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Abstract: One of the main concerns posed to power generation operations is the problem of economic dispatch. This problem can be 
resolved by minimizing fuel costs and satisfying system constraints to generate optimal amounts of power from generating units in 
the system. The accuracy of this solution depends on fuel cost parameters within the generating units. This paper explores a solution 

method for this economic dispatch problem and thermal generator units in power systems. To examine this solution, the input/output 
curves of the generators are considered as a quadratic function.  In addition, a least-squares method is utilized to calculate the 
coefficient of these quadratic functions. To consolidate the suggested approach, a case study is analyzed by considering the 
generators of the IEEE Reliability Test System (IEEE – RTS).  The results garnered from this application are then presented.  Some 
of the results are verified with corresponding literature, thus proving the performance of computational algorithms successful. 
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1. INTRODUCTION  

The optimal operation of electric power systems has 

gained greater importance in recent years due to ever-
increasing fuel costs. Electric power utilities are required 

to operate their systems more efficiently and 

economically. This requirement means that a series of 

optimizations must be solved to operate and design a 

power system for maximum efficiency [13]. Usually, 

electric power systems contain both thermal and hydro 

stations. Due to the complexity and size of hydrothermal 

systems, different problems have been identified in 

optimizing their operation over different time scales: long 

term, medium-term, and short term [14, 15]. 

The coordination of thermal generation and hydro 
generation is an attempt to minimize the total fuel bill of 

the system. This idea comprises the principal avoidable 

operating cost for a given system configuration. The 

costs of hydro station operations are virtually 

independent of the generation. Thermal station fuel costs 

are also virtually independent of the generation, where 

thermal station fuel costs vary considerably from one 

station to another depending on the type of fuel used and 

the efficiency of the machine installed. Hence, the more 

expensive thermal station must be used to the least 

possible extent, and wasting water resources spilling 

must be minimized [16]. 

Electric power systems have a fundamental 
operating future: electrical energy production and 

consumption are virtually simultaneous. To ensure that 

customers receive energy whenever desired, the system 

providing that energy must be substantially reliable, i.e., 

high reliability is an essential characteristic. Maintenance 

of power system equipment is also a significant 

component in providing this reliability in two ways. 

Firstly, preventative maintenance of the equipment is 

crucial to ensure that the equipment continues to operate 

at peak performance, thereby being reliable. Secondly, 

while the equipment is being maintained, it is unavailable 
for service, and the system is consequently weekend. 

These include generating units that are implicitly related 

to power system reliability and have a tremendous impact 

on the operation of the power system. Therefore, there is 

a need to consider the effect of maintenance on the 

system’s reliability and ensure that the maintenance 

schedule itself does not affect the reliability too 

adversely. 

Generating unit maintenance touches upon many 

problems. Inappropriate scheduling can lead to many 

undesirable situations from an economic point of view, 

especially the huge direct cost of generating unit 
maintenance. In addition, there are some latent costs, 
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including that of electric energy generated during 

generating unit maintenance time, power generation 

when a less efficient generating unit replaces a highly 

efficient generating unit, and investment in maintenance 

reserve capacity that has to be added to ensure the 

electricity supply reliability of the system. As for the 

system reliability, the risk of the system supply’s 

inefficiency may increase during the scheduled 

maintenance outage. The problem is especially prominent 

for systems that have a shortage of reserve capacity [17]. 

In the last two decades, there has been a growing 
interest in research into both theoretical and 

methodological approbation to the shedding of generating 

unit maintenance. This interest relies on power system 

planning design and operation management; both 

research and practice have shown that the power system 

maintenance schedule is a long-term constraint optimized 

program. The maintenance schedule that satisfies all the 

constraints is called a feasible solution [18]. Certain 

constraints should be set up according to the real 

conditions of the power system in order to make the 

maintenance plan feasible, which can be divided into 
three main categorize: time constraints, maintenance 

crew constraints, and resource constraints. The time 

constraint means some generating units must or cannot be 

scheduled for maintenance during a certain time interval, 

while the maintenance crew constraint means that there 

are limitations due to maintenance manpower 

availability. It should be noted that two generating unit 

maintenances cannot be scheduled to be carried out by 

one group of the crew in the same time interval. The cost 

resource constraint relates to the maximum resource 

provided for certain maintenance [19]. Reference [18] 
surveys some maintenance scheduling, shedding light on 

such constraints [18].  

This paper explores relevant problem formulation 

and solution methods. Significant research in the field of 

maintenance scheduling can be summarized as follows. 

Reference [20] comprises a starting point for many 

authors, who try either to eliminate the shortcoming 

existing in this model gradually or to develop radically 

new models. It is worth saying that despite its numerous 

shortcomings, this reference positively influenced the 

development of new automatic maintenance scheduling 

techniques. Reference [30, 31] introduce the concept of 
equivalent load capability, which models the impact of 

thermal units’ unavailability on power system reliability, 

demonstrating how, with simple corrections in existing 

maintenance scheduling algorithms, the risk can be 

introduced as an optical criterion instead of reserving the 

proposed method [19, 33, 34].  

It is recognized that maintenance scheduling units 

found a significant part of the overall operational 

management of an electric power utility. Optimizing the 

outage decisions of the units is therefore essential for 

ensuring an effete operation of an electric power system. 

Real electric power systems usually contain thermal 

generation and hydro generation. Some solutions suggest 

considering only thermal generation except for reference 

[34], where only the hydro maintenance scheduling 

problem is analyzed. However, other solutions proposing 

considering both types of units are not apparent in the 

current literature review due to some factors. One of the 

reasons is because it is recognized that the coordination 

of the operation of the system of hydrothermal electric 

generation plans is usually more complex than the 
scheduling of an all thermal generation system. Still, the 

improvements and availability of reliable computers have 

created the opportunity to develop solution methods for 

this complex combinatorial problem. 

This paper develops an efficient methodology to 

solve the maintenance scheduling problem considering 

electric power systems containing both hydro and 

thermal generating units. The advantages of this 

methodology include the following: 

a) It provides a better representation of electric 

power systems. 

b)  It produces a more realistic solution for the 

hydrothermal maintenance scheduling problem. 

c)  It provides space and opportunity to analyze the 

effects of unit maintenance outages on the 

operation and reliability of hydrothermal electric 

power systems. 

On the other hand, this paper also suggests feasible 

solutions for the economic dispatch problem. The input-

output curves of generating are considered as quadratic 

functions. A least-squares method is used to calculate the 

coefficients of these quadratic functions, which is further 

supported by a case study considering the generator of 

the IEEE-RTS. 

In the case study, a power system has thermal and 

hydro generation units working together. The 

maintenance is analyzed in sections 1, 8 & 9. The 

Hydrothermal Maintenance Method uses a coordination 
methodology; this coordination requires the optimal 

solution of the economic dispatch problem. This paper 

presents an alternative approach for solving the economic 

dispatch problem. Section 2 describes the economic 

dispatch problem, which requires treating the generation 

cost of each unit as input data.  The research then 

discusses the modeling of fuel cost in Section 3, followed 

by two sections exploring solutions for the economic 

dispatch problem through illustrated algorithms.  A case 

study is then presented in section 6. 

2. DESCRIPTION OF THE ECONOMIC DISPATCH 

PROBLEM  
 

The economic dispatch problem is articulated as the 

principle problem when minimizing fuel costs in 
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supplying a given load.  This problem may be concisely 

stated in mathematical terms.  I.E., an objective function 

total cost of thermal generation ( 𝐶𝑇), is equal to the total 

cost for supplying the indicated load – system load 

demand (𝐷)  is supplied by the 𝑁𝑡𝑔  thermal generating 

units. The problem lies in minimizing 𝐶𝑇  subject to the 

constraint that the sum of power generated must equal the 

assigned load.  Note that any transmission losses are 
neglected, and any operating limits are not explicitly 

stated when formulating this problem: that is [2, 12], 

 

𝐶𝑇 = 𝐶1 + 𝐶2 + 𝐶3 + ⋯ + 𝐶𝑁𝑡𝑔 = ∑ 𝐶𝑖
𝑁𝑡𝑔
𝑖=1 (𝑃𝑔𝑖)          (1) 

 

Where:  𝐶𝑖  (𝑃𝑔𝑖)  Generation cost of unit i when it is 

generating power of (𝑃𝑔𝑖  )   ($) and 𝑃𝑔𝑖  Generation of the 

unit (𝑀𝑊). 
 

∅ = 0 = 𝐷 − ∑ 𝑃𝑔𝑖
𝑁𝑡𝑔
𝑖=1                                                    (2) 

 

By using an advanced calculus method involving the 

𝐿𝑎𝐺𝑟𝑎𝑛𝑔𝑒  function, this problem of constraint 

optimization can be attacked formally. 

The  𝐿𝑎𝐺𝑟𝑎𝑛𝑔𝑒 function, as shown in equation (3), 

establishes the necessary conditions for an extreme value 

of the objective function by adding the constraint 

function to the objective function after the constraint 
function has been multiplied by an undetermined 

multiplier. 

 

𝜍 = 𝐶𝑇 +⋋ 𝜙                                                               (3) 

 

The conditions for an extreme value of the objective 

function result are known when one takes the first 

derivative of the 𝐿𝑎𝐺𝑟𝑎𝑛𝑔𝑒  function concerning each 

independent variable and sets the derivatives equal to 

zero.  In this case, there are 𝑁𝑡𝑔 + 1   variables, the 𝑁𝑡𝑔 

values of power output,  𝑃𝑔𝑖  plus the undetermined 

𝐿𝑎𝐺𝑟𝑎𝑛𝑔𝑒 multiplier 𝜆. The derivative of the 𝐿𝑎𝐺𝑟𝑎𝑛𝑔𝑒 

function, for the undetermined multiplier, merely gives 

back the constraint equation.  On the other hand, the 𝑁𝑡𝑔 

equations result when one takes the partial derivative of 

the 𝐿𝑎𝐺𝑟𝑎𝑛𝑔𝑒 function with respect to the power output 

values one at a time.  The set of equations are shown as 
equation (4). 

 
𝜕𝜍

𝜕𝑃𝑔𝑖

=
𝑑𝐶𝑖(𝑃𝑔𝑖 )

𝑑𝑃𝑔𝑖

− ⋋= 0 ⇒  0

=
𝑑𝐶𝑖(𝑃𝑔𝑖 )

𝑑𝑃𝑔𝑖

− ⋋                         (4) 

 

The incremental cost rates of all the units must be 

equal to some undetermined value ⋋ to meet the 
necessary condition for the existence of a minimum cost-

operating condition for the thermal power system.  In 

addition, the constraint equation – that the sum of the 

power outputs must equal the power demanded by the 

load must be included. Furthermore, two inequalities 

must be satisfied for each of the units.  That is, the power 

output of each unit must be greater than or equal to the 

minimum power permitted and must also be less than or 

equal to the maximum power permitted on that particular 

unit. 

These conditions and inequalities may be 

summarized as shown in the set of equations making up 
equation (5). 

𝑑𝐶𝑖(𝑃𝑔𝑖 )

𝑑𝑃𝑔𝑖

= ⋋ 

∑ 𝑃𝑔𝑖

𝑁𝑡𝑔

𝑖=1

= 𝐷 

 

𝑃 𝑃𝑔𝑖.𝑚𝑖𝑛 ≤  𝑃𝑔𝑖 ≤ 𝑃𝑔𝑖.max                                                         (5) 

                   
When one recognizes the inequality constraints, the 

necessary conditions may be expanded slightly, as shown 

in the set of equations making up the equation (6). 

 
𝑑𝐶𝑖(𝑃𝑔𝑖 )

𝑑𝑃𝑔𝑖
= ⋋ 𝑓𝑜𝑟 𝑃𝑔𝑖.𝑚𝑖𝑛 <  𝑃𝑔𝑖 < 𝑃𝑔𝑖.𝑚𝑎𝑥                     

𝑑𝐶𝑖(𝑃𝑔𝑖 )

𝑑𝑃𝑔𝑖
=≤ ⋋ 𝑓𝑜𝑟 𝑃𝑔𝑖 =  𝑃𝑔𝑖.𝑚𝑎𝑥                     

𝑑𝐶𝑖(𝑃𝑔𝑖 )

𝑑𝑃𝑔𝑖
=≥ ⋋ 𝑓𝑜𝑟  𝑃𝑔𝑖 < 𝑃𝑔𝑖.𝑚𝑖𝑛                                        

                                         (6) 

 

Where:   𝑃𝑔𝑖.𝑚𝑖𝑛 .  𝑃𝑔𝑖.𝑚𝑎𝑥   Minimum and maximum 

generating unit (𝑀𝑊). 
 

3. MODELLING FUEL COSTS FOR THERMAL 

GENERATION 
 

As far as economic studies are concerned, a thermal 

generating unit is considered an input-output type model. 

In this case, the input is the fuel cost, with the unit’s 

active power generation being the output.  By and large, 

the thermal plant’s input is normally expressed in $/h.  

The function relating fuel cost and generation is a 

nonlinear function. 

An additional curve is used to represent the 

characteristic of this model: heat rate-power is the 

relation in this nonlinear function.  The units of heat rate 
are in M.J./kWh.  The typical heat rate of data for sample 

unit sizes of steam units with coal, oil, and gas as energy 

sources are illustrated in Table 1 [3, 4, 11]. 

Loading (output) levels whereby a new steam 

admission valve is opened are called valve points.  At 

these levels, discontinuities in the cost curves and the 

incremental heat rate curves occur due to the sharp 
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increases in throttle losses. With a gradual lifting of the 

valve, losses are decreased until the valve is completely 

open. The area of the valve points is difficult to 

determine through actual testing, which influences how 

to determine the shape of the input-output curve. 
 

 

 

TABLE 1. TYPICAL FOSSIL GENERATION AND NET HEAT  

RATES 

 

Fossil 

fuel 

Unit 

rating 

Output (M.J./kWh) 

100% 80% 60% 40% 25% 

Coal 50 11.59 11.69 12.05 12.82 14.13 

Oil 50 12.12 12.22 12.59 13.41 14.78 

Gas 50 12.33 12.43 12.81 13.64 15.03 

Coal 200 10.01 10.09 10.41 11.07 12.21 

Oil 200 10.43 10.52 10.84 11.54 12.72 

Gas 200 10.59 10.68 11.01 11.72 12.91 

Coal 400 9.49 9.53 9.75 10.31 11.25 

Oil 400 9.91 9.96 10.18 10.77 11.75 

Gas 400 10.01 10.06 10.29 10.88 11.88 

Coal 600 9.38 9.47 9.77 10.37 11.40 

Oil 600 9.80 9.90 10.20 10.84 11.91 

Gas 600 9.91 10.01 10.31 10.96 12.04 

Coal 800/1200 9.22 9.28 9.54 10.14  

Oil 800/1200 9.59 9.65 9.92 10.55  

Gas 800/1200 9.70 9.75 10.03 10.67  

       

 

Most utility systems are satisfied with the input-output 

characteristic, often represented as a smooth curve 

defined by a polynomial [3]. In this study, the input-

output curves are modeled as quadratic functions, 

expressed for unit 𝑖  as equation (7) 
 

𝑌𝑖 = 𝐶𝑖  (𝑃𝑔𝑖  ) =∝𝑖 𝑃𝑔𝑖
2 + 𝛽𝑖 𝑃𝑔𝑖 +γ𝑖                                

(7) 

 
Where:  𝛼𝑖 , 𝛽𝑖  , 𝛾𝑖Cost function coefficients of unit i 

 

The determination of the parameters ∝𝑖 , 𝛽𝑖   and γ𝑖  

requires the availability of data relating to the cost 

𝐶𝑖  (𝑃𝑔𝑖  )  to the generation level 𝑃𝑔𝑖    One may then use a 

simple least-square estimation algorithm to do so [5]. 

Given 𝑁𝑝 points where the cost  𝐶𝑖  (𝑃𝑔𝑖  ) and the power 

𝑃𝑔𝑖    are known, the parameters are determined such that 

a least square error is involved.  The problem is then to 

minimize 𝐸𝑖(∝𝑖 , 𝛽𝑖 , γ𝑖)      with respect to  ∝𝑖 , 𝛽𝑖   and 

γ𝑖, where 𝐸𝑖(∝𝑖 , 𝛽𝑖 , γ𝑖)    is expressed in equation (8) 
 

𝐸𝑖(∝𝑖 , 𝛽𝑖 , γ𝑖) = ∑ (∝𝑖 𝑃𝑔𝑖𝑘
2𝑁𝑝

𝐾=1 + 𝛽𝑖𝑃𝑔𝑖𝑘 + γ𝑖 − 𝑌𝑖𝑘)2   (8) 

 

The solution is obtained by setting the derivatives 

of   𝐸𝑖(∝𝑖 , 𝛽𝑖 , γ𝑖)  with respect to ∝𝑖 , 𝛽𝑖    and γ𝑖)    

to zero.  The resulting relations are shown in the set of 

equations making up equation (9). 

 
𝜕𝐸𝑖(∝𝑖,𝛽𝑖,γ𝑖)  

𝜕∝𝑖
= 2 = ∑ (∝𝑖 𝑃𝑔𝑖𝑘

2𝑁𝑝
𝐾=1 + 𝛽𝑖𝑃𝑔𝑖𝑘 + γ𝑖 −

𝑌𝑖𝑘)1. (𝑃𝑔𝑖𝑘
2 ) = 0              

𝜕𝐸𝑖(∝𝑖,𝛽𝑖,γ𝑖)  

𝜕𝛽𝑖
= 2 = ∑ (∝𝑖 𝑃𝑔𝑖𝑘

2𝑁𝑝
𝐾=1 + 𝛽𝑖𝑃𝑔𝑖𝑘 + γ𝑖 −

𝑌𝑖𝑘)1. (𝑃𝑔𝑖𝑘) = 0                                                            (9)          
𝜕𝐸𝑖(∝𝑖,𝛽𝑖,γ𝑖)  

𝜕γ𝑖
= 2 = ∑ (∝𝑖 𝑃𝑔𝑖𝑘

2𝑁𝑝
𝐾=1 + 𝛽𝑖𝑃𝑔𝑖𝑘 + γ𝑖 −

𝑌𝑖𝑘)1. (1.0) = 0             

 

Rearranging, one can obtain the following set of 

equations: 

 

(∑ 𝑃𝑔𝑖𝑘
4

𝑁𝑝

𝑘=1

) . ∝𝑖+ (∑ 𝑃𝑔𝑖𝑘
3

𝑁𝑝

𝑘=1

) . 𝛽𝑖 + (∑ 𝑃𝑔𝑖𝑘
2

𝑁𝑝

𝑘=1

) . γ𝑖

= ∑ 𝑌𝑖𝑘

𝑁𝑝

𝑘=1

𝑃𝑔𝑖𝑘
2  

(∑ 𝑃𝑔𝑖𝑘
3

𝑁𝑝

𝑘=1

) . ∝𝑖+ (∑ 𝑃𝑔𝑖𝑘
2

𝑁𝑝

𝑘=1

) . 𝛽𝑖 + (∑ 𝑃𝑔𝑖𝑘

𝑁𝑝

𝑘=1

) . γ𝑖

= ∑ 𝑌𝑖𝑘

𝑁𝑝

𝑘=1

𝑃𝑔𝑖𝑘                                       (10) 

(∑ 𝑃𝑔𝑖𝑘
2

𝑁𝑝

𝑘=1

) . ∝𝑖+ (∑ 𝑃𝑔𝑖𝑘

𝑁𝑝

𝑘=1

) . 𝛽𝑖 + 𝑁𝑝. γ𝑖 = ∑ 𝑌𝑖𝑘

𝑁𝑝

𝑘=1

 

 

Solving the above linear set of equations in ∝𝑖 , 𝛽𝑖  

and  γ𝑖  yields the desired estimates. An algorithm was 

developed to solve the above linear set of equations, 

tested using the data given in Table 1. 

 

 

TABLE 2. TYPICAL COST COEFFICIENTS (M.J./MWh) 

Unit 

Size 

(M.W.) 

Coal Oil Gas 

∝ 𝛽 γ ∝ 𝛽 γ ∝ 𝛽 γ 

(𝟏𝟎−𝟑) (𝟏𝟎−𝟑) (𝟏𝟎−𝟑) 

50 10.307 10.064 49.915 11.570 10.471 52.856 11.647 10.662 53.607 

200 2.2921 8.6718 173.63 2.3829 9.0391 180.69 2.3509 9.1949 182.65 

400 1.4629 8.1441 300.82 1.4966 8.5222 312.67 1.4940 8.6135 316.36 

600 0.5332 8.2800 462.11 0.5636 8.6473 483.31 0.5882 8.7316 489.87 

800 1.0002 7.4758 752.70 1.0781 7.7316 794.14 1.1722 7.7261 825.47 

1200 0.6667 7.4759 1129.0 0.7185 7.7319 1191.1 0.7810 7.7269 1237.9 
 
 



 

 

 Int. J. Com. Dig. Sys. 10, No.1, 1051-1062 (Oct.-2021)                   1055 

 

 

http://journals.uob.edu.bh 

 

The results are illustrated in Table 2.  These results 

can be compared with the results obtained in reference 

[4[.  This finding determines that the results obtained 
with the developed algorithm and those from the 

reference are almost equal.  This test is a verification that 

the algorithm is working well. 

 

4. Equal incremental cost loading considering 

quadratic functions of the fuel costs 

 

The fuel cost function for each thermal generating 

unit is considered a quadratic function, as shown in 

equation (11). 

 

𝐶𝑖(𝑃𝑔𝑖) = ∝𝑖 𝑃𝑔𝑖    
2 + 𝛽𝑖𝑃𝑔𝑖 + γ𝑖                                  (11) 

 

In section 2, it was stated that all the thermal 

generating units must have equal incremental cost (⋋ ) to 

have an optimal operation.  Mathematically this is  

 
𝑑𝐶𝑖(𝑃𝑔𝑖)

𝑑𝑃𝑔𝑖
= ⋋                                                                        

(12) 

 

If the units of 𝐶𝑖  are in $/hr, the units of the  ⋋ are in 

$/MWh. The ⋋  figure represents the increase in cost rate 

per increase in M.W. output, or equivalently the increase 

in cost per increase in MWh ]1[. 
If a quadratic function of the fuel cost is considered, 

the generation of a thermal unit can be expressed as a 

function of the incremental cost ⋋ as follows; 

 

𝑃𝑔𝑖 (⋋) =
⋋−𝛽𝑖

2∝𝑖
                                                                 

(13) 
 

The value of  ⋋ can be determined in the following 

way. First, we need to consider the constraint of the sum 

of the thermal generation that must be equal to the given 

demand and including equation (13), which produces: 

 

∑  
𝑁𝑡𝑔
𝑖=1

⋋−𝛽𝑖

2∝𝑖
= 𝐷                                                                  

(14) 

 

From equation (14), the value of is calculated as follows: 

 

  ⋋=
∑  

𝑁𝑡𝑔
𝑖=1

⋋−𝛽𝑖
2∝𝑖

∑  
𝑁𝑡𝑔
𝑖=1

1

2∝𝑖

                                                                    

(15) 

In the following section, the solution method to 

include the output limits of the generating units is 

discussed. This method for a solution 𝑃𝑔𝑖(⋋)  from 

equation (13) yields equal incremental costs for each 

unit, unless a lower or an upper limit prevents this from 

occurring – as indicated in the set of equations making up 

(6).  

 

5. AN ALGORITHM TO OBTAIN AN OPTIMAL 

ECONOMIC DISPATCH WITH QUADRATIC 

FUNCTION OF THE FUEL COST 
 

Several solution methods to obtain the incremental 

costs consider the generator output limits, according to 

]2, 6, 12].  Two methods are presented as a reference to 

this ]6[.  The first one searches for a value of  ⋋ that 
satisfies  

 

∅(⋋) = ∑ 𝑃𝑔𝑖
𝑁𝑡𝑔
𝑖=1

(⋋) − 𝐷 = 0                                                 

(16) 

 

With 

 

𝑃𝑔𝑖  (⋋) = min [max(
⋋−𝛽𝑖

2∝𝑖
, 𝑃𝑔𝑖 .𝑚𝑖𝑛). 𝑃𝑔𝑖.𝑚𝑎𝑥  ]               

(17) 

 

The value of ⋋  is limited between a lower value  

 ⋋𝑚𝑎𝑥  and an upper value , with  

 

⋋𝑚𝑖𝑛= [2 ∝𝑖 𝑃𝑔𝑖.𝑚𝑎𝑥 + 𝛽𝑖]
𝑖

𝑚𝑖𝑛
                                                

(18) 

 

 And 

 

⋋𝑚𝑎𝑥= [2 ∝𝑖 𝑃𝑔𝑖.𝑚𝑎𝑥 + 𝛽𝑖]
𝑖

𝑚𝑎𝑥
                                              

(19)  

 

Function ∅(⋋)  is a piecewise-linear, non-decreasing 

function of  ⋋  between the values ⋋𝑚𝑖𝑛  and ⋋𝑚𝑎𝑥 with 

∅ (⋋𝑚𝑖𝑛)  ≤ 0  and  ∅ (⋋𝑚𝑎𝑥)  ≥ 0.  Solving  ∅(⋋) = 0   

can be determined, such as with the bisection method, by 
each time the interval in which the solution is present.  

This idea can be tested because ∅(⋋)  is positive if  ⋋  is 

too large, and it is negative when  ⋋ is too small.  The 

start interval can be  (⋋𝑚𝑖𝑛 ,⋋𝑚𝑎𝑥).  This iterative process 

is stopped if  |∅(⋋)| ≥∈  , with  ∈> 0 as a predefined 

accuracy measure. 

The second method (which is stated to be more 

accurate and faster because it avoids the many iterations 

of the previous method) is based on the following, 
 

𝑃𝑁 = ∑ max[0, 𝑃𝑔𝑖  (⋋) − 𝑃𝑔𝑖.𝑚𝑎𝑥    ]
𝑁𝑡𝑔
𝑖=1                            

(20) 

𝑃𝑋 = ∑ max[0, 𝑃𝑔𝑖  (⋋) − 𝑃𝑔𝑖.𝑚𝑎𝑥    ]
𝑁𝑡𝑔
𝑖=1                            

(21) 
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When 𝑃𝑁  and 𝑃𝑋  are the sums of violations to lower 

limits and upper limits, respectively, in reference ]6[ the 

following theorem is given, 

 

𝐼𝑓 𝑃𝑁 = 𝑃𝑋 = 𝑃𝑔𝑖  =  𝑃𝑔𝑖  (⋋), 𝑖 = 1 … . . 𝑁𝑡𝑔.    

 

It is the optimal solution to the economic dispatch 

problem 

 

𝐼𝑓 𝑃𝑁 ≤ 𝑃𝑋   all the units with 𝑃𝑔𝑖  (⋋), >  𝑃𝑔𝑖 𝑚𝑎𝑥   will 

have 𝑃𝑔𝑖  =  𝑃𝑔𝑖 𝑚𝑎𝑥   in the optimal solution 

 

𝐼𝑓 𝑃𝑁 > 𝑃𝑋   all the units with 𝑃𝑔𝑖  (⋋), <  𝑃𝑔𝑖 𝑚𝑎𝑥   will 

have 𝑃𝑔𝑖  =  𝑃𝑔𝑖 𝑚𝑎𝑥   in the optimal solution 

 

The implementation of a computational algorithm 
took place using this solution method.  In the next 

section, results obtained using this algorithm are 

presented. 

 

6. CASE STUDY USING THE IEEE-RTS 
 

An economic dispatch study for the IEEE-RTS, as 

described in [7], has been undertaken in this section. The 

maximum thermal generation of the IEEE-RTS is 3105 

MW. This system comprises 26 thermal generating units 

accompanied by seven types of thermal generating units.  

Table 3 illustrates the relevant information for these 
units, such as size and type.  Additionally, these units’ 

heat rates for several capacity levels are also shown in 

Table 3. In order to estimate coefficients of fuel-

generation curves of these thermal generating units, the 

capacity levels’ heat rates are used.  The estimated values 

are given in Table 4. All fuel-generation curves are 

shown in Figures 1 & 2.  These figures are drawn on as 

verification for the estimated values produced to fit the 

given points. These curves appear to be acceptable. 

Considering the fuel costs given in reference [7[ and 

shown in Table  5,  one can obtain the cost coefficients of 
the cost-generation function. It is achieved by 

multiplying the previously estimated coefficients by the 

fuel costs.  The results are shown in Table 6. To obtain 

the cumulative cost curve of each unit, these coefficient 

costs, especially  ∝ and, are used.  The use of equation 

(13) allows these incremental cost curves to be obtained.  

This equation can be rewritten as follows: 

⋋= 2 ∝𝑖 𝑃𝑔𝑖  + 𝛽𝑖                                                           

(22) 

 
Figure 3 presents the obtained curves, which are 

straight lines considering two points for each unit:  

minimum and maximum output capacity. It also shows 

that the cheapest one is the 400 MW (nuclear) unit, with 

the 20 M.W. and the 12 M.W. units being the most 

expensive. The maximum capacity obtained from the 

IEEE-RTS hydro units is 300 MW (6 units of 50 M.W. 

each).  The maximum load of the system in the year is 

2850 MW. If one considers hydro to generate their 

maximum capacity, the maximum load for the thermal 

generating units will be 2550 MW. Therefore, economic 

dispatch will be carried out for a load of 2550 MW using 

all the available thermal units. The iterative process to 

obtain the incremental cost is shown in Tables 7 & 8.  

Rather than using multiple settings in Table 7 for lower 

or upper limits, a single setting was used in their place. 

This process verifies the multiple setting – as shown in 
Table 8. Only four iterations are required to obtain the 

value of ⋋  (28.60868 $/MWh), the two tests give the 

same value. 

 
TABLE 3. DATA OF THE THERMAL GENERATING UNITS OF 

THE IEEE-RTS 

 

Size 

(MW) 

Type Fuel Output 

% Heat rate 

KBtu/kWh 

12 Fossil 6 oil 20.0 15.600 

 steam  50.0 12.900 

   80.0 11.900 

   100.0 12.000 

     

20 Combus. 2 oil 40.0 18.000 

 turbine  80.0 15.000 

   100.0 14.500 

     

76 Fossil  coal 20.0 15.600 

 steam  50.0 12.900 

   80.0 11.900 

   100.0 12.000 

     

100 Fossil  6 oil 25.0 13.000 

 steam  55.0 10.600 

   80.0 10.100 

   100.0 10.000 

     

155 Fossil  coal 35.0 11.200 

 steam  60.0 10.100 

   80.0 9.800 

   100.0 9.700 

     

197 Fossil  6 oil 35.0 10.750 

 steam  60.0 9.850 

   80.0 9.840 

   100.0 9.600 

     

350 Fossil  coal 40.0 10.200 

 steam  65.0 9.600 

   80.0 9.500 

   100.0 9.500 

     

400 Nuclear LWR 25.0 12.550 

 steam  50.0 10.825 

   80.0 10.170 

   100.0 10.000 
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Figure 1. Fuel-generation curves of the thermal generating units of the IEEE-RTS 
 

  

  

Figure 2. Fuel-generation curves of the thermal generating units of the IEEE-RTS 
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Figure 3. Incremental costs of the thermal generating units of the IEEE-

RTS 

 

TABLE  4. COEFFICIENTS OF FUEL-GENERATION CURVES OF 

THE THERMAL GENERATING UNITS OF THE IEEE-RTS 

 

Unit 

Size 

(M.W.) 

∝ 

(𝟏𝟎−𝟑) 
𝛽 𝜸 

12 59.7267 10.1205 13.21639 

20 41.6816 10.9996 53.33580 

76 9.42690 10.12085 83.69745 

100 9.57697 7.79295 124.4536 

155 5.56228 7.7253 172.2633 

197 1.30370 8.7055 130.968 

350 3.26315 7.43297 323.5509 

400 0.460694 8.90839 360.9801 

TABLE 5.  FUEL COSTS  

Fuel Cost 

#6 oil $ 2.30 MBtu 

#2 oil $ 3.0   MBtu 

Coal $ 1.20 MBtu 

nuclear $ 0.60 MBtu 

 

TABLE 6.  COST COEFFICIENTS OF THE THERMAL 

GENERATING UNITS OF THE IEEE-RTS 

 

Number 

Of 

Units 

Unit 

Size 

(M.W.) ∝ 

(𝟏𝟎−𝟑) 
𝛽 𝜸 

5 12 137.3714 23.27716 30.39769 

4 20 125.0449 32.99875 160.0074 

4 76 11.3123 12.14502 100.4369 

3 100 22.0270 17.92378 286.2434 

4 155 6.67474 9.27036 206.716 

3 197 2.99851 20.02265 301.2264 

1 350 3.91578 8.91956 388.2611 

2 400 0.276416 5.34503 216.588 

 

One should keep in mind the condition needed to 

obtain the optimal solution, which is explained in the set 

of equations making up equation (6) and Figure 3, to 

obtain a logical explanation of the iterative process 

shown in Table 8. In the first iteration, a value of 8.32002 

is obtained when  ⋋ . P.X. is greater than P.N.  With this, 
some units, units 25 and 26, are set to their maximum 

output limit (400 MW).  If a horizontal straight line is 

drawn at 8.32002 $/MWh, the generation values can be 

obtained graphically in Figure 3. When the incremental 

cost curve reaches this straight line, all generation values 

are given. 

 

 

 

TABLE 7. ITERATIVE PROCESS TO OBTAIN THE INCREMENT COST  

 
Iter 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

PX 
9962

.7 
7969

.4 
2676

.3 
2325

.8 
2064

.2 
1760

.4 
1403

.4 
977.
84 

777.
47 

551.
47 

294.
58 

.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 

PN 
8212

.7 
6564

.0 
2200

.3 
1849

.8 
1588

.2 
1296

.2 
979.
58 

602.
05 

424.
32 

264.
02 

249.
44 

232.
73 

187.
24 

141.
14 

94.4
18 

47.0
56 

37.8
80 

28.5
88 

19.1
79 

9.65
08 

.0 

 8.32 
9.97

1 
16.5
76 

17.1
58 

17.5
92 

18.0
96 

18.6
88 

19.3
95 

19.7
27 

20.1
02 

20.5
29 

21.0
18 

20.9
38 

20.8
57 

20.7
74 

20.6
91 

20.6
75 

20.6
58 

20.6
42 

20.6
25 

20.6
08 

 1 
-

54.4 

-

48.4 

-

24.4 

-

22.3 

-

20.7 

-

18.9 

-

16.7 

-

14.1 

-

12.9 

-

11.5 

-

10.0 
-8.2 -8.5 -8.8 -9.1 -9.4 .0 .0 .0 .0 .0 

 2 
-

54.4 
-

48.4 
-

24.4 
-

22.3 
-

20.7 
-

18.9 
-

16.7 
-

14.1 
-

12.9 
-

11.5 
-

10.0 
-8.2 -8.5 -8.8 -9.1 -9.4 -9.5 .0 .0 .0 .0 

 3 
-

54.4 
-

48.4 
-

24.4 
-

22.3 
-

20.7 
-

18.9 
-

16.7 
-

14.1 
-

12.9 
-

11.5 
-

10.0 
-8.2 -8.5 -8.8 -9.1 -9.4 -9.5 -9.5 .0 .0 .0 

 4 
-

54.4 
-

48.4 
-

24.4 
-

22.3 
-

20.7 
-

18.9 
-

16.7 
-

14.1 
-

12.9 
-

11.5 
-

10.0 
-8.2 -8.5 -8.8 -9.1 -9.4 -9.5 -9.5 -9.6 .0 .0 

 5 
-

54.4 

-

48.4 

-

24.4 

-

22.3 

-

20.7 

-

18.9 

-

16.7 

-

14.1 

-

12.9 

-

11.5 

-

10.0 
-8.2 -8.5 -8.8 -9.1 -9.4 -9.5 -9.5 -9.6 -9.6 .0 

 6 
-

98.7 

-

92.1 

-

65.7 

-

63.3 

-

61.6 

-

59.6 

-

57.2 

-

54.4 

-

53.1 

-

51.6 

-

49.9 

-

47.9 
.0 .0 .0 .0 .0 .0 .0 .0 .0 

 7 
-

98.7 
-

92.0 
-

65.7 
-

63.3 
-

61.6 
-

59.6 
-

57.2 
-

54.4 
-

53.1 
-

51.6 
-

49.9 
-

47.9 
-

48.2 
.0 .0 .0 .0 .0 .0 .0 .0 

 8 
-

98.7 
-

92.0 
-

65.7 
-

63.3 
-

61.6 
-

59.6 
-

57.2 
-

54.4 
-

53.0 
-

51.6 
-

49.9 
-

47.9 
-

48.2 
-

48.5 
.0 .0 .0 .0 .0 .0 .0 

 9 
-

98.7 
-

92.1 
-

65.7 
-

63.3 
-

61.6 
-

59.6 
-

57.2 
-

54.4 
-

53.0 
-

51.5 
-

49.9 
-

47.9 
-

48.2 
-

48.5 
-

48.9 
.0 .0 .0 .0 .0 .0 

 
1
0 

-

169.
1 

-
96.0 

195.
9 

221.
6 

240.
8 

263.
0 

289.
2 

320.
5 

76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 

 1 - - 195. 221. 240. 263. 289. 320. 335. 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 
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1 169.

1 

96.0 9 6 8 0 2 5 2 

 
1

2 

-

169.
1 

-

96.0 

195.

9 

221.

6 

240.

8 

263.

0 

289.

2 

320.

5 

335.

2 

351.

7 
76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 

 
1
3 

-

169.
0 

-
96.0 

195.
9 

221.
6 

240.
8 

263.
0 

289.
2 

320.
5 

335.
2 

351.
7 

370.
6 

76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 

 
1
4 

-
218.

0 

-
180.

5 

-
30.6 

-
17.4 

-7.5 3.9 17.4 33.4 40.9 49.5 59.1 70.2 68.4 66.6 64.7 62.8 62.5 62.1 61.7 61.3 60.9 

 
1
5 

-
218.

0 

-
180.

5 

-
30.6 

-
17.4 

-7.5 3.9 17.4 33.4 40.9 49.5 59.1 70.2 68.4 66.6 64.7 62.8 62.5 62.1 61.7 61.3 60.9 

 
1
6 

-
218.

0 

-
180.

5 

-
30.6 

-
17.9 

-7.5 3.9 17.4 33.4 40.9 49.5 59.1 70.2 68.4 66.6 64.7 62.8 62.5 62.1 61.7 61.3 60.9 

 
1
7 

-
71.2 

52.5 
547.

3 
590.

9 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 

 
1
8 

-
71.2 

52.5 
547.

3 
590.

9 
623.

4 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 

 
1
9 

-
71.2 

52.5 
547.

3 
590.

9 
623.

4 
661.

1 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 
155.

0 

 
2

0 

-

71.2 
52.5 

547.

3 

590.

9 

623.

4 

661.

1 

705.

5 

155.

0 

155.

0 

155.

0 

155.

0 

155.

0 

155.

0 

155.

0 

155.

0 

155.

0 

155.

0 

155.

0 

155.

0 

155.

0 

155.

0 

 
2

1 

-
1951

.4 

-
1675

.9 

-
574.

7 

-
477.

6 

-
405.

3 

-
321.

2 

-
222.

4 

-
104.

6 

-

49.2 
13.4 84.5 

166.

0 

152.

7 

139.

1 

125.

4 

111.

5 

108.

8 

106.

1 

103.

3 

100.

5 
97.7 

 
2

2 

-

1951
.4 

-

1675
.9 

-

574.
7 

-

477.
6 

-

405.
3 

-

321.
2 

-

222.
4 

-

104.
6 

-

49.2 
13.4 84.5 

166.

0 

152.

7 

139.

1 

125.

4 

111.

5 

108.

8 

106.

1 

103.

3 

100.

5 
97.7 

 
2
3 

-

1951
.4 

-

1675
.9 

-

574.
7 

-

477.
6 

-

405.
3 

-

321.
2 

-

222.
4 

-

104.
6 

-
49.2 

13.4 84.4 
166.

0 
152.

7 
139.

1 
125.

4 
111.

5 
108.

8 
106.

1 
103.

3 
100.

5 
97.7 

 
2
4 

-
76.5 

134.
4 

977.
7 

350.
0 

350.
0 

350.
0 

350.
0 

350.
0 

350.
0 

350.
0 

350.
0 

350.
0 

350.
0 

350.
0 

350.
0 

350.
0 

350.
0 

350.
0 

350.
0 

350.
0 

350.
0 

 
2

5 

5381

.4 

400.

0 

400.

0 

400.

0 

400.

0 

400.

0 

400.

0 

400.

0 

400.

0 

400.

0 

400.

0 

400.

0 

400.

0 

400.

0 

400.

0 

400.

0 

400.

0 

400.

0 

400.

0 

400.

0 

400.

0 

 
2
6 

5381
.3 

8369
.4 

400.
0 

400.
0 

400.
0 

400.
0 

400.
0 

400.
0 

400.
0 

400.
0 

400.
0 

400.
0 

400.
0 

400.
0 

400.
0 

400.
0 

400.
0 

400.
0 

400.
0 

400.
0 

400.
0 

 

 

TABLE 8. ITERATIVE PROCESS TO OBTAIN THE INCREMENTAL COST (MULTIPLE SETTING) 

 
Iter 1 2 3 4 

PX 9962.713 2676.328 .0 .0 

PN 8212.713 2200.329 232.7313 .0 

 8.32002 16.57642 21.01817 20.60868 

Generating unit 

1 -54.44 -24.39 -8.22⇑ .00 

2 -54.44 -24.39 -8.22⇑ .00 

3 -54.44 -24.39 -8.22⇑ .00 

4 -54.44 -24.39 -8.22⇑ .00 

5 -54.44 -24.39 -8.22⇑ .00 

6 -98.68 -65.67 -47.91⇑ .00 

7 -98.68 -65.67 -47.91⇑ .00 

8 -98.68 -65.67 -47.91⇑ .00 

9 -98.68 -65.67 -47.91⇑ .00 

10 -169.06 195.87⇓ 76.00 76.00 

11 -169.06 195.87⇓ 76.00 76.00 

12 -169.06 195.87⇓ 76.00 76.00 

13 -169.06 195.87⇓ 76.00 76.00 

14 -218.00 -30.58 70.24 60.95 

15 -218.00 -30.58 70.24 60.95 

16 -218.00 -30.58 70.24 60.95 

17 -71.19 547.29 155.00 155.00 

18 -71.19 547.29 155.00 155.00 

19 -71.19 547.29 155.00 155.00 

20 -71.19 547.29 155.00 155.00 

21 -1951.41 -574.66 166.00 97.72 

22 -1951.41 -574.66 166.00 97.72 

23 -1951.41 -574.66 166.00 97.72 

24 -76.55 977.69⇓ 350.00 350.00 

25 5381.36⇓ 400.00 400.00 400.00 

26 5381.36⇓ 400.00 400.00 400.00 

⇓Setting at upper limit, ⇑Setting at lower limit 

 

When the 400 MW units are set to their maximum 

output, the next iteration is realized, giving a value of 

16.5764. The second equation of the set of equations 

shown in (6)is verified by this increment in the value of 

⋋ . This equation states that this unit must be at its upper 

limit if the incremental cost of the unit is lower than the 

incremental cost of the system. When some units are set 

at their lower limits, the  ⋋ of the system decreases.  An 

example is between iterations 3 and 4, where the  ⋋ 

decreases from 21.01817 to 20.60868.  The 12 and 20 

M.W. units are set to their lower limits (0.0 MW).  This 

reduction in ⋋ verifies the third equation of the set of 

equations making up equation (6).  As seen from Figure 
3, if a horizontal line is drawn at 20.60868 $/MWh, the 
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incremental cost of these two units is greater than the ⋋  

of the system. Only units with a maximum capacity of 

100 MW (units14-16) and 197 MW (units 21-23) can 

generate the optimal solution between their maximum 

and minimum limits. 

The incremental cost curve of the IEEE-RTS is 

shown in Figure 4. The load variation is from zero to the 

maximum load supplied by the thermal generating 

system.  It can be seen from this Figure that ⋋  has a 
minimum that is equal to the incremental cost of its 

cheapest unit (400 MW-nuclear unit), as well as a 

maximum that is equal to the incremental cost of the 

most expensive unit (20 M.W. unit). 

The following test is undertaken to measure the 

effect of taking out a unit for maintenance on the 

incremental cost. The result of this test is shown in Table 

9, which shows that the  ⋋values are not affected when 

one of the two most expensive units (12 and 20 M.W.) is 

under maintenance – this is explained as follows.  At the 

load levels considered, these units are always at their  
lower limits (0 M.W.). This condition is the same 

whether they are connected to the system or are under 

maintenance. The greatest effect is when one of the 400 

MW units is under maintenance.  The value of ⋋ for a 

load of 2850 MW changes from 20.6087 to 22.1089 

$/MWh. 

 

 
Figure 4. Incremental cost curve of the IEEE-RTS 

 

 

 

 

 

 

 

 

 

 

TABLE 9. INCREMENTAL COSTS OF THE IEEE-RTS WITH UNITS UNDER MAINTENANCE 

 

Load 

(M.W.) 

Unit under maintenance (capacity in M.W.) 

12 20 76 100 155 197 350 400 

1650 11.1547 11.1547 11.1547 11.1547 12.3430 11.1547 13.4459 13.7287 

1675 11.2132 11.2132 11.2132 11.2132 12.4844 11.2132 13.5873 17.9385 

1700 11.2717 11.2717 11.2717 11.2717 12.6258 11.2717 13.7287 18.3056 

1725 11.3302 11.3302 11.3302 11.3302 12.7672 11.3302 17.9385 18.6727 

1750 11.5040 11.5040 11.5040 11.5040 12.9086 11.5040 18.3056 19.0398 

1775 12.1733 12.1733 12.1827 12.1733 13.0500 12.1733 18.6727 19.4069 

1800 12.3147 12.3147 12.3713 12.3147 13.1914 12.3147 19.0398 19.7740 

1825 12.4561 12.4561 12.5598 12.4561 13.3328 12.4561 19.4069 20.0368 

1850 12.5975 12.5975 12.7483 12.5975 13.4742 12.5975 19.7740 20.0808 

1875 12.7389 12.7389 12.9369 12.7389 13.6156 12.7389 20.0368 20.1248 

1900 12.8803 12.8803 13.1254 12.8803 13.7570 12.8803 20.0808 20.1688 

1925 13.0217 13.0217 13.3140 13.0217 18.0119 13.0217 20.1248 20.2128 

1950 13.1631 13.1631 13.5025 13.1631 18.3790 13.1631 20.1688 20.2568 

1975 13.3045 13.3045 13.6910 13.3045 18.7461 13.3045 20.2128 20.3008 

2000 13.4459 13.4459 17.9531 13.4459 19.1132 13.4459 20.2568 20.3448 

2025 13.5873 13.5873 18.3203 13.5873 19.4804 13.5873 20.3008 20.3887 

2050 13.7287 13.7287 18.6874 13.7287 19.8475 13.7287 20.3448 20.4327 

2075 17.9385 17.9385 19.0545 17.9458 20.0456 17.9385 20.3887 20.4767 

2100 18.3056 18.3056 19.4216 18.4965 20.0896 18.3056 20.4327 20.5207 

2125 18.6727 18.6727 19.7887 19.0472 20.1336 18.6727 20.4767 20.5647 

2150 19.0398 19.0398 20.0386 19.5978 20.1776 19.0398 20.5207 20.6087 

2175 19.4069 19.4069 20.0826 20.0331 20.2216 19.4069 20.5647 20.6527 

2200 19.7740 19.7740 20.1266 20.0789 20.2656 19.7740 20.6087 20.6967 

2225 20.0368 20.0368 20.1706 20.1248 20.3096 20.0427 20.6527 20.7406 

2250 20.0808 20.0808 20.2146 20.1706 20.3536 20.1050 20.6967 20.7846 

2275 20.1248 20.1248 20.2585 20.2164 20.3975 20.1672 20.7406 20.8286 

2300 20.1688 20.1688 20.3025 20.2622 20.4415 20.2295 20.7846 20.8726 

2325 20.2128 20.2128 20.3465 20.3080 20.4855 20.2918 20.8286 20.9166 

2350 20.2568 20.2568 20.3905 20.3538 20.5295 20.3540 20.8726 20.9606 
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2375 20.3008 20.3008 20.4345 20.3997 20.5735 20.4163 20.9166 21.0046 

2400 20.3448 20.3448 20.4785 20.4455 20.6175 20.4785 20.9606 21.0486 

2425 20.3887 20.3887 20.5225 20.4913 20.6615 20.5408 21.0046 21.0925 

2450 20.4327 20.4327 20.5665 20.5371 20.7055 20.6030 21.0486 21.1365 

2475 20.4767 20.4767 20.6104 20.5829 20.7494 20.6653 21.0925 21.1805 

2500 20.5207 20.5207 20.6544 20.6287 20.7934 20.7275 21.1365 21.3747 

2525 20.5647 20.5647 20.6984 20.6746 20.8374 20.7898 21.1805 21.7418 

2550 20.6087 20.6087 20.7424 20.7204 20.8814 20.8520 21.3747 22.1089 

 

7. CONCLUSION  
 

This paper has explored the solution to the economic 

dispatch problem. This problem is described as 

minimizing fuel costs in supplying a given load, 

comprising a constraint optimization problem solved 

using the LaGrange function. The fuel cost function for 

each thermal generating unit was considered as a 
quadratics function. It was stated that the conditions for 

an extreme value of the objective function, considered 

the total thermal generating cost, result when one takes 

the first derivative of the function with respect to each of 

the independent variables and sets the derivatives equal 

to zero.  

A solution methodology considering the minimum 

and maximum output capacity for each generating unit 

was described and tested. In addition, a solution method 

for the economic dispatch problem has been described in 

this paper. The input/output curves of the generators are 
considered as quadratic functions. A least-square 

estimation method is used to calculate the coefficients of 

these quadratic functions.  These two methods have been 

implemented in a computational algorithm.  A case study 

considering the IEEE-RTS was carried out.  Results of 

this application were presented, with some of them being 

verified against those of the literature review, proving the 

computational algorithms’ successful performance.  
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