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Abstract: Epileptic seizures are among the most frequently occurring and unpredictable chronic neurological disorders that disrupt
the lives of affected individuals. Thus, it paved the way for including Machine and Deep Learning models in the present frameworks
for intelligent, self-driven epileptic seizure management. The few commonly deployed methods are Electroencephalogram (EEG),
Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and Electrocardiography (ECG). However, low amplitude and
fluctuations make it difficult for ML algorithms to achieve satisfactory results in ambient, harsh environmental conditions. Moreover,
several proficient models, such as CNN and Random Forest, take excessive computational time in the training phase of the program.
Furthermore, EEG hampers the flexibility of patients by its monitoring procedure confined to one room. Moreover, techniques like Auto
encoding face issues of false negative rates (FNRs). The paper presents a novel and robust framework using wireless sensors, with
increased data points for a competent KNN algorithm. The model demonstrated is compatible with the patient’s daily routine activities
and can predict the frequency of seizures with a 1.61% error rate. Instead of using 5–22 subjects as in prior studies, the algorithm is
applied under 32 patients, which optimizes its performance rate. The practice fostered the durability of the model by preparing it for
various unusual circumstances. This paper also presents a comparative overview of the novel paradigm with the current systems based
on accuracy rate and dataset size. It also sheds light on the limitations of presently deployed architectural configurations and presents a
sustainable solution for the need for a pliable and credible epileptic monitoring regime.
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1. INTRODUCTION
Over the last decade, epilepsy has been the most

compelling domain and is the domain area of interest
of many research aspirants because its cure is not found
yet. Therefore, many researchers are working on predicting
the occurrence of seizures by including dynamic and self-
computational technology, Artificial Intelligence. The effort
is primarily to collect the data more precisely and accurately
for the model’s training to predict future occurrences based
on past and present data. To make the model robust and
efficient for anticipation, the model has to pass a certain
number of trials in the training and testing phase. If passed
tests match with the past and present actual results, then
only the proposed model will be found adequate for pre-
diction.

Numerous researchers have presented strategies for the
identification of epileptic seizures that are diverse. The most
frequently employed detection methods were computed
tomography (CT) and magnetic resonance imaging (MRI).

However, either electrocardiography (ECG)[1], [2] or elec-
troencephalography (EEG) are the foundations of modern
technology. Despite the highly reliable results produced for
seizure [3], [4] identification with EEG [5], this method
requires the patient to wear a complicated headpiece made
of electrodes that capture the entire scalp of a human.
Because of this, the patient experiences discomfort while
going about their typical daily activities. Such a complicated
architectural setup also makes it difficult to monitor patients
continuously from a practical standpoint.

The proposed methodology introduces the concept of
WSN’s [6], [7] and IoT-based [8] operational system that is
highly efficient in terms of reliability, scalability, power con-
sumption, and deployment cost. Furthermore, the wireless-
connected sensor units are lightweight, easy to wear [9],
and miniature-sized. Therefore, as the patient can freely
move from one place to another, unlike in EEG, it makes
the system versatile and flexible in collecting real-time
data without preventing the patient from performing normal
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daily activities. In addition, the collected data has a diverse
range owing to the contemporary readings of activities like
sleeping, brushing, eating, and walking that will be noted
by dynamic sensors.

2. LITERATURE OVERVIEW
The contribution [10] uses the Computed tomography

(CT) technique to detect various stages and types [14]
of epilepsy. The process is phenomenal in detecting
hemorrhage, infarctions, and malformations in infants,
whereas, in adults, it can detect hydrocephalus with
significant structural changes frequently. Nevertheless,
its efficiency is much lower than expected for the
uncategorized dataset. The proposed work by authors
[5] avail Artificial Neural Networks (ANN) Classier for
data prediction, requiring large datasets unnecessarily
consuming the system’s memory.

In addition, the ECG setup [15] used a trained algorithm
based on data gathered from epilepsy patients. The sample
comprised 100 patients, with seizures recorded as 43 out
of 100. The Detection sensitivity registered was 93% (ap-
prox.). Although the system can detect convulsive seizures,
i.e., focal and bilateral Tonic-Clonic [16], [12] outbreaks
and non-convulsive strokes, it is not flexible for the users.
Table I, labeled below, gives a comparative overview of
the proposed prototype with past contributions. Compared
to MRI, CT scanning is more affordable and effective at
finding abnormalities. Their accuracy rates, however, need
to be improved for a reliable system.

Ijaz Ahmad et al. have given a comprehensive overview
[13] of the machine and Deep learning algorithms used
for epileptic seizure detection in EEG and compared them
based on their performance rates and dataset sizes. Even
though the Random Forest and AE prediction algorithms
are competent with a high accuracy rate, they have time
complexity problems during the training phases. Auto
encoding with Principal Component Analysis is another
skillful technique, with a 97% accuracy rate but having
high false negative rates (FNRs).

This research strives to create an independent epilepsy
detection system with wireless technology serving as its
foundation. The principal amount of the MCC unit’s data
receiving and processing is included. As a result, the system
will require less storage and more computing power. The
data is wireless transmitted from the wearable devices to
the remote node, which serves as a router in the deployed
WSN and then delivers the data to the Mobile [17], [18]
Cloud Computing Unit for processing. Since an epileptic
patient cannot be kept in a small space within the room or
clinic itself, this research effort presents a methodology for
continuously monitoring an epileptic patient by including
the idea of mobility using wireless communication systems.

The BAN incorporates portable sensors that gather real-

TABLE I. Literature overview

Configuration Limitations
Year: 2005
Technology: CT Scan
Proposed Work [10]:
CT Scan uses ionization
radiation; producing great
results with good resolution.
Features:
• low cost
• easy to handle capability
• Fast studying of brain [11]
activity.

• Sensitive
• Efficiency <30%
• Poor response
(temporal fossa)
• Not suitable for
Mesial temporal
sclerosis

Year: 2017
Technology: EEG and
ANN Classifier
Proposed Work[5]:
Utilizing EEG signals to
identify epileptic seizures;
it subjects to detect the
presence of seizures based
on received EEG signals.

• Not Flexible
• Tough to wear
• Requires
large datasize

Year: 2019
Technology: ECG
Proposed Work [12]:
Seizure detection relies on
wearable ECG device to
collect variations in heart-
stroke rate of epileptic patients.

• Less mobile
• Requires
ambulatory
monitoring.

Year: 2022
Technology: EEG
Proposed Work:[13]
Seizure detection
based on an EEG setup using
AEaalgorithm−
it extracts feature using PCAa

and is efficient with 97%
accuracy rate.

• High FNRsa

• Less
sensitive

Proposed Artwork: WSNsa

and IoT
Classifier: KNN
Proposed Work:
The bulk of the data reception
and analyzing component is
included in MCC unit. As a
result, demands less space
and high processing
capacity.
a. FNRs-False Negative Rates, AE-Auto-Encoding, PCA-Principal
Component Analysis, WSNs-Wireless Sensor Networks
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Figure 1. Performance Evaluation of System

Figure 2. Working Mechanism of the Project

time data about the subject being surveyed. In reality, the
sensors pile information from physical characteristics and
wireless transmit it to the central hub.

Consequently, the constructed device is more adaptive
to the patient’s resting and loco-motor activities. Addi-
tionally, Wagyromag (wireless 2D tri-axial magnetometer,
accelerometer, and sensor) [19], [11], Pulse and acoustic
detector sensors are positioned all over a patient’s body.
The KNN classifier handles the data analytics and numerical
computations part. However, Artificial Neural Networks
(ANNs) is a rudimentary and inaccurate technique than

KNN classification.

3. PROPOSED WORK
The primary objective of this project is to generate

notifications based on the prediction of how frequently
seizures[20] can occur while at the same time not compro-
mising the accuracy of the system. Therefore, to make the
system more accurate and efficient, there is a need for more
data collected under wide variations of body gestures, daily
activities, and environmental fluctuations. To conquer the
latter objective, the artwork includes advanced, lightweight
sensors[21], [22], [23] that provide mobility and flexibility
to the user (in our case, it is the patient).
The proposed work provides the following features:
• Efficiency: The proposed system performs computations
and generates predictions based on the calculations per-
formed.
• Flexibility: The system comprises lightweight, wireless
connected sensors, which allow the patient to follow their
daily routines without any hindrance.
• Less Power Consumption: As the combined Local MCC
unit and Cloud unit are replaced with the single MCC unit,
power consumption is reduced for the entire system.
• Reduced Hardware: The proposed system is less bulky
as the proposed approach is implemented using WSNs and
IoT.

4. MATERIALS AND METHODOLOGY
The different sections of the setup perform distinct

functions:
• Use of MCC unit for processing data
• The use of WSN is for the communication of sensors.
• Real-time data gathering while at the same time not
compromising the mobility of the patient[24].
• Use the domain area of IoT to generate notifications and
alarms based on the predicted values and send them to
the MCC unit to make the concerned staff take necessary
actions.

A. Stages of Study
1) Formation of Wireless Sensor Network(BAN):
On the epileptic patient’s right arm and left leg, two bi-
axial (2D) accelerometers are positioned. The chosen ACM
sampling frequency is 3 Hz.

2) Data Collection and Sharing with MCC Unit:
The patient’s kit establishes a BAN (body area network) that
sends the sensor unit’s instant data to a close-by ground
station. The root server, BAN, and this network area all
constitute the PAN (i.e., Personal Area Networks). The
MCC unit, the user’s smartphone, receives data from the
BAN through the Base station, which acts as a transmitter
and receiver node. The MCC unit processes the data, gets
the patient’s existing status, and then creates the appropriate
emergency beacon messages. The MCC Unit’s interface
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with the BAN forms the Central hub.

3) Data Processing in MCC Unit:
After the MCC unit has successfully received the unpro-
cessed data, processing of the data is required.
There are three main steps in data processing:

a) Data Refining: Cleaning the data is essential
to eliminate all extraneous disruptions from the
original data to produce accurate projections
and real-time computations. These disruptions
include ambient noise signals, signs of inertial
forces captured by the ACM, and sporadically
patient body movement indicative of a fast stroke
rate. One of the solutions proposed in the paper
is the use of typical filters to remove these
interruptions.

b) Data Acquisition: Feature extraction is one of
the most crucial steps in the data processing
technique. Based on the cognitive methodology
the user chooses and the training parameters,
attributes may be extracted by the processing
device itself.

c) Classification: KNN is the algorithm utilized in
this project. Compared to ANN, this method is
more computationally efficient.

4) Implementing Architecture (Hardware Setup):
Placing a system into use practically and deploying archi-
tecture involves several crucial factors, including battery
backup, energy efficiency, network topology, Internet ac-
cess, and sensor testing.

5) Synthesis of notifications based on information pro-
cessing:

Patients’ inertial sensors connect to MCC through the base
stations to exchange data. Nevertheless, fixed at specific
locations, static nodes are the only ones that make data
reception by base stations conceivable. Following data
processing, which also involves KNN-based computations,
acquired data samples are further compared to threshold
values, and the resulting information is subsequently shared
with the nearby rigid node. Each stationary node should
be linked to the wearable of a single patient so that MCC
can only communicate the processed data with that specific
fixed node. Therefore, there are no concerns with patient
identification. The medical personnel and doctors receive
alert notifications for that patient whose brief seizure[25]
attack was anticipated.

B. Features Description
The feature description of time-domain and frequency-

domain systems is presented in Figure 1.

C. Flow Chart of Proposed Mechanism
There are four basic steps in the working of the proposed

system which are neatly illustrated in Figure 2.

TABLE II. Publicly available databases

Database Subjects
Kaggle 5 dogs and 2 patients

CHB-MIT 22
BONN 10
Zenodo 79 neonatal

Bern 5
Freiburg 21

TABLE III. Experimental findings

Patient No. Age/Gender Seizure Freq. Predicted
1 18.5/M 7 7
2 23/F 3 2
3 16/M 4 4
4 21/M 6 6
5 35/M 3 3
6 29/F 3 2
7 25/M 5 5
8 32/F 4 4
9 12/F 3 3

10 16.5/M 4 4
11 24/M 40 40
12 22/F 11 11
13 25.5/F 8 8
14 28/M 10 10
15 31/M 18 18
16 39/M 6 6
17 45/F 3 2
18 35.5/M 8 8
19 33.5/F 16 16
20 20/F 4 4
21 29.5/M 3 3
22 41/M 9 9
23 43/M 5 5
24 51/M 11 11
25 26.5/F 8 8
26 20.5/M 6 6
27 21/F 15 15
28 19/F 9 9
29 32.5/F 3 3
30 24.5/M 7 6
31 27/M 4 4
32 22.5/M 2 2

Average 248 244

D. Hardware Description
Sensor node module for MICAz Motes wireless[26],

[27] connection nodes. A wearable device called the
MTS310 Sensor Board will make up a sensor network.

5. RESULTS
The classifier is trained to predict seizures with a 1.61%

false error rate for 32 epileptic patients. It extracts the
features in the time-frequency domain. Table II, labeled
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TABLE IV. A Comparative Overview

Method Technique Features Size Performance Metrics
Timeb Low-Price Flexible Accuracy(%)

ECG[15] 100 X 43
CT[28] Ultra and Slice Scanner 74 X 73

MRI[28] 1.5T using head coil 89 X 74
EEG[13] CNNa 5 High 95.90
EEG[13] CNN(2D) Time-Domain 10 High 87.50
EEG[13] CNN(2D) Fast Fourier, WPDa 22 High 95.53
EEG[13] RNNa Independent 22 High 88.80
EEG[13] RNN Wavelet Transform 10 High 91.82
EEG[13] RNN Time-Frequency 21 High 93.75
EEG[13] RNN Independent 5 High 96
EEG[13] AE Time-Frequency X 86.50
EEG[13] AE PCAa 79 X 97
EEG[13] ANN, SVM, RFa DWTa 22 High X X 100
EEG[13] RF 9 statistical features Less 96.67
Artwork KNN Time-Frequency 32 Less Yes Yes 98.39

a. CNN-Convolution Neural Networks, RNN-Recurrent Neural Networks, WPD-Wavelet Packet Decomposition, PCA-Principal Component Analysis,
DWT-Discrete Wavelet Transform, RF-Random Forest
b. Time- It measures the time complexity of system in seconds to compute and run through the algorithm.

Figure 3. Study Findings

below, highlights the open-access databases for epileptic
patients of different age groups. The system’s accuracy is
calculated by dividing the number of correct predictions
by the number of occurrences. The experimental results
received from 32 patients with epilepsy are shown in Table
III.

Table IV below examines and validates current tech-
niques while taking into account; dataset size, time com-
plexity, flexibility, and accuracy-like measures. Further-
more, it compares them to the suggested conceptual frame-
work. Random Forest is far better than the decision tree
mechanism, as it not generates the ‘overfitting’ problem.
Additionally, Decision Forest has a flexible approach for
constructing protocols based on a multi-faceted nodal ap-
proach. Moreover, DWT-based Artificial Neural Networks,

Figure 4. Distinction between Various Classifiers on the basis of
their Accuracy Rates

SVM, and a hybrid of both techniques proved stupendous
accuracy results by taking multiple feature selections such
as power densities, skewness, sharpness of curve, and
training under the CHB-MIT dataset. The dataset is an
open-access database on PhysioNet. It consists of 5 males
and 17 females of salient divergence in age groups for the
training phase of machine [13].

Figure 3 illustrates a graphical overview of the study
findings. It accounts the number of seizures predicted out of
the number of occurred seizures of 32 patients, whereas Fig-
ure 4 compares the different models for seizure prediction
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based on their registered accuracy in Table IV. The Decision
Forest marks 96.67% accuracy for the 9 statistical features
including Deviation, Sharpness, Skewness coefficient, En-
ergy, length of line, Mode, Hurst, Entropy, and Expectation.
Thus, the feature selective method which considers the
incorporation of 9 optimistic features reduces the model
complexity and addresses high accuracy. In contrast, the
RNN approach is comparatively faster than CNN but fails in
providing accurate predictions. On the other hand, KNN has
recorded slightly low accuracy because of its low precision
and recall records. However, it has the capacity to maneuver
tricky, tumultuous, multi-dimensional databases. It is an
instance-based learning model that has low time complexity
than ANN.

6. Conclusions and FutureWork
The study methodology for developing a realistic and

practically workable seizure detection system employing
cutting-edge prediction algorithms like KNN is included in
this paper. Successful WSN deployment allows for wire-
less monitoring of epileptic patients. IoT feature enables
wireless access, data transfer, receiving, and manipulation.
The hospital staff is then informed via notifications that
are produced. Experimental findings demonstrate that the
technique is highly efficient, with a 98.39% accuracy rate.
Additionally, the KNN classification method is much more
effective than other deployed methods using different ML
algorithms. With the KNN Classifier, the model does not
need to be trained repeatedly for each new epileptic patient.
As a result, it is versatile for new information sets and
always finds a way for the issue of previously collected
records. As a result, the proposed model is scalable and
faster as fewer computations are required, highly precise,
and power-economical.

The research study effectively implements a system that
can detect seizures. However, for the medical personnel
to arrive at the specified place at the time of need, there
is a need for a system that guards against severe damage
and injuries to patients, such as deadly unconsciousness,
undesired movements, and unstable mental conditions. A
method is needed that, after seizure detection (i.e., using
the suggested system in this research), may work to avoid
imminent seizure attacks to prevent all these symptoms of
epileptic patients from ever occurring. This can be achieved
by making the patient feel happier and more hushed or
cooling them off. Electrical disruptions and signal dissi-
pation in the brain cause seizures. Nerve cells and maybe
the scalp area experience additional heating because of this
issue. By using the Focal Cooling framework [29], it may
be possible to put the epileptic patient at ease and halt the
seizure episode. More biological parameters, such as heart
rate, oxygenation, and gaseous metabolism, among many
others, can be considered to improve the system’s accuracy
and efficiency. Furthermore, for a comprehensive validation
of deployed seizure-detection mechanisms, a large, publicly
available dataset is required, which is yet to be available at
present. This practice will train models for more accurate

future projections.
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