6667 85.6667 8 

Proposed Model + CWNB 85.3167 84.95 84.55 9.48333 

Proposed Model 

(2-Stage GeS + HNB) 87.45 87.3667 87.3 7.45 

 

 

6 Conclusion and Discussion 

 

This research proposed a novel 2-stage GeS tactic for BC subtypes prediction based on two 

methods and Hidden Naïve Bayes classifier, namely CFS-BFS at the first stage, 

CONSISTENCY-BFS at the second stage utilizing histologic grade, and utilizing the Hidden 

Weight Naïve Bayes classifier for the classification. CFS-BFS has an O(N2) complexity, Since 

Consistency-BFS complexity is linear i.e. (O(N)), it is preferable to CFS-BFS. whereas CFS-

BFS is polynomial i.e (O(N2)), where 𝑁 is the total number of features. The experiments were 

performed using six microarray gene expression datasets. The results validate an impressive 
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precision, recall, f-score, and fallout to forecast BC using limited selected appropriate genes in 

each microarray gene expression dataset. The impressive is achieved by the proposed 2-GeS 

tactic with Hidden Naïve Bayes classifier. A maximum of the chosen genes is exposed to be 

correlated to BC grounded on earlier research, although limited are yet to be explored. 

 

This two-stage gene selection strategy can focus research and analysis on a relatively small 

subset of genes. Most notably, the strategy can be helpful for more sophisticated patient 

stratification in the future, such as subgroups formed by combining platforms or for groups of 

patients that have been divided based on treatment response. With the help of this combination 

tool, it is possible to precisely classify large populations of patients into definite cancer 

subtypes or treatment groups by regulating the minimum number of genes that must be 

screened. 

 

 

 

Table 10. Ranking of relevant Genes of six datasets after 2-Stage GeS 

Genes Rank Genes Rank 

E2F3 1 IL1R2 34 

PSMC3IP 2 NM_002691 35 

GINS1 3 PDHA1 36 

PLAGL2 4 FOSB 37 

MELK 5 CLTC-IT1 38 

CCNB2 6 BC005884 39 

FLJ20224 7 GTF3A 40 

NMU 8 BTF3 41 

SPTBN2 9 MAB21L1 /// MIR548F5 42 

BM545088.1 10 NM_002266 43 

TPD52L1 11 SDHA 44 

C6 12 MUC5AC 45 

ATP7B 13 MRPL40 46 

I_1109138 14 V39326 47 

MYL7 15 ANKRD7 48 

HOXC8 16 ACSM2A /// ACSM2B 49 

CIAO1 17 TGFBR3 50 

RRM2 18 SNX21 51 

PPM1G 19 WDR5B 52 

BIRC5/// EPR-1 20 CYTH1 53 

VSNL1 21 NM_000266 54 

NM_001255 22 BECN1 55 

EPB41L2 23 KHDRBS1 56 

LOC10192 24 NM_006185 57 



NM_006430 25 ZNF253 58 

PARP4 26 MERTK 59 

RRAS2 27 NM_000168 60 

C1S 28 NM_003256 61 

MZT2A /// MZT2B 

/// PHGDH 29 M95929 62 

HAX1 30 NM_004694 63 

PSMB4 31 PCNXL4 64 

BG035989 32 RELA 65 

NM_004219     33 FGD6 66 

 

The findings showed that the top two genes E2F3 and GINS1 subunits might be new potential 

predictive biomarkers for BC. The clinical significance of E2F3 and GINS subunits in BC 

patients, however, still needs to be demonstrated by additional authentication studies. In 

conclusion, E2F3 and GINS subunits may serve as novel survival biomarkers or therapeutic 

targets for BC patients. It is expected that this research will improve the accuracy of 

prognostication in BC patients. 

 

 

Table 11. Top three Genes after GeS. 

Rank GSE7390 GSE42568 GSE10886 GSE25055 GSE25066 GSE29044 

1 E2F3 CIAO1 FLJ20224 HAX1 NM_001255 EPB41L2 

2 PSMC3IP PPM1G BM545088.1 CLTC-IT1 NM_006430 PARP4 

3 GINS1 BIRC5/// EPR-1 ATP7B SDHA BG035989 C1S 

 

 

 

 

Figure 5. Performance of six datasets depending on Recall parameter 
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Figure 6. Performance of six datasets based on F-score 

 

 

Figure 7. Performance of six datasets depending on Fallout 

 

Table 11. Top three Genes after GeS. 

Rank GSE7390 GSE42568 GSE10886 GSE25055 GSE25066 GSE29044 

1 E2F3 CIAO1 FLJ20224 HAX1 NM_001255 EPB41L2 

2 PSMC3IP PPM1G BM545088.1 CLTC-IT1 NM_006430 PARP4 

3 GINS1 BIRC5/// EPR-1 ATP7B SDHA BG035989 C1S 
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Figure 8. Prognostic Value of mRNA Level of top four genes with RFS with all types of the 

histologic grade in Breast Cancer Patients (Kaplan-Meier Plotter). 

 

 



 

 

Figure 9. Prognostic Value of mRNA Level of top four genes with RFS with the histologic Grade 

1 in Breast Cancer Patients (Kaplan-Meier Plotter). 

 

 

 

 

 

 



 

 

 

Figure 10. Prognostic Value of mRNA Level of top four genes with RFS with all the histologic 

Grade 2 in Breast Cancer Patients (Kaplan-Meier Plotter). 

 

 



 

Figure 11. Prognostic Value of mRNA Level of top four genes with RFS with the histologic 

Grade 3 in Breast Cancer Patients (Kaplan-Meier Plotter). 
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