
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 14, No.1 (Aug-2023)

http://dx.doi.org/10.12785/ijcds/140141

Deep Learning-Based Real-Time Weapon Detection System
Amjed Al-Mousa1, Omar Z. Alzaibaq1 and Yazan K. Abu Hashyeh2

1Computer Engineering Department, PSUT, Amman, Jordan
2Electrical Engineering Department, PSUT, Amman, Jordan

Received 4 Feb. 2023, Revised 18 Mar. 2023, Accepted 06 May. 2023, Published 01 Aug. 2023

Abstract: In recent years, the rate of gun violence has risen at a rapid pace. Most current security systems rely on human personnel
to monitor lobbies and halls constantly. With the advancement of machine learning and, specifically, deep learning techniques, future
closed-circuit TV (CCTV) and security systems should be able to detect threats and act upon this detection when needed.
This paper presents a security system architecture that uses deep learning and image-processing techniques for real-time weapon
detection. The system relies on processing a video feed to detect people carrying different types of weapons by periodically capturing
images from the video feed. These images are fed to a convolutional neural network (CNN). The CNN then decides if the image
contains a threat or not. If it is a threat, it would alert the security guards on a mobile application and send them an image of the
situation. The system was tested and achieved a testing accuracy of 92.5%. Also, it was able to complete the detection in as fast as 1.6
seconds.

Keywords: CNN, Security Cameras, Weapon Detection, CCTV, Deep Learning

1. Introduction
The threat of mass shootings and robberies has been

rampant in recent years. Moreover, the gun violence crime
rates are very high, especially in countries where carrying
firearms is legal. In the US, the total number of gun
violence-related deaths in 2022 from January until the
15th of September is 31,499 [1]. This is in addition to
28,194 injuries, a massive number that cannot be ignored.
Therefore, advanced modern security systems are essential
to limit this problem.
One of the most widely used security systems is CCTV
cameras. CCTV is a type of situational crime prevention
(SCP) strategy in which levels of formal surveillance
are increased within a target area. SCP is focused on
preventing crime by reducing the number of criminal
opportunities [2], [3]. These systems rely on a surveillance
operator monitoring multiple screens simultaneously, and
while waiting for those unlikely-to-happen threats, they
become less focused, and detecting threats becomes harder
[4]. Therefore, these systems are not very efficient and are
economically challenging because of the running costs of
the surveillance operators.

Artificial intelligence (AI) and machine learning (ML)
techniques have been used successfully to solve many medi-
cal, technological, educational, and financial challenges [5],
[6], [7], [8], [9]. Deep neural networks (DNNs) have also
gained even more traction in image-based problems [10],

[11]. They can also be used to make surveillance systems
able to detect weaponized personnel and alert the proper
authorities immediately [12].

The proposed architecture will impact the security
surveillance field in various aspects as it integrates tradi-
tional technology with the thriving areas of AI, ML, and
the internet of things (IoT), [13], [14]. The most critical
expected impacts can be listed as follows:

• Attacks are prevented before happening

• Less successful robberies

• Fewer casualties in incidents involving weapons and
shooting

• Security and surveillance running costs are reduced

This work’s core contribution is showing the ability
of DNNs in detecting weapons by developing a DNN
architecture and training it by creating a massive dataset
of images of people. Some people would be entering a
lobby without any weapons Negative, while others enter the
lobby carrying weapons; these will be tagged as Positive.
These tagged images are then used to train a DNN that
is capable of classifying any image as a threat (Positive)
or not (Negative). Once the data is collected and the DNN
is trained, the system can be deployed in production. The
proposed deployment can use existing indoor cameras to

E-mail address: a.almousa@psut.edu.jo, omar.alzaibaq@gmail.com, yazankheiri@gmail.com https:// journal.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/140141
https://journal.uob.edu.bh


532 Al-Mousa, et al.: Deep Learning-Based Real-Time Weapon Detection System.

monitor people entering a building lobby. The camera(s)
should be installed facing the entrance area providing
real-time images. Once the system detects the threat, it
automatically notifies the security guards in the building on
their mobile phones. The security guards receive an image
of what is happening in that building area and respond
accordingly. It is worth noting that this work does not extend
to concealed weapons [15], nor the detection of suspects
based on worrying expressions or unnatural behavior [16].
It is also not concerned with predicting crimes or robberies
before they happen [17].

To summarize the objectives of the paper are as follows:

• Establish the ability of CNNs in detecting handheld
weapons using CCTV feeds.

• Identify the proper image pre-processing steps needed
to facilitate the detection process.

• Achieve reasonable performance metrics using the
proposed architecture.

The rest of the paper is organized as follows: Section
2 provides an overview of the literature and related work.
Section 3 details the method used to solve the threat detec-
tion problem, including the details of the DNN model used.
The results of the system testing are discussed in section
4. Section 5 presents the proposed system’s limitations
and practical considerations. Finally, section 6 presents the
work’s conclusion and future research directions.

2. RelatedWork and Literature Review
This section summarizes a few papers that used

different approaches in automatic weapon detection using
deep learning and image processing.
The first approach uses background reduction to remove
static objects by using a reference image of the place,
then compares it to a present image of the same place to
eliminate similarities [18]. By using Canny edge detection,
the obtained image will be a silhouette. After that, the
model uses a sliding window, MPEG-7 feature extraction,
and support vector machine (SVM) to decide whether to
send an alert. The sliding window size is determined by
trial and error after installing the system, which means the
system needs to be adjusted with different sliding window
sizes depending on installation.
The second approach uses deep learning for automatic
handgun detection [19]. It compares the sliding window
results and Regional Convolutional Neural Networks (R-
CNN). After using The Histogram of Oriented Gradients
(HOG) descriptor for feature extraction and then using
a sliding window, the processing speed for detecting
pedestrians is 14 s/image which is not very practical
for real-time applications. This is in addition to the
large computational power needed for the sizeable neural
network. The real challenge is to create a method that
dynamically optimizes all of the CNN’s parameters
simultaneously [20].

The third approach by Verma and Dhillon uses Fast R-CNN,
and deep learning [21]. A VGG-16-based classification
model (16 convolutional layers) is used, which focuses on
prediction loss minimization. Its methods are the same as
the previous approaches, but with a minor difference of
having a fixed input size of 224p x 224p RGB images.
The fourth approach [22] uses the same basics mentioned
above (sliding window, HOG feature extraction, SIFT,
and Harris key point detection) with unipolar sigmoid
and bipolar sigmoid as activation functions. The idea
is to detect the humans first and then check whether
there is a weapon in the picture. Notice that detecting
humans using background reduction is faster than HOG,
which is essential in real-time applications. However, for
background reduction to be efficient, the camera must
be installed indoors because the background subtraction
method is not flexible and can be affected by slight changes
in light intensity or object occlusions.
The fifth approach by Lai and Maples tried various
pre-trained models such as VGG-16 mentioned earlier,
Overfeat1, Overfeat2, and Overfeat3 [23]. The problem the
paper is trying to address is mainly detecting in real-time,
and despite the significant accuracy in GoogleNet Overfeat,
it needed 14s per image, which is impractical. This paper’s
final results of reasonably high accuracy and a satisfactory
classification time of 1.3 seconds are achieved using
Overfeat-3 with tuned hyper-parameters.
The sixth approach proposes a detection model
(ResNet50V2) trained on the Open Images V6 dataset
to detect the visual relationships of “holds” and “wears”
between people and objects [24].
The seventh approach utilizes the transfer learning concept
to train the VGGNet architecture based on VGGNet-16
weights [25]. While it achieved high accuracy, the dataset
used is for stand-alone weapons. Another approach based
on the VGGNet architecture classified seven classes of
weapons and achieved an accuracy of 98.4 which was
higher than other basic models like VGG16 and Resnet.
The training was done on a small dataset from the internet
containing just over five thousand images. However, the
images trained only contained the weapon with no other
object. In addition, there was no mention of the time
required to process each image [26].
In[27], the main focus point was cold steel weapons.
It tackled the challenge formed by the light reflection
on this type of weapon by utilizing different regional
proposal search algorithms. And using Dacolt darkening
and contrast to handle different brightness and lighting
conditions.

Based on the summary of the previous work, it is clear
that there is a gap in finding a method that is:

• Able to detect weapons in near real-time.

• Computationally light.

• Tested on more than one type of weapon.

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1 531-540 (Aug-2023) 533

Figure 1. High-level block diagram of the proposed system

• Tested in a real environment with noisy image back-
ground.

• Auto-configured and does not need lots of calibration.

3. Methodology
Figure 1 shows a high-level block diagram of how the

system is expected to operate. The Raspberry Pi Camera
captures the real-time video feed and feeds it to the process-
ing unit. The processing unit performs the image processing
steps required and then feeds the processed images to the
pre-trained DNN. The DNN was trained using a large
number of images that were collected and properly labeled
previously. The trained DNN acts as a classifier for the
incoming image, whether it contains a weapon. If the DNN
is classified as Positive, i.e., contains a weapon, the system
alerts the security guards on their smartphones and sends
them an image of the current situation. Otherwise, the image
is dropped, and the system proceeds to process a new frame.
The details of the system components are elaborated on in
the following sections.

A. Experimental Setup & Dataset Collection
Data is the most critical part of building any deep-

learning solution. Such image-based applications require
a large amount of data (images). Data is collected in
the Innovation Lab at Princess Sumaya University for
Technology (PSUT). Raspberry Pi B+ (An ARM Cortex-
A53 1.4 GHz processor with WiFi capability and 1GB of
SRAM) is used with a connected camera set on a table 1.8
meters high. The camera faces the lab entrance, which is
roughly 4.5 meters away. The Raspberry Pi is connected
to a display to monitor the process. A live log of the
time required to process and classify each image and the
classification results are displayed.

The chosen area to collect the data is very active,
with many students entering and exiting during the day,
which helps collect data for training and testing the model.
Students’ pictures were taken with their permission. In ad-
dition, students were given three types of handgun replicas
to mimic an attack. Students were given little restriction

TABLE I. Dataset classes distribution

Tag Count Percentage
Positive 10k 36%
Negative 18k 64%

on how to hold the gun replicas. Some students pointed
them out, some held them on their side, while others
concealed or semi-concealed the guns. The images are
captured with a resolution of 1920p x 1080, a resolution
that can be scaled down if it turns out that a lower resolution
might be more suitable. The total size of the dataset is
around 14k. However, data augmentation techniques, such
as scaling, rotation, and reflection, are used to get more
images. If an image and a horizontally reflected replica of
that image enter a neural network, it will process them as
two completely different examples. Thus, from the captured
images, twice the original dataset size is achieved, around
28k as in Table I. Note that the target here is to detect
whether there is a gun or not, not detect the gun replica
type.

A core problem in such datasets is that the target, in
most cases, represents a small object in the image, making
it harder to classify an image as a negative because any
shape close to the shape or the color intensity of guns
might be classified as a positive. Figure 2 shows positive
class examples on the top and negative class examples on
the bottom.

B. Image Processing
For the DNN to focus its learning on the important

aspects of the image and not on static objects in the
lobby. An empty reference image is captured as background
and continuously subtracted from new images being taken.
Thus, static objects like furniture will be removed from
the image. Initially, images were loaded with the resolution
(1920p x 1080p), which was slow to process. Therefore, the
images are resized to (960p x 540p). Figure 3 summarizes
the pre-processing steps applied to each input image.

The first stage is image smoothing. Gaussian Blur
removes the salt and pepper noise. Figure 4 shows a
comparison between the image without smoothing and
with smoothing using both median and Gaussian blur.
Gaussian blur is chosen. If one chooses not to blur
the images as in Figure 4a, some unwanted edges of
the door and other components remain. Using Gaussian
blur is shown in Figure 4c, where all unwanted edges
are filtered out. Meanwhile, the median blur is shown
in Figure 4d. Here some noise is filtered out, but the
edges of the door remain because median blur keeps the
edges. After the mask is generated, the reference image is
subtracted, and a binary threshold is applied. Furthermore,
morphological transformations are needed to filter noise
after the threshold. The opening is used, which performs
erosion, then dilation. Iterating this procedure several

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


534 Al-Mousa, et al.: Deep Learning-Based Real-Time Weapon Detection System.

Figure 2. Samples from the dataset

Figure 3. Flowchart presents a summary of image pre-processing steps

times removed most of the image’s noise. The kernel size
selected is (5, 5), and the number of iterations is two.
Figure 5 shows the results of using too many iterations
on a small image. Figure 5a shows the output after two
iterations, while Figure 5b shows the output after six
iterations. Figure 5b shows less noise; however, the critical
information, which is the firearm held by the person, is
cropped because of the excessive number of iterations.
Processing images in grayscale instead of colored images

increases the speed, so the image is converted to grayscale,
and another binary threshold is applied. The most effective
way to apply the mask is using bitwise logical operations.
Bitwise XOR is used, which would result in inverting
the foreground. Then a bitwise AND is used to apply the

mask to the original image. Figure 6 shows the final output
after performing image processing steps. Figure 6a has too
many features, which might confuse the model, increase
the time needed for model training, and negatively affect
the accuracy. In contrast, Figure 6b with the background
eliminated and the human with or without the weapon is
visible, the desired features appear to be more evident than
those in Figure 6a, and the system’s accuracy would be
higher.

C. The CNN Architecture
The input layer is the input interface of the neural net-

work where input images are loaded. Because of the GPU
memory limit and relatively small dataset size, a resolution

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1 531-540 (Aug-2023) 535

Figure 4. Applying blur. (a) Original image. (b) Subtracted without blurring. (c) Gaussian blur. (d) Median blur

Figure 5. Applying opening. (a) using two iterations. (b) using six iterations

(a) The input image

(b) Background subtracted image

Figure 6. Background subtraction

of 640p x 360p (aspect ratio of 16:9) is chosen. Grayscale
images are used for training rather than colored images, as
the image colors do not add much useful information and
are simpler to process. Accordingly, the dimensions of the
input layer are (360, 640, 1).
After referring to [28] and experimenting with setting the
number of the hidden layers, three convolution hidden
layers are chosen with the ReLU activation function. The
number of input variables is the number of pixels, which
is 230,400. Based on [28], and [29], the number of feature
maps in the hidden layers is 64, 128, and 256 feature maps,
respectively. Flattening is applied to the third hidden layer
so a fully connected layer can be added afterward with a
width of 2048 and a ReLU activation function.
After each of the three hidden layers, a pooling layer is
applied to the previous layer’s output. The pooling function
used is max-pooling as weapons appear as the brightest
objects in the pre-processed images as they are black in the
original images, and bright pixels carry higher pixel values
than dark pixels in the grayscale format, so when max-
pooling is applied, bright objects will be highlighted, and
dark objects will vanish as in Figure 7. Average pooling
does not highlight the desired features, but it is still better
than min-pooling, where white objects fade away. The size
of the max-pooling window applied after each hidden layer
is 3x3.

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


536 Al-Mousa, et al.: Deep Learning-Based Real-Time Weapon Detection System.

Figure 7. A comparison between different pooling functions [30]

TABLE II. Detailed CNN architecture

Layer # Layer (Type) Output Shape Params #
1 InputLayer 640 x 360 x 1 0
2 Conv2D 638 x 358 x 64 640
3 MaxPooling2D 212 x 119 x 64 0
4 Conv2D 210 x 117 x 128 73856
5 MaxPooling2D 70 x 39 x 128 0
6 Conv2D 68 x 37 x 256 295168
7 MaxPooling2D 22 x 12 x 256 0
8 Flatten 67584 0
9 Dense 2048 138414080
10 Dense 1 2049

Finally, the output layer contains only one neuron
because the problem here is a binary classification problem
with two possible outputs that can be carried on a single
neuron. The model structure is tabulated in Table II. The
optimization algorithm for minimizing the cost function
is mini-batch gradient descent; it avoids the overshooting
resulting from the high variance in the stochastic gradient
descent and guarantees convergence to the global minimum,
achieved in batch gradient descent[31]. The cost function
used is binary cross-entropy, and the learning rate has
been manually tweaked, starting from a typical value of
around 0.01 for multi-layer networks [32], concluding that
the optimal learning performance has been observed at a
learning rate of 0.1.

A high-end virtual machine (VM) instance is customized
on Google cloud platform (GCP) to perform the training of

the DNN. The summary of its specifications is as follows:

• 2 vCPUs with a memory of 13GB.

• NVIDIA Tesla K80 with a memory of 12GB.

D. Alert Notification System
The Raspberry Pi and the mobile application are con-

nected using Wi-Fi technology in a local network. If the
system detects a threat, a push notification is sent to the
mobile if the application is not open to alert the user.
The application and the server are connected to Firebase.
Firebase acts like the middleman between the client and the
server, making it easier for the server to handle multiple
clients simultaneously. The notification and image are sent
to all the connected devices simultaneously. When the client
connects to the server, the server loads the resized captured
image, converts it into a byte array, and sends it. A smaller
version of the image is used here to send the image faster.

4. Results and Discussion
The results shown below will cover three architectures.

The first is the baseline architecture. While the second in-
vestigates the use of drop-outs. Finally, the third architecture
uses an additional layer to max-pool the inputs.

A. Baseline Architecture
The first experiment uses the dataset without pre-

processing, where the collected data is used directly to
train the model. Here the training and testing accuracy is
between 57.8% - 62.5%, which is not adequate for the
application to be successful. Thus, this approach is dropped,
and pre-processing steps are applied to eliminate unneeded
information and increase the training and testing accuracy.
The dataset is shuffled and split into 90% for training
and 10% for validation. Before splitting, 400 examples are
randomly removed from the dataset and stored in a separate
folder for testing purposes. Although testing on such a
small test dataset might not provide precise results, it is
chosen to be small to leave as much data for training as
possible. Batches of 32 labeled images are used to train
the CNN. After training the CNN designed earlier for ten
epochs, results are plotted as shown in Figure 8 showing
the evolution of the training accuracy, and the validation
accuracy as the number of epochs (iterations) increases. The
training accuracy seems to increase much faster than the
testing accuracy; however, the model appears to continue
learning, and the accuracy is improving.

After the tenth epoch, the model is tested on the testing
dataset (400 samples, 200 per class). The testing results are
shown in Table III. Accuracy, recall, precision, and f1-score
are calculated using Equations 1-4:

Accuracy =
True Positive + True Negative

Test Dataset S ize
(1)

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1 531-540 (Aug-2023) 537

Figure 8. Training accuracy and validation accuracy for baseline
architecture

TABLE III. Performance metrics for baseline architecture

Metric Value
Validation Accuracy 92.4%
True Negative 187 out of 200
True Positive 183 out of 200
Accuracy 92.5%
Precision 93.4%
Recall 91.5%
F1-score 92.4%
Pre-Processing Time 0.3 s
Classification Time 2.0 s

Precision =
True Positives

True Positives + False Positives
(2)

Recall =
True Positives

True Positives + False Negatives
(3)

F1 − S core =
2 ∗ Precision ∗ Recall

Precision + Recall
(4)

Lower-resolution images (640p x 360p) drastically
decreased the time required to pre-process and classify
each image compared to the full-size images. The time
decreased from 9.5 seconds to 2.3 seconds, divided as
follows: the average pre-processing time is 0.3 seconds,
and the average classification time is 2 seconds. This also
decreased the time required to send the image, as the time
required to encode, transmit, and decode the image was
also drastically reduced.

B. Dropout Architecture
To reduce the gap between the training and validation

accuracy, ‘dropout’ is added after each of the hidden layers.
What dropout does is that it ‘drops out’ random neurons
at a specific rate as a regularization technique to reduce
overfitting. As a result, more training epochs are required
to reach the same training accuracy because some neurons
are dropped during training, but each epoch will take a
shorter time. The difference between the validation and
the training accuracy has decreased during the first few
epochs, as shown in Figure 9. However, results have not
improved, as the validation accuracy has not exceeded
91.9%. One might notice that stopping learning at the fifth
epoch might be better than continuing until the twelfth
epoch, as more overfitting occurred while not significantly
increasing the validation accuracy. This technique is one of
the regularization techniques used in machine learning, and
it is called ‘early stopping’.

Figure 9. Training accuracy and validation accuracy for dropout
architecture

C. Max-pooling Inputs Architecture
A max-pooling function of 2x2 window size is applied

after the input layer and before the hidden layers to high-
light the desired features as a pre-processing step before
training. This enabled the increase of the batch size to 64
and has shown significantly faster learning and validation
performance. The increase in the batch size can be justified
by the resolution reduction (the image entering the CNN
now has a quarter of the number of pixels in the original
image), which significantly reduced the trainable parameters
from 139 million to 76 million. It has also given similar
validation and testing results: validation accuracy of 91.8%
and test accuracy of 92.5%, as shown in Table IV. Although
this model has a slightly lower validation accuracy, it is
highly preferred over the last two architectures because of
its faster classification response. The average classification
time is now 1.3 seconds, down from 2.0 seconds in the base-
line architecture. These times were measured by embedding

https:// journal.uob.edu.bh

https://journal.uob.edu.bh


538 Al-Mousa, et al.: Deep Learning-Based Real-Time Weapon Detection System.

TABLE IV. Performance metrics for max-pooling inputs architecture

Metric Value
Validation Accuracy 91.8%
True Negative 185 out of 200
True Positive 185 out of 200
Accuracy 92.5%
Precision 92.5%
Recall 92.5%
F1-score 92.5%
Pre-Processing Time 0.3 s
Classification Time 1.3 s

timestamps within the code, thus accurately measuring the
time from capturing the image till the classification is
decided.

5. Limitations & Practical Considerations
While a fully functional demonstration has been pre-

sented in section 4, there are several factors to be considered
if such a system is to be deployed in a real environment:

• Lighting: The system should be trained and tested
to assess the impact of lighting on how resilient the
CNN architecture is to lighting changes.

• Weapon Type: The current dataset was created using
three types of handguns. The dataset can be expanded
to include other types of weapons, like knives, rifles,
and semi-automatic guns.

• Camera Positioning: The results presented are based
on a fixed position selected to allow a frontal view
of subjects. Further experiments with other positions
should be considered to analyze the impact of the
position on the system’s accuracy.

• Image Quality & Specifications: While the system
had to down-sample the images from the camera
feed, images with different resolutions, aspect ratios,
and those taken with non-standard lenses should be
analyzed.

6. Conclusion & FutureWork
The main goal of this research was to develop an effec-

tive architecture that can detect different types of weapons in
building entrances and alert security guards of any incidents.
This was achieved by tapping into an image feed and
processing captured images through a pipeline of image
pre-processing steps that reduce noise, reduce size, and
highlight the valuable information in the image. Processed
images are later fed to a CNN. The CNN was trained
using more than 28K labeled images. The baseline system
achieved a 92.5% accuracy, 93.4% precision, 91.5% recall,
and 92.4% f1-score. All of these numbers have changed to
92.5% with the max-pooling architecture. Also, it processed
and classified an image within 1.6 s. Thus, eliminating the
need for continuous human monitoring and eliminating the
chances of human errors.

The current system was trained and tested on a reason-
ably practical setup. However, future work can be expanded
to analyze the limitations presented in section 5. In addition,
other new deep architectures, like fully convolutional neu-
ral networks, should also be evaluated. Such architectures
might enhance the detection accuracy while reducing the
required computations.

References
[1] GunViolenceArchive, “Gun violence archive.org,” 2022. [Online].

Available: https://www.gunviolencearchive.org

[2] E. L. Piza, B. C. Welsh, D. P. Farrington, and A. L. Thomas, “Cctv
surveillance for crime prevention, a 40-year systematic review with
meta-analysis,” Criminology & Public Policy, vol. 18, no. 1, pp.
135–159, 2019.

[3] K. L. Ritchie, D. White, R. S. S. Kramer, E. Noyes, R. Jenkins,
and A. M. Burton, “Enhancing cctv: Averages improve face identi-
fication from poor-quality images,” Applied Cognitive Psychology,
vol. 32, no. 6, pp. 671–680, 2018.

[4] R. Nunes-Vaz and S. Lord, “Designing physical security for com-
plex infrastructures,” International Journal of Critical Infrastructure
Protection, vol. 7, no. 3, pp. 178–192, 2014.

[5] H. Al-Zubaidi, M. Dweik, and A. Al-Mousa, “Stroke prediction us-
ing machine learning classification methods,” in 2022 International
Arab Conference on Information Technology (ACIT), 2022, pp. 1–8.

[6] M. Atari and A. Al-Mousa, “A machine-learning based approach
for detecting phishing urls,” in 2022 International Conference on
Intelligent Data Science Technologies and Applications (IDSTA),
2022, pp. 82–88.

[7] Z. Bitar and A. Al-Mousa, “Prediction of graduate admission using
multiple supervised machine learning models,” in 2020 Southeast-
Con, 2020, pp. 1–6.

[8] S. Khalifeh and A. A. Al-Mousa, “A book recommender system
using collaborative filtering method,” in International Conference
on Data Science, E-Learning and Information Systems 2021, ser.
DATA’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 131–135.

[9] A. Atwah and A. Al-Mousa, “Car accident severity classifica-
tion using machine learning,” in 2021 International Conference
on Innovation and Intelligence for Informatics, Computing, and
Technologies (3ICT), 2021, pp. 186–192.

[10] A. J. Moshayedi, A. S. Roy, A. Kolahdooz, and Y. Shuxin, “Deep
learning application pros and cons over algorithm,” EAI Endorsed
Transactions on AI and Robotics, vol. 1, no. 1, p. e7, Feb.
2022. [Online]. Available: https://publications.eai.eu/index.php/airo/
article/view/19

[11] A. J. Moshayedi, A. S. Khan, S. Yang, and S. M. Zanjani, “Personal
image classifier based handy pipe defect recognizer (hpd): Design
and test,” in 2022 7th International Conference on Intelligent
Computing and Signal Processing (ICSP), 2022, pp. 1721–1728.

[12] A. J. Moshayedi, A. S. Roy, A. Taravet, L. Liao, J. Wu, and
M. Gheisari, “A secure traffic police remote sensing approach via
a deep learning-based low-altitude vehicle speed detector through
uavs in smart cites: Algorithm, implementation and evaluation,”

https:// journal.uob.edu.bh

https://www.gunviolencearchive.org
https://publications.eai.eu/index.php/airo/article/view/19
https://publications.eai.eu/index.php/airo/article/view/19
https://journal.uob.edu.bh


Int. J. Com. Dig. Sys. 14, No.1 531-540 (Aug-2023) 539

Future Transportation, vol. 3, no. 1, pp. 189–209, 2023. [Online].
Available: https://www.mdpi.com/2673-7590/3/1/12

[13] Z. Ullah, F. Al-Turjman, L. Mostarda, and R. Gagliardi,
“Applications of artificial intelligence and machine learning in
smart cities,” Computer Communications, vol. 154, pp. 313–323,
2020. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0140366419320821

[14] Z. Sabeur, C. M. Angelopoulos, L. Collick, N. Chechina,
D. Cetinkaya, and A. Bruno, “Advanced cyber and physical situation
awareness in urban smart spaces,” in Advances in Neuroergonomics
and Cognitive Engineering, H. Ayaz, U. Asgher, and L. Paletta, Eds.
Cham: Springer International Publishing, 2021, pp. 428–441.

[15] M. Parande and S. Soma, “Concealed weapon detection in a human
body by infrared imaging,” International Journal of Science and
Research (IJSR), vol. 4, pp. 182–188, 2015.

[16] H. Bouma, J. van Rest, K. van Buul-Besseling, J. de Jong, and
A. Havekes, “Integrated roadmap for the rapid finding and track-
ing of people at large airports,” International Journal of Critical
Infrastructure Protection, vol. 12, pp. 61–74, 2016.

[17] M. P. de la Cruz López, J. J. Cartelle Barros, A. del Caño Gochi,
M. C. Garaboa Fernández, and J. Blanco Leis, “Assessing the risk
of robbery in bank branches to reduce impact on personnel,” Risk
Analysis, vol. n/a, no. n/a, 2021.

[18] M. Grega, A. Matiolański, P. Guzik, and M. Leszczuk, “Automated
detection of firearms and knives in a cctv image,” Sensors, vol. 16,
no. 1, 2016.

[19] R. Olmos, S. Tabik, and F. Herrera, “Automatic handgun detection
alarm in videos using deep learning,” Neurocomputing, vol. 275, pp.
66–72, 2018.

[20] M. S. Al-Daweri, S. Abdullah, and K. A. Z. Ariffin, “A homoge-
neous ensemble based dynamic artificial neural network for solving
the intrusion detection problem,” International Journal of Critical
Infrastructure Protection, vol. 34, p. 100449, 2021.

[21] G. K. Verma and A. Dhillon, “A handheld gun detection using faster
r-cnn deep learning,” in Proceedings of the 7th International Con-
ference on Computer and Communication Technology, ser. ICCCT-
2017. New York, NY, USA: Association for Computing Machinery,
2017, p. 84–88.

[22] R. Vajhala, R. Maddineni, and P. R. Yeruva, “Weapon detection
in surveillance camera images,” Master’s thesis, , Department of
Applied Signal Processing, 2016.

[23] J. Lai and S. Maples, “Developing a real-time gun detection classi-
fier,” http://cs231n.stanford.edu/reports/2017/pdfs/716.pdf, 2017.

[24] T. Truong and S. Yanushkevich, “Detecting subject-weapon visual
relationships,” in 2020 IEEE Symposium Series on Computational
Intelligence (SSCI), 2020, pp. 2047–2052.

[25] N. Dwivedi, D. K. Singh, and D. S. Kushwaha, “Weapon classi-
fication using deep convolutional neural network,” in 2019 IEEE
Conference on Information and Communication Technology, 2019,
pp. 1–5.

[26] V. Kaya, S. Tuncer, and A. Baran, “Detection and classification
of different weapon types using deep learning,” Applied Sciences,

vol. 11, no. 16, 2021. [Online]. Available: https://www.mdpi.com/
2076-3417/11/16/7535

[27] A. Castillo, S. Tabik, F. Pérez, R. Olmos, and F. Herrera, “Brightness
guided preprocessing for automatic cold steel weapon detection in
surveillance videos with deep learning,” Neurocomputing, vol. 330,
pp. 151–161, 2019. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0925231218313365

[28] S. Karsoliya, “Approximating number of hidden layer neurons in
multiple hidden layer bpnn architecture,” International Journal of
Engineering Trends and Technology, vol. 3, 2012.

[29] M. Madhiarasan and S. N. Deepa, “Comparative analysis on hidden
neurons estimation in multi layer perceptron neural networks for
wind speed forecasting,” Artificial Intelligence Review, vol. 48,
no. 4, pp. 449–471, Dec 2017.

[30] M. Basavarajaiah, “Maxpooling vs minpooling vs average
pooling,” 2021. [Online]. Available: https://medium.com/@bdhuma/
95fb03f45a9

[31] S. Ruder, “An overview of gradient descent optimization algo-
rithms,” 2017.

[32] Y. Bengio, Practical Recommendations for Gradient-Based Train-
ing of Deep Architectures. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 437–478.

Amjed Al-Mousa a senior IEEE member
and an associate professor of computer en-
gineering at PSUT since 2012. Dr. Al-Mousa
has received his Ph.D. from Santa Clara Uni-
versity, M.Sc. from Virginia Tech, and B.Sc.
from the University of Jordan all in Elec-
trical Engineering. Dr. Al-Mousa combines
this academic experience with more than
13 years of industry experience at Silicon
Valley. He started his career by working at

Intel Corporation in 2001 and later moved to PDF solutions to
work on Design for Manufacturing software tools. After that, he
assumed a senior manager position for data analytics at SEVEN
networks. Dr. Al-Mousa has served twice as the head of the
computer engineering department at PSUT. He developed course
content in the fields of Artificial Intelligence, Machine Learning,
Cloud Computing, and Big Data. His research interests are in the
fields of intelligent systems design and machine learning with
varying industrial applications. He can be contacted at email:
a.almousa@psut.edu.jo.

https:// journal.uob.edu.bh

https://www.mdpi.com/2673-7590/3/1/12
https://www.sciencedirect.com/science/article/pii/S0140366419320821
https://www.sciencedirect.com/science/article/pii/S0140366419320821
http://cs231n.stanford.edu/reports/2017/pdfs/716.pdf
https://www.mdpi.com/2076-3417/11/16/7535
https://www.mdpi.com/2076-3417/11/16/7535
https://www.sciencedirect.com/science/article/pii/S0925231218313365
https://www.sciencedirect.com/science/article/pii/S0925231218313365
https://medium.com/@bdhuma/95fb03f45a9
https://medium.com/@bdhuma/95fb03f45a9
https://journal.uob.edu.bh


540 Al-Mousa, et al.: Deep Learning-Based Real-Time Weapon Detection System.

Omar Z. Alzaibaq received his B.Sc. de-
gree in Computer Engineering from Princess
Sumaya University for Technology (PSUT),
Jordan, in 2019. He is currently working as
a systems and software engineer at Iotistic
Solutions. His main fields include develop-
ment, Linux-based scripting, fleet manage-
ment systems, and artificial intelligence.

Yazan Abu Hashyeh received his B.Sc.
degree in electronics Engineering from
Princess Sumaya University for Technology
(PSUT), Jordan, in 2019. Since October
2019, he has worked as an Artificial in-
telligence engineer at IOTISTIC Solutions.
During his position as an Artificial Intelli-
gence engineer. He works part-time Lecturer
with Pioneers Academy teaching Python and
Artificial intelligence. His main field of work

is in image processing and software development.

https:// journal.uob.edu.bh

https://journal.uob.edu.bh

	Introduction
	Related Work and Literature Review
	Methodology
	Experimental Setup & Dataset Collection
	Image Processing
	The CNN Architecture
	Alert Notification System

	Results and Discussion
	Baseline Architecture
	Dropout Architecture
	Max-pooling Inputs Architecture

	Limitations & Practical Considerations
	Conclusion & Future Work
	References
	Biographies
	Amjed Al-Mousa
	Omar Z. Alzaibaq
	Yazan Abu Hashyeh


