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Abstract: The exponential growth of smart gadgets connected to the Internet as well as diverse applications has escalated the spectrum
scarcity problem. Cognitive radio based spectrum sensing technique becomes a potential approach for detecting idle spectrum in licensed
channels and gaining access to it on an as-needed basis. This improves the spectral efficiency in cognitive IoT networks. However, to
support the cognitive radio features, the IoT sensor nodes demand a large amount of energy. In this research, we present a technique for
improving detection performance and energy economy in cognitive IoT systems by combining spectrum sensing and energy harvesting.
The IoT nodes are expected to be capable of spectrum detection and energy harvesting. We use a game theoretic technique to pick
relevant IoT nodes for cooperative spectrum sensing based on their energy restrictions. Furthermore, we formulate an optimal channel
assignment mechanism to improve opportunistic spectrum utilization. We develop a branch and bound based heuristic approach with
low computing complexity to address the optimization problem. Various system parameters are used to evaluate the proposed system’s
performance. When compared to other current models, simulation results show that the proposed approach greatly improves energy
efficiency and detection performance.
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1. Introduction
The Internet of Things (IoT) is a major paradigm change

in fifth generation (5G) networks that enables enormous
networking of smart objects via the Internet to support
a wide range of applications and service demands [1].
The IoT system represents an intelligent infrastructure that
interconnects physical objects, sensors, actuators, and em-
bedded devices in order to create a fully automated and
digital world. In recent times, IoT has found a wide range
of applications such as, smart home, smart agriculture, e-
health, smart cities, surveillance, automated transportation
systems, etc [2]. The exponential growth of smart gad-
gets and huge interconnectedness of sensor networks with
ubiquitous computing escalated the spectrum scarcity [3].
The existing fixed spectrum distribution technique, with
its limited operating frequency bands, is clearly unsuitable
to support the vast IoT deployments and gigantic data
throughput requirements laid forth in 5G. As a result, to
address the spectrum shortage issue, a dynamic spectrum
sharing technique is necessary [4]. The cognitive radio (CR)
technology has emerged as a viable method for gaining
opportunistic access to licensed bands’ idle spectrum [5].

In CR-enabled IoT systems, a massive number of
cognitive sensor nodes are spatially dispersed to perform
spectrum sensing and detect idle spectrum in the given
environment. In the literature, various spectrum sensing
techniques are proposed to effectively detect the status of
the channel occupancy. Among these techniques, coopera-
tive spectrum sensing (CSS) method gets more attention in

recent times [6]. In CSS, the cognitive IoT nodes scan their
local environment to get information about the statuses of
licensed channels. The local readings are then forwarded
to the central entity, which determines whether or not the
channel is occupied by main users (PUs). However, there
are many trade-offs in CSS such as, sensing time, energy
consumption, and number of participating nodes in CSS [7].

Another key challenge in massive IoT deployments is
the energy efficiency. Although the IoT nodes are low-
power devices, they consume considerable energy as they
frequently perform spectrum sensing [8]. In many IoT appli-
cations, most of the devices are battery operated. However,
devices that only rely on batteries will no longer be in a
self-sufficient and sustainable operation [9].

On the other hand, cognitive IoT nodes can harvest
energy from ambient energy sources such as solar, thermal,
vibrations, and RF signals [10]. In recent times, energy
harvesting has become the most promising solution among
emerging technologies to supply power for ultra-low power
electronic sensors and IoT devices [11]. Indeed, the latest
releases of the third generation partnership project (3GPP)
allow IoT nodes to harvest energy from the environment
[12]. Thus, incorporating RF energy harvesting in cognitive
IoT networks can be considered as a pragmatic energy
solution. Although the efficiency of harvesting energy from
RF signals is low compared with other sources, it provides
many advantages such as availability in any time (day and
night), low cost, and ease of implementation [13].
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2 1 INTRODUCTION

TABLE I. List of Abbreviations

Abbreviation Definition

5G Fifth Generation

AWGN Additive White Gaussian Noise

CR Cognitive Radio

CSS Cooperative Spectrum Sensing

CSSO Cooperative Sensing and Scheduling

Optimazation

DC Direct Current

DCSS Dynamic Colaborative Spectrum Sensing

E2 JOS S EH Energy Efficient Joint Optimization of

Spectrum Sensing and Energy Harvesting

ESA Exhaustive Search Algorithm

IoT Internet of Things

PBS Primary Base Station

PS Power Splitting

PU Primary User

RCA Random Channel Access

RF Radio Frequency

RSS Random Sensor Selection

SNR Signal-to-Noise Ratio

SWIPT Simultaneous Wireless Information

and Power Transfer

TDMA Time Division Multiple Access

TS Time Switching

TTI Transmission Time Interval

In RF energy harvesting system, the IoT network mainly
consists of a transceiver antenna, RF energy harvester cir-
cuit, a rechargeable battery storage, and energy management
unit. The transceiver antenna intercepts both information
and energy from RF signals, which is called simultaneous
wireless information and power transfer (SWIPT) tech-
nique. Recently, various types of receiver architectures have
been proposed to implement SWIPT. Specifically, power
splitting (PS) and time switching (TS) protocol architectures
have gained more attention in the literature [14]. Incoming
RF signals are divided into two halves by the PS protocol,
one for energy harvesting and the other for information
processing. To effectively decode multiple simultaneous
transmissions and harvest energy at the same time, a suc-
cessive interference cancellation (SIC) scheme is employed
at the receiver node [15]. The harvester circuit converts the
RF signal into DC electricity and directly supplies to the
IoT node or accumulates it in the energy storage unit [16].

In energy-harvesting-enabled cognitive IoT networks, it

is a great challenge to achieve both spectral efficiency and
energy efficiency at the same time due to energy causality
and collision constraints.The energy causality constraint is a
trade-off between the energy harvested and the total energy
consumed by IoT nodes for cognitive functions, while
the collision constraint deals with avoiding interference
between unlicensed users and PUs, which is directly related
to the detection performance [17]. As a result, we model
the interactions between the IoT gateway and nodes in
this work based on game theory aiming at maximizing the
detection performance and energy efficiency. The review of
related works and the primary contributions of this paper
are described in the following subsections.

A. Related Work
In order to increase both spectral and energy efficiency

while considering opportunistic spectrum usage in licensed
bands, several studies on cooperative spectrum sensing and
energy harvesting in CR networks have been done.

In [18], the authors investigate dynamic spectrum sens-
ing techniques to efficiently access the idle channels in
licensed bands. To reduce the overhead, sensors with the
best detection probability are chosen for CSS. Applying
this sensor selection mechanism leads to only specific
sensors to participate in CSS. Thus, these sensors encounter
a fast battery drain and they no longer be alive in the
network operation. In contrast with [18], we propose a
game theoretic-based sensor selection mechanism to pro-
vide fairness among IoT sensor nodes that participate in
CSS. A modified energy efficient sensor selection algorithm
is introduced in [19]. The goal of this study is to increase
energy efficiency by selecting nodes that consume the least
amounts of energy to perform CSS. Furthermore, each
IoT node has only a chance of accessing spectrum if it
participates in CSS. In this algorithm, each IoT node with
minimum energy consumption must always participate in
CSS. Unlike [19], our proposed method considers energy
constraints and lifetime limitations to select appropriate
sensing nodes.

In [20], an energy efficient algorithm is developed to
reduce total energy usage by separating the SUs into differ-
ent subsets and activating only a certain subset with lowest
cost function to listen the licensed signal periodically. In this
paper, the authors considered a homogeneous CSS setting to
balance SU energy usage, and all nodes are required to pe-
riodically sense the spectrum. With the increasing reporting
error, the provision of reliable detection and spectrum sens-
ing accuracy is not feasible to satisfy collision constraints.
As an important difference with [20], in our algorithm, IoT
sensor nodes are dynamically selected to participate in CSS
based on their energy constraints to satisfy the minimum
performance of detection with optimum detection and false
alarm probabilities. A CoMAC-based CSS technique is
developed in [21] to enhance energy efficiency in cogni-
tive sensor networks. To enhance energy efficiency, this
research investigated a simultaneous adjustment of sensing
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time, detection threshold, and sequence length. However, in
addition to these parameters, joint optimization of sensing
duration, optimal number of sensing nodes and power
splitting parameter value of harvesting unit is necessary to
improve the energy harvesting efficiency. Unlike [21], the
power splitting parameter value is considered in our study.

To reduce the sensing time and power consumption of
sensor nodes in cognitive IoT networks, an energy efficient
dynamic spectrum sensing and power allocation technique
is proposed in [22]. Similarly, a cost effective power control
mechanism is proposed in [23] for industrial automation
systems to improve the energy efficiency of cooperative
spectrum utilization in CR and IoT networks. Authors of
both [22] and [23] used adaptive power control mecha-
nism to improve energy efficiency and maximize channel
utilization while avoiding interference between PUs and
SUs. Adaptive power control mechanism can be useful to
effectively minimize interference, but this approach highly
affects the RF energy harvesting gains. Hence, in contrast
to this strategy, we propose the employment of SIC at
each receiver node in order to boost the average harvested
energy from strong interference signals without affecting
the information decoding.

A novel resource allocation mechanism is provided in
heterogeneous cognitive radio sensor networks to overcome
the problems of spectrum underutilization, energy ineffi-
ciency, and spectrum sensing inaccuracy [24]. A hybrid
energy efficient and energy harvesting cooperative spec-
trum sensing scheme is proposed in [25] to improve the
detection performance of SUs considering the constrains
in their sensing and reporting channel characteristics under
heterogeneous conditions.

Most existing literature, on the other hand, assumes
complete cooperation in spectrum sensing and ignores
the intermittent behavior of ambient RF energy sources.
Therefore, we propose an energy efficient joint optimization
of spectrum sensing and energy harvesting (E2JOSSEH)
technique to enhance energy efficiency and opportunistic
spectrum utilization in cognitive IoT networks.

B. Contributions
In our proposed technique, we adopt a game theoretic

approach to model and analyze the interactions between
the IoT gateway and IoT sensing nodes in cognitive IoT
networks. The following are the major contributions of this
study.

• We propose a new incentive-based game theory
model, where the IoT gateway can allocate more
channel to the cooperative nodes as a payoff for their
participation in the CSS operation.

• Based on the proposed scheme, we apply a Stackel-
berg evolutionary game to compute optimum num-
ber of nodes that participate in CSS and a non-
cooperative game for idle spectrum allocation. The

IoT nodes act as followers to adjust their strategies
in order to maximize the price rewarded by the IoT
gateway and the IoT gateway act as a leader to
improve its revenue.

• We build a fast and high-performance heuristic ap-
proach for solving the suggested optimization issue
for optimal node selection using a branch and bound
algorithm. For non-cooperative channel assignment
game, the uniqueness and best response of the Nash
equilibrium are analyzed.

• Finally, we verified the proposed system performance
that significantly improves the detection accuracy and
energy efficiency.

The rest of this paper is structured as follows: the
proposed system model and mathematical formulations are
described in Section II. Section III explains the proposed
algorithms and analysis. In Section IV, we assess the
proposed scheme’s performance and compare it with other
existing models. Finally, a concluding remark is drawn in
Section V.

2. SystemModeling
A. System Description

We consider a CR-based IoT network architecture with
RF energy harvesting in heterogeneous 5G system as shown
in Fig. 1. It is expected to enable a large number of cognitive
IoT nodes, also known as secondary users (SUs), which
will be spread randomly throughout the network coverage
area [26]. Assuming that, the cognitive IoT nodes have both
spectrum sensing and energy harvesting capability. Thus,
the IoT nodes perform spectrum sensing to detect the idle
spectrum in licensed bands and access it opportunistically.
In the proposed system, there are two types of IoT devices
called: IoT sensor nodes and IoT gateway. We assume that
the IoT gateway is connected to a reliable power source
and act as central entity to control the operation of IoT
sensor nodes. The IoT gateway is responsible to collect
sensory data, assign channel opportunities for data transmis-
sion/energy harvesting, and transfer energy to sensor nodes
when the harvested energy is not sufficient. All IoT sensor
nodes broadcast their battery and data buffer information
to the IoT gateway at the start of the network’s operation.
Then, the IoT gateway synchronizes itself with the primary
base station (PBS) using the beacon signal. The 5G radio
access network with IoT communications will built on an
enhanced, flexible OFDM-like air interface. As shown in
Fig. 2, the proposed IoT network is considered to operate
in time slots synchronously with the cellular network’s
transmission time interval (TTI) in 5G systems [27].

Each frame structure with a duration of T is divided into
three time slots known as sensing, reporting, and transmis-
sion/harvesting slots [27]. The following is a description of
how the IoT nodes work in each time slot:

• The sensing slot (τs) in which the IoT nodes perform
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Figure 1. Proposed Network Architecture

spectrum sensing. In this slot, no IoT node can
transmit data on the same channel as all sensed energy
are considered as PU signal.

• The reporting slot (τr) in which each IoT node reports
its local sensing results to the central entity. We
assume that time division multiple access (TDMA)
technique is used for reporting the local decisions
of each IoT node to the central entity. The central
entity decides whether the channel is busy or idle by
applying a majority (n-out-of-N) rule.

• The transmission/harvesting slot (τu) in which IoT
nodes can either transmit data or harvest energy. In
this time slot, IoT nodes are classified into three
groups based on their energy constraints and tasks
to be performed: i) Group A nodes, a node with
sufficient energy and ready to transmit data will be
categorized into this group. Group A nodes are called
potential nodes and compete to access the channel
for data transmission. ii) IoT nodes that have at least
one packet in the data queue and with insufficient
energy for transmission can be categorized into Group
B nodes. Group B nodes are also called non-potential
sensors. iii) IoT nodes with empty packet in the data
queue and have sufficient energy will be categorized
into Group C nodes. Group C nodes will go to sleep
mode until the next time frame.

Figure 2. Cooperative spectrum detection and data transmission with
energy harvesting frame structure

B. Cooperative Spectrum Sensing Model
All IoT sensor nodes communicate the status of their

residual energy and SNR value to the IoT gateway at the
start of each time frame. Then, the IoT gateway will sort
the nodes in ascending order based on their residual energy
and categorize them into two groups called potential sensors
(Group A and Group C nodes) and non-potential sensors
(Group B nodes). If the residual energy Eres is greater
than the threshold value Eth, the node is categorized into
potential sensors, otherwise it is non-potential sensors. This
can be expressed by the binary function ϕn:

ϕn =

{
1, i f Eres > Eth
0, otherwise (1)

Among the potential sensor nodes, an optimal number
of nodes will be selected to participate in CSS. Detail
explanation of IoT node selection is given in section III-A,
Algorithm 1.

1) Local Spectrum Detection Mechanism
The selected nodes will then perform local spectrum

sensing in order to detect the idle spectrum in licensed
bands and send their local sensing decisions to the central
entity. Various detection techniques are proposed to decide
the presence or absence of PUs in the sensed channel [28]-
[29]. In [28] an optimal matched filter detection scheme is
developed. A matched filter is a linear detection model that
filters the received signal by correlating with the original
signal. It increases the SNR value. However, the matched
filter needs prior information about PU signal and this
makes it infeasible for sensor nodes with limited energy
budget in IoT system. Another signal detection technique
proposed for spectrum sensing in cognitive radio networks
is feature detection. Feature detection is developed based
on stationary noise and signal periodicity [30]. The feature
detection technique can easily distinguish noise and signal,
but, it has high computational complexity.

Energy detection scheme is extensively exploited in
recent times since it is simple, compatible with any signal
type, and independent of prior information about PU signal
[29]. Thus, the energy detection technique is adopted for
local spectrum detection mechanism. In energy detection,
the received signal by IoT sensor node n can be represented
by a binary hypothesis H1 and H0, where H1 denotes that
the channel is busy and H0 states channel is idle. These two
states can be expressed as:

H1 : yn(i) = hn(i)x(i) + wn(i) (2)
H0 : yn(i) = wn(i), i = 1, 2, ...,M

where yn(t) is the received signal, x(t) is the PU signal, hn(t)
is the channel gain between PU and each IoT sensor node,
M is number of samples, and wn(t) is the additive white
Gaussian noise (AWGN) signal.

From (2), the energy statistic of yn used for signal



5

detection is given by:

En =
1
M

M∑
i=1

y2
n(i) (3)

The energy detector decides the presence or absence of PU
by comparing the received signal energy with a predefined
detection threshold value ϵs. Then, it declares the presence
of PU if the received signal energy is greater than the
threshold value, otherwise it decides PU is absent. The
energy detection performance can be evaluated with the
probability of detection Pd and the probability of false alarm
P f [31]. The probability of detection refers to the likelihood
that the spectrum is truly occupied by PUs, whereas the
probability of false alarm refers to the likelihood that the
spectrum is occupied by PUs in error.

From (3), for a large number of M, Es becomes a
Gaussian distribution function. Thus, the two probabilities
are defined as follows:

Pd = Q

(ϵs − γs − 1)

√
M

γs + 1

 (4)

and

P f = Q
(
(ϵs − 1)

√
M

)
(5)

where ϵs is detection threshold value to make a local
spectrum decision, γs is the average SNR received at the
detector and Q(.) is the normalized Gaussian distribution
function.

2) Global Spectrum Detection Mechanism
During the reporting time of τr, each IoT node commu-

nicates its local decision to the IoT gateway at the end of the
local spectrum sensing procedure over a binary symmetric
channel [32]. The IoT gateway determines whether the spec-
trum is busy or idle by applying the appropriate data fusion
rule (n-out-of-N). Based on (2)-(5), the global probability
of detection PD and the global probability of false alarm
PF at the central entity can be obtained as follows:

PD =

N∑
n=1

(
N
n

)
(1 − Pd)N−n (6)

and

PF =

N∑
n=1

(
N
n

) (
1 − P f

)N−n
(7)

where Pd and P f are the local probability of detection and
false alarm as defined in (4) and (5), respectively.

C. Throughput and Energy Utility Model
Once the IoT gateway has complete information about

total channel occupancy, it may assign available channels
to IoT nodes to transmit data in the most efficient manner
possible. Then, the achievable data rate of nth IoT node can

be calculated as

rn = Blog2

1 + hcPs

N0 +
∑N

i=n+1 Pi

 (8)

where B is the system bandwidth, Ps denotes the trans-
mission power, hc is the average channel gain, N0 is the
noise power, and Pi denotes the interfering power from ith
node. If the absence probability of PU is denoted by PH0,
then the total data rate of the secondary network in a given
channel is given by

Rt
c,n = rn(1 − PF)PH0 (9)

where PF and rn are defined in (7) and (8), respectively.

In EH-enabled IoT systems, before executing cognitive
activities, the IoT gateway must check the remaining energy
in each IoT node. The energy consumption of IoT nodes,
as shown in Fig. 2, accounts for all energy expenditures
for spectrum sensing, reporting local choices to the central
entity, and data transmission, according to the traditional
energy model [33]. Then, the residual energy of each IoT
node at the beginning of the next time frame is given as

Eres(t + 1) = Eres(t) + Eh(t) − Es(t) − Er(t) − Etx(t) (10)

where Eres(t) is the energy that was left over at the
start of the time period, Es(t) is the consumed energy for
spectrum sensing during the time τs, Er(t) is the consumed
energy for reporting during the time τr, Etx(t) is the energy
consumed for data transmission during τu, and Eh(t) is
the amount of energy harvested. The harvested energy at
a receiver node n from RF sources can be modeled as

Eh(t) = ητu

S∑
s=1

ps|hs,n|
2 (11)

where η denotes the harvester unit’s energy conversion
efficiency, ps stands for energy source’s transmission power,
and hs,n represents the channel gain between the RF source
and the receiver node.

3. Proposed Algorithm Framework
In this section, we propose an energy-efficient joint

optimization of spectrum sensing and energy harvesting
(E2JOSSEH) technique to improve detection performance
and energy efficiency in cognitive IoT networks. The flow
chart of the solution for the proposed E2JOSSEH technique
is shown in Fig. 3.

In the following subsections, the proposed E2JOSSEH
algorithm will be modified and split into two sub-algorithms
called leader-follower and non-cooperative games to ana-
lyze optimal node selection and channel assignment mech-
anism, respectively.
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Initialization

Eres ≥ Eth

Perform spectrum sensing

Report to IoT gateway

Free
channel?

Yes

Harvest energyNo

No

Specify QoS requirements

Yes

Ready to
transmit?

Assign channels for IoT nodes

Optimal
results?

Stop

go to sleep mode

Repeat i = i + 1

Yes

Yes

No

No

Figure 3. Flow chart of the proposed framework

A. Optimal node selection for CSS
In EH-enabled IoT systems, selfish nodes may opt to be

free-riders and listen to the central entity’s sensing data. As
a result of the selfish behavior of nodes, no one engages in
cooperation spectrum sensing, resulting in an extremely low
likelihood of detection. If all nodes participate in sensing at
random, however, a high chance of detection is attained
at the cost of less remaining time for data transmission
and energy harvesting. Therefore, we propose an incentive-
based game approach to model the cooperation between the
IoT gateway and sensing nodes.

In our proposed model, the IoT gateway can play the
leading role in the game by providing incentives for coop-
erative nodes. This interaction between the IoT gateway and
the nodes can be formulated as a Stackelberg game model.
We define the game as follows.

• Players: IoT gateway (leader) and multiple IoT sensor
nodes (followers)

• Strategies: Set of strategies s, which can be selected
by the players to maximize their utility.

• Utility: The payoff received by the players. It is used
to quantify the level of satisfaction.

The main objective of the IoT gateway is to increase its
revenue and reduce the price paid to the cooperating nodes
in order to enhance the performance spectrum detection.
This is directly related to the participating nodes’ overall
throughput. Hence, the revenue of the IoT gateway can be
represented by the average achievable throughput, while,

it can forward power to nodes through beamforming as
an incentive for their cooperation in spectrum sensing.
Therefore, the utility function of the IoT gateway can be
defined as

UGW = wR̄ − I (12)

where w denotes the weighting factor of benefit per unit
of average data rate, R̄ is the average achievable throughput,
and I is the total incentive that the IoT gateway will
distribute to all participating nodes. The total incentive can
be defined as

I =
L∑

i=1

eixi (13)

where ei represents arrived energy per unit time at the re-
ceiver of each node, e=[e1, e2, e3, ..., eL], xi denotes the price
per unit energy paid by sensing nodes, x=[x1, x2, x3, ..., xL],
and L represents the maximum energy storage capacity.
Similarly, each node tries to maximize the incentives re-
ceived from the IoT gateway and minimize the energy
cost for spectrum sensing. We define the energy cost for
spectrum sensing as a quadratic function as follows.

ci = aix2
i (14)

where ai is coefficient of energy cost. Then, the utility
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function of cooperative node n can be defined as follows.

Un = eixi − ci (15)

where ei, xi, and ci are defined in (13) and (14), respectively.

In general, the IoT gateway provides incentives to
encourage the cooperating nodes in order to maximize
its utility, whereas each IoT node maximize its utility by
optimizing the incentives received from the gateway and
energy cost for spectrum sensing. The optimization problem
for IoT gateway to maximize its utility function can be
formulated as

maxs,x UGW (s, e, x)

s.t. c1 : xi ≥ 0
c2 :

∑N
i=1 xisi ≤ L

c3 : si ∈ {0, 1}

(16)

where c1 denotes the price provided by the IoT gateway
must be greater than or equal to zero. c2 ensures that
the total energy allocated as an incentive should not be
exceed its energy storage capacity. c3 represents all strategy
variables to be a binary variable. The optimization problem
for IoT sensor nodes to maximize its utility function can be
formulated as

max
ei

Un(ei, xi)

s.t. c1 : 0 ≤ ei ≤ Pmax
(17)

where c1 denotes the value of the energy arrival rate should
be between zero and the maximum power transmitted by
the base station.

We might use the exhaustive search method to tackle
the optimization problems in (16) and (17). However, this
method is computationally expensive and complex for large
number of IoT sensor nodes [34]. Therefore, we design a
high performance heuristic algorithm to find the optimal
number of nodes that participate in the CSS, as described in
Algorithm 1. The computational complexity of the proposed
model is O(N log N) which is extremely low compared to
exhaustive search algorithm with computational complexity
of O(NN).

B. Optimal Channel Assignment Mechanism
In this subsection, we model the channel assign-

ment for cognitive IoT nodes as a strategic form non-
cooperative game. The channel assignment problem of a
non-cooperative game can be defined as

G = {N, {S n}n∈N , {Un}n∈N} (18)

where N is the set of players (i.e,, cognitive IoT nodes), S n
is the set of strategies (i.e., channel assignment) for node n
to choose the available idle channels, and Un is the utility
function. In this game, the utility function of each node n
can be formulated as

Un(Cn,C−n) =
∑C

c=1 Rt
c,n

Ec
(19)

Algorithm 1 Algorithm for optimal node selection to
perform CSS

Initialize()
Repeat
The IoT gateway announce the incentive I
for n = 1toN do

Compute Un
if Un > 0 then

Node n will accept to cooperate, send the vector
Vn = {Eres, γn, dn} to the IoT gateway

end if
end for
The IoT gateway sort the set of vector values {Eres, γn, dn}

in descending order
for j = 1toNc do

Compute UGW
if UGW > U∗GW then

Uc = Uc + 1
Update Ic = {i1, ..., in}
Update the iteration number i = i + 1

else if then
Break

end if
end for
Return (I∗c ,N

∗), variables with * are optimal values

where Cn and C−n are the available idle channel profiles
relative to strategy S n and S −n, respectively. Ec is the energy
consumed in the link. In a non-cooperative game, nodes
can select any channel assignment strategy with competition
among other players. For each node n, its strategy set is the
available idle channel profiles, which is given by

Cn = {Cn|Cn > c,
N∑

n=1

Cn = C} (20)

where C is the total available idle channel of the system.
Based on the idle channel profiles in (20), the utility
function of each node n can be rewritten as

Un(Cn,C−n) =
∑C

c=1 Rt
c,n

Ec

=
∑

n∈N
ψnCn∑

m∈N µmCm

(21)

where ψn = µnNc, µn denotes the population state, and Nc
is the number of nodes in group c choosing strategy Cn.
According to the utility function in (21), the optimization
problem to maximize the overall energy efficiency of the
network can be formulated as follows.

max
µn,c

Un =
∑N

n=1
∑C

c=1
ψnCn∑

m∈N µmCm

s.t. c1 : Rc,n ≥ Rmin
c2 :

∑
µn = 1

(22)

where c1 guarantees the minimum data rate requirement
for selected nodes to access the idle channel. c2 ensures
that only one channel is assigned for each node. Each IoT
node makes a decision iteratively to select a strategy that
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maximizes energy efficiency. At some point of the game,
players may select an optimal strategy, where no players can
further change their strategies to increase its utility function.
This stable operating point is a Nash equilibrium point.
In the proposed non-cooperative game, there always exists
at least one channel assignment that converges to a Nash
equilibrium. The best response of the nth node decision of
profile C∗n is unique, while the decisions of other nodes
profile C−n remains constant.The best response for Nash
equilibrium of the proposed game can be given as

C∗n = max{c,

√
Ncλn(C−n)

µn
−
λn(C−n)
µn

} (23)

where λn denotes the influence factor from other nodes.
Based on these findings, we devised an algorithm to assign
channels to IoT nodes in the most efficient way possible,
as presented in Algorithm 2.

Algorithm 2 Algorithm for optimal channel assignment
scheme

Initialize()
while Available idle channel is greater than zero do

Calculate utility of channel using (21)
Channel=Channel+1
Compute max cn (Un(cn)) to select the best channel
for each node n to be scheduled for a channel c do

if Rc,n > Rmin then
if node n hasn’t been scheduled any channel

yet then
Assign channels for data transmission
Update the best response Cn(t) using (23)

end if
end if

end for
end while
Return (C∗n,U

∗
n), variables with * are optimal values

4. Simulation Results and Performance Analysis
In this section, we evaluate the performance of the

proposed E2JOSSEH technique and compare it with other
algorithms with respect to different parameters. For sim-
ulations, we consider cognitive IoT nodes are randomly
distributed in a square region with length of 400m to access
the idle spectrum in licensed bands. All channels between
each node and the IoT gateway is modeled as AWGN
channel.

The snap shot of the network model considered for this
simulation is depicted in Fig. 4. Details of the simulation
parameters are listed in Table II. The simulation results in
this section provide insights into the performance of the
proposed algorithm compared with other techniques over
different metrics. The proposed E2JOSSEH algorithm is
compared with the following algorithms:

• Random sensor selection (RSS) algorithm [35]: In

RSS algorithm, sensors are randomly selected to par-
ticipate in CSS with equal probability. RSS algorithm
has a minimum complexity for computing a solution,
however, it has the maximum energy consumption.

• Dynamic collaborative spectrum sensing (DCSS) al-
gorithm [22] : In this algorithm, sensor nodes form
clusters and collaboratively sense the availability of
licensed channels to reduce the energy consumption.
Each sensor node broadcasts messages periodically to
the neighboring nodes to collaborate. This method is
poor at low SNR.

• Cooperative sensing and scheduling optimization
(CSSO) technique [7]: In this scheme multiple sensor
nodes can cooperate to reduce the channel sensing
time.

• Exhaustive search algorithm (ESA) [34]: This algo-
rithm considers each search point inside the search
zone and so returns the best possible match; nonethe-
less, it necessitates a significant amount of computing
time.

• Random channel access (RCA) scheme [36]: In this
approach, IoT nodes are scheduled for a random
channel in different time slots and transmit data with
all their available energy.

TABLE II. Simulation Parameters

Parameter Symbol Value

Maximum transmit power of base station Pmax 20W

Minimum system battery level Eb 5mJ

Energy consumption of sensing for 1ms Es 40mJ

Energy harvesting efficiency η 0.5

Minimum required data rate Rmin
i 125kbps

Frame duration T 10ms

Sensing duration τs 1ms

Retorting duration τr 1ms

Utility duration τu 8ms

Target probability of detection PD 95%

Absence probability of PU PH0 90%

First, we evaluate the detection performance of the
proposed technique for different values of SNR as shown
in Fig. 5. It is observed that the detection performance of
the proposed technique is better than other techniques. For
example, with SNR value of 4dB, the E2JOSSEH algorithm
shows 7.61%, 16.84% and 31.3% higher detection perfor-
mance than DCSS, CSSO, and RSS techniques, respec-
tively. Also, probability of detection exponentially increased
as SNR increased, which indicates that less interference and
better protection for channels occupied by PUs.
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Figure 4. Snap shot of the IoT nodes distributions: the cluster
IoT users and the PPP users are indicated by blue and red dots,
respectively

Figure 5. Probability of detection versus SNR(dB)

The detection probability versus the probability of false
alarm is represented in Fig. 6. It is clearly observed that the
proposed E2JOSSEH technique relatively displays higher
detection performance compared with other techniques. The
E2JOSSEH algorithm has almost achieved the theoretical
limit values of probability of false alarm rate and detection
probability. This proves that spectrum detection accuracy
is improved with appropriate selection of IoT sensor nodes
to participate in CSS. As the number of IoT nodes par-
ticipating in CSS grows, the detection reliability improves
considerably, allowing access to the idle spectrum without
interfering with PUs. It’s worth mentioning that adopting
the energy harvesting technique increased the number of
nodes participating in CSS. Therefore, it is evident that
the proposed technique can play a vital role to accurately
detect the available spectrum and efficiently utilize the idle
channels in licensed bands.

Fig.7 illustrates the performance of average data

Figure 6. Probability of detection versus probability of false alarm

Figure 7. Throughput versus Number of channels

throughput versus the number of channels assigned for
SUs. It is observed that RCA has minimum throughput and
doesn’t improve with number of channels increase. This is
due to the channels are randomly assigned for all active
IoT nodes and probability of collision becomes higher.
On other hand, as the number of channels assigned for
IoT nodes increases, the proposed E2JOSSEH technique
and ESA provide better throughput. However, E2JOSSEH
still performs better than ESA approach. For example, if 8
channels are assigned, the proposed E2JOSSEH technique
achieves a throughput about 46.04% higher than the RCA
scheme. This shows that the proposed optimal channel
assignment mechanism significantly improves the system
throughput. Fig. 8 illustrates the average harvested energy
from RF sources across different number of IoT nodes. It
compares the E2JOSSEH technique with greedy and random
approaches. It is clear from the simulation result that the
proposed technique provides significant energy harvesting
gains. For example, with 50 IoT nodes, the E2JOSSEH tech-
nique harvests 35.48% and 8.67% higher energy compared
with random and greedy approaches, respectively.
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Figure 8. Average Harvested Energy versus Number of IoT nodes

Figure 9. Available energy per node versus sensing time

Fig. 9 compares the available energy per node of the
conventional and proposed cooperative spectrum sensing
without energy harvesting and with energy harvesting for
different sensing time. It is observed that the available
energy per node is decreased with the increase of sensing
time in the conventional model. However, in the proposed
technique, the available energy per node increases with
sensing time. This shows that the harvested RF energy
compensates the energy consumed for cooperative spectrum
sensing. In Fig. 9, it is also observed that the available
energy per node is decreased with the increase of IoT sensor
nodes. For example, at sensing time (τ = 9ms) when the
IoT node n increased from 15 to 30, the available energy
per node decreased from 30mJ to around 23.5mJ for the
proposed technique and it almost goes from 2.5mJ to 0J in

conventional model.

Figure 10. Energy efficiency versus number of IoT nodes

In Fig. 10, we demonstrate the average energy efficiency
versus the number IoT sensing nodes. The figure shows that
the energy efficiency of the proposed technique is higher
than other techniques as the number of IoT nodes increase.
For example, with 50 IoT nodes, the proposed technique
shows 26.88% better energy efficiency as compared to the
RCA scheme. This can be realized that energy harvesting
technique provides sufficient energy for sensing nodes.
Thus, it is evident that energy harvesting techniques play
vital role to deploy energy efficient green technologies in
future telecommunication networks.

5. Conclusion
The exponential growth of smart gadgets connected

to the Internet as well as diverse applications and broad
service demands has escalated the spectrum scarcity in 5G
networks. Dynamic spectrum sensing becomes a promising
solution to detect the idle spectrum channels in licensed
bands and access it opportunistically. However, to improve
the detection performance, sensors require significant en-
ergy consumption. In this paper, we propose a dynamic
cooperative spectrum sensing technique with energy har-
vesting for cognitive IoT systems in 5G networks. We
formulate a joint optimization of harvesting and spectrum
sensing algorithm to improve the energy efficiency and idle
channel utilization. We solved the optimization problem
by using a branch and bound heuristic algorithm in order
to maximize the energy efficiency while guaranteeing the
minimum data rate requirement and detection performance.
The performance of the proposed technique is evaluated,
analyzed and compared with existing models. Simulation
results show that the proposed algorithm performs better
than other existing models in terms of detection probability,
data throughput, and energy efficiency. For example, the
detection performance and energy efficiency is improved by
31.3% and 26.88%, respectively as compared to the random
approach. Therefore, this is evident that incorporating RF
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energy harvesting plays an important role to improve the
overall performance of rechargeable cognitive IoT systems
in 5G networks. As a future work, we will investigate
additional QoS requirements for heterogeneous IoT nodes
and exploiting interference for energy harvesting.
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