

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 9, No.5 (Sep-2020)

E-mail: g.saini4888@live.com, skdubey1@amity.edu, sirbharti@gmail.com

 http://journal.uob.edu.bh

Novel Framework for Software Designing to Create

Reliable & Re-Usable Components

Gurpreet Singh Saini1, Sanjay Kumar Dubey1 and Sunil Kumar Bharti2

1 Department of CSE, ASET, Amity University Uttar Pradesh, Noida, India

2 DCSA, Central University of Haryana, Mahendergarh, India

Received 2 Mar. 2020, Revised 31 Mar. 2020, Accepted 2 Jul. 2020, Published 1 Aug. 2020

Abstract: Re-usability & Reliability are eminent factors in development of new software’s to control the increasing costs and

development period. The suppliers need to customize software as per the customers, however managing the same using re-usable

components is a difficult task and determining their reliability is a much tougher job. While using the re-usable code, the focus lies on

the coding or low-level design such that it can be merged easily with the new code. Though, it may be one of the options to chalk out

a customized solution but focus has to be put on functional requirement during the development period. These components with re-

usable need are to be developed with utmost care due to high degree of cohesion and less degree of coupling to other modules with

higher reliability factor. The novel framework discussed in this paper describes one such strategy wherein a module can be developed

with less coupling to the modules of the software’s being developed and reliability as one of the prime focus. The framework possesses

the ability to customize the development dependent upon the nature of the product under work. Hence, customizing the re-usable

component makes it quick to develop with few modifications at the functional and parametric level. These Re-usable components also

lead to short development time-periods along with man hours. Less modifications in modules will also lead to clear testing and hence,

less no. of bugs leading to low maintenance costs of the product. The paper also focusses the areas which can use this strategy for

development in Future scope section as summary.

Keywords: Software Reuse, Software Re-Engineering, Software Reliability, Software Project Management, Functional Paradigm

1. INTRODUCTION

With the growing focus on cost effective software
development, the industry has shifted towards process of
software reuse, which directly relates to development of
those components which could be easily migrated to newer
software’s [1]. These modules of re-use need to be
developed with consideration at all the levels of
development i.e, unit, module and even the application
level [2] such that they can be relied upon for delivery of
service with required functionality. The architecture must
have a focus to produce a module which is open to be
implemented in multiple software’s having similar
functionality. Hence, the module must be developed
keeping into mind the re-use of functionality [3], Design
pattern [4] [5], Architecture [6] and its Economic viability
[7] [8].

In order to develop a software module effectively, there
should also be concern towards non-technical aspects of the
software development and it’s re-use such as
organizational structure, code reuse, measurement of
product lines and also the economic prospects based upon

reliability factor [9]. This development means that the
module should be free from coupling through parameter
passing. Before merging of any module, a feasibility study
must be conducted so as to map the variables between the
re-usable module and the new software which are to be
merged. Any module which could be working fine in
System X will not mean that it will work in a similar
fashion in System Y [10]. An ideal definition of reliability
in such module can be defined as error free working of that
module when integrated with a new or existing system for
added functionality.

The novel Framework as discussed in series of work [2]
[11] [12] [13] focusses on one such methodology, wherein
the development is cycle oriented and independent of the
previous iterations. This complete process of development
is discussed in further sections followed by the comparative
results so as to establish the benefits of the framework.

2. LITERATURE REVIEW

Software re-usability and reliability being the need of
hour has strong focus of research fraternity. There has been

http://dx.doi.org/10.12785/ijcds/090519

994 Gurpreet S. Saini, et. al.: Novel Framework for Software Designing to …

http://journal.uob.edu.bh

numerous finding and discussions on methods and
technique’s to enhance the re-usability of a component
which further results in increased reliability. Initial
software development methods delivered the concept of re-
use only but were largely dependent upon the coding ability
and its change process for the same. [13] These methods
were later taken over by OOAD (Object Oriented Analysis
& Development) & Value Based Software Engineering
[14], putting focus on building product around needs which
are present and may occur in future hence adding reliability
as a need to consider. The method was taken a step further
in form of Architecture Oriented Development [15], which
had drawbacks in form of chaotic process management
affecting the reliability of the output module. All the
development models had software re-usability as a focused
outcome but none came near the approach set by
Component Based Software Engineering process [16]. The
Component model made a leap by developing independent
modules which were at the end joined together to give an
end product. These modules connected to each other to
form a large software catering to demands of users of
different domains by change in parameters. However, the
Component Based software development failed to answer
longer development period, reliability and platform
dependency and got limited to products of small scale use
like web services.

With the growing need of industry, almost 60 models
were put in all together between the year 1990-2018 [17]
and all the models failed to answer how the independent
modules will be built with multiple constraints under effect
of human intervention being the prominent cause of the
chaotic nature [2] [11]. The framework suggested by Saini
et al [2] [11] tried to answer how intervention can be
controlled using the fuzzy methodology and with resource
allocation and selection of development team as the heart
of process.

The Novel Framework Algorithm [11] has deep focus
on answering the key factors of how modules must interact
taking into consideration the key factors i.e. dependency
(functional & Non-Functional), Output, Non-technical Pre-
requisites and also the nature of module to be developed.

The key Focus of the Model lies in division of modules
into three major groups [11]:

 SOFT: Requirement with less focus and
parametric functional need which require a
little or No coding change over pre-developed
modules.

 MEDIUM: These requirement are easily to
answer as they may be developed as an
enhancement to a previous available repository
component with little change. They are the re-
usable components which require parametric
change.

 HARD: These components are newly to be
built components and require real focus of the

developer as they hold up work if not prepared
timely. These have direct effect on the cost of
project as they require extensive timelines.

The model has also focus on extensive use of collective
prioritization technique which takes into account feedback
by each team member on the sequencing of requirements
for development. This sequence allows the development of
system in a phased manner where each iteration of the
development produces an independent module which could
be re-used if and when required in the future. Each module
developed i.e. iteration output also carries a tag group
Soft/Medium/Hard in terms of their coupling requirements
and functional dependencies on external parameters. These
parameters depict how much reliable a module will be if
introduced in a system other than it is developed for. The
reliability of each module is tested extensively and same
will be elaborated upon in the design section.

The model referenced under novel framework
algorithm is focused on answering major three questions of
software development and component re-use.

 Prioritizing the requirements, on a collective
weighing methodology of fuzzy so as to have a
specific timeline, resources and costing for a
given module.

 A proper workflow so as to have a pre-
recognized matched resources to each module
for their independent development and
producing an early working model. Developing
the system with efficient switching of resources
will in turn lower down the cost.

 Efficient and rigorous testing framework which
will ensure lowering down the risk of “failures”
in the final product.

3. DESIGN AND OUTPUT

The focus of each model is to develop a product free of
defects and same lies at the heart of Novel framework
development model. The study of multiple development
model [18] [19] [20]shows that numerous factors affect the
stability of a system and the component re-use can be
clearly achieved if the issues marked in Figure 1 are
handled properly at relevant stage of system development.

These issues if not answered properly with right
strategy may in-turn even lead to product failure. Hence,
Novel framework proposes a development cycle to answer
these issues at their point of generation itself. The Novel
Framework follows an evolved version of Iterative
Development Life Cycle which is more of Function and
Need oriented. The requirement prioritization process in
Novel Framework algorithm is rigorous in scheduling the
requirements and follows keen detailing through means of
Dynamic graphs for the dependency marking with use of
fuzzy logic for the weighing mechanism as discussed in
saini et al [12].

 Int. J. Com. Dig. Sys. 9, No.5, 993-1000 (Sep-2020) 995

http://journal.uob.edu.bh

Figure 1. Issues at different level of SDLC which damage Component

Re-use & Reliability

This complete cycle of development is depicted using

Figure 2 which marks an Iterative cycle with multiple

outputs as functional modules developed out of prioritized

requirements. These cycles of development may be run in

a serialized manner or parallel depending upon the

Dependency graph. However, utmost care is given to the

output of each iteration such that maximum modules

developed should fall under Soft or Medium Category.

More the no. of HARD modules less re-usable it is for

future re-use.

This Iterative model of Novel Framework establishes a

process which makes this process more reliable in terms of

development module’s which are independent and free of

external inputs making manipulations in its internal

functionality. These modules also represent Evolutionary

mechanism as one module is added to an older working

module and hence providing an early working system

which can deliver some or part functionality at the initial

cycle of software development. This cycle is efficient in a

way that it runs multiple processing at same timeline. For

example if one module is being developed at a moment, the

previous one might be getting tested at developer end,

another one may be deployed at user end for acceptance

and a new one being studied for its requirements need. This

complete process leads to efficient resource planning as

each team will have a process to cater at a given timeline.

Hence, lowering the system cost.

The above mentioned process of validating the model
can be understood using the Figure 3 which shows how the
process will deliver the tested product for re-usability at
every iteration.

Figure 2. Evolutionary Model of Development removing Faults at

each Iteration.

Figure 3. Process of Testing and validating each component for the

System

Figure 3 also details how the components are integrated

once they are developed. The integration must follow the

relevant design documents of each level. The confirmation

to the specifications mentioned under each document type

will lead to less chances of faults and failures, which in turn

will lead to an economically viable system due to less

maintenance and for future integration to any other system

on requirement basis.

As Reliability and Re-usability are among the key

factors of functionality in Novel Framework, their

measurement directly marks the functionality of a provided

system. Reliability & Re-Usability [21] being a major

concern has been quoted in multiple text [20].

996 Gurpreet S. Saini, et. al.: Novel Framework for Software Designing to …

http://journal.uob.edu.bh

The basic formula for the calculation of Reliability

“(1)” and Re-usability “(2)” are:

𝑀𝑇𝐵𝐹 = 𝑀𝑇𝑇𝑅 + 𝑀𝑇𝑇𝐹 (1)

𝑀𝑇𝐵𝐹 = 𝑀𝑒𝑎𝑛 𝑇𝑖𝑚𝑒 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝑓𝑎𝑖𝑙𝑢𝑟𝑒

𝑀𝑇𝑇𝑅 = 𝑀𝑒𝑎𝑛 𝑇𝑖𝑚𝑒 𝑇𝑜 𝑅𝑒𝑝𝑎𝑖𝑟

𝑀𝑇𝑇𝐹 = 𝑀𝑒𝑎𝑛 𝑇𝑖𝑚𝑒 𝑇𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒

𝑅𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 (𝑅𝑓) =
𝐿𝑖𝑛𝑒𝑠 𝑂𝑓 𝐶𝑜𝑑𝑒 𝑈𝑠𝑒𝑑 𝑊𝑖𝑡ℎ𝑜𝑢𝑡 𝑀𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (𝐿𝑐)

𝐿𝑖𝑛𝑒𝑠 𝑂𝑓 𝐶𝑜𝑑𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑠𝑦𝑠𝑡𝑒𝑚 (𝐿)

(2)

As, the study of Novel framework has focus on

removing faults on the parallel cycle. There is a bound

timing constraint for removal of each fault for a given

module. The removal of concerned fault must finish before

the finish of next cycle as the new output module needs to

be integrated over the previous module. Hence, the testing

strategy implemented in the Novel Framework Algorithm

is a cyclic version as depicted in Figure 4 for Integration

and Acceptance testing. This only leads to focus of team

over one kind of testing at the last iteration output.

Figure 4. Testing Strategy Deployed In Novel Framework Algorithm

Since, the faults are removed at every single iteration,

they are reduced to N times, where N represents the no. of

iterations made. Now, (1) changes to:

𝑀𝑇𝐵𝐹(𝑛𝑒𝑤) =
𝑀𝑇𝑇𝑅+𝑀𝑇𝑇𝐹

𝑁
 (3)

On careful examination of (3), we can assume that the

faults in the complete development cycle are evenly

distributed over the N no. of iterations and when the last

Iteration is delivered, the no. of Faults left to manage are

only from two sources:

1. The current Iteration.

2. Merging of Output of Current iteration to the

previous existing product.

This relates to a very evenly distributed fault

management graph as shown in Figure 5. The solid line

depicts the no. faults which occurred in the previous cycle

of the Novel framework Development and dotted line

depicts the no. of faults solved in the Current cycle. It

shows that the same no of faults (previous iteration) are

solved before the faults of current iteration comes into

picture.

Figure 5. No. Of Faults Managed During Development Cycle taken
from Table 1 (Given in Section Result).

The Novel Framework algorithm has focus on four key

factors while the determination of re-usability factor.

1. Language of System: It is the key factor which

justifies whether the movement of code

between two systems can be made or not?

2. Architecture of System: This relates to

specialized software’s intended to deliver some

Domain related functionality and hence their

architecture for flow of data must resemble.

3. Algebra: This factor considers the constraints

and limitations of the component movement.

Each Component must adhere to algebra for

flow of data amongst itself and new system.

4. Abstraction & Refinement: This factor will be

determined if only the first three are satisfied.

This factor relates to decisions available and

decisions made over a component to make it

compliable in the new system.

These four key factors have a different graphs conduct

during the development period as shown in Figure 6 & 7.

2

4

3

5

4

3

2

4

0

2

4

3

5

4

3

2

4

Initial End

N
O

. O
F

FA
U

LT
S

NO. OF ITERATIONS

Faults Occurred (Prev Cycle)

Faults Solved (Current Cycle)

 Int. J. Com. Dig. Sys. 9, No.5, 993-1000 (Sep-2020) 997

http://journal.uob.edu.bh

Figure 6. Components Vs Refinement Level

Figure 7. Abstraction Level Vs Refinement Level

The Figure 6 depicts that the as the no. of re-usable

components increase in the system to be developed, the

Refinement level increases with the same rate in the general

system. However, the Figure 7 states that if the abstraction

level is high amongst the modules to be re-used, less is the

refinement level required by them. These two are well

taken care in the Novel Framework development cycle

which is also evident from the fact that each module in the

iterations are developed independently and only the

parameters are passed for the combined system output.

This can only be achieved once the system is developed

with global functions which are independent of internal

module coupling.

The Reusability Factor Rf will increase with the high

the level of abstraction taken into consideration in Novel

framework Algorithm. The Refinement is reduced with

global functions taking less parameters from class and only

passing the necessary parameters to the other module for

the functionality purpose. This passing will also in-turn

reduce the complexity of the code and make it more

efficient in terms of processing and throughput.

4. RESULT AND ANALYSIS

The novel framework Algorithm is a multi-tasking

evolutionary model which has multiple constraint

satisfying ability and for this it relies heavily upon its

ability to develop a Quality Module which is reliable and

re-usable. This is evident from the fact that every iteration

of Novel framework Algorithm delivers an early working

module which is tested rigorously and is independent of

intake from its predecessors.

The Novel Framework has major features in the

development cycle which conform its process flow and

adhere to its quality standard:

1. Software modules are developed

independently, it’s possible that two modules

may be worked upon in parallel keeping focus

on software re-use. These modules may or may

not have similar timelines, however the module

with shorter timeline is delivered followed the

ones with next higher timeline and so on.

2. The Novel Framework employs a rigorous

mechanism of requirement prioritization and

resource allocation to them. Hence, the faults

which occur are only of code. These coding

faults are generic and are easily traceable.

3. As the faults are detected once the module is on

working mode, the Novel Framework assures

the removal of these faults before the next

iteration is integrated to the current one.

4. As all the iterations are developed

independently with only variable and their

types as common point of flow between two

different modules, the coupling is very low.

5. The testing strategy as shown in figure 3

ensures a multi-level strategy for removal of

the defaults, this ensures that quality is not

compromised and a reliable product is

delivered at the user site.

The following Table 1 is comparative analysis of

multiple models of software development with key

attributes which directly affect the re-use and fault removal.

Each entry is descriptive of the approach taken by the

development model regarding the fault management.

Initial EndN
O

. O
F

C
O

M
P

O
N

EN
TS

REFINEMENT LEVEL

Initial End

A
B

ST
R

A
C

TI
O

N
 L

EV
EL

REFINEMENT LEVEL

998 Gurpreet S. Saini, et. al.: Novel Framework for Software Designing to …

http://journal.uob.edu.bh

TABLE I. COMPARATIVE ANALYSIS OF MULTIPLE MODELS FOR FAULT OCCURRENCE AND SOLUTION

Novel Framework Value Based Development Architecture Based

Development

Component Based

Development

Iteration Faults

Occur

Faults

Solved

Iteration Faults

Occur

Faults

Solved

Iteration Faults

Occur

Faults

Solved

Iteration Faults

Occur

Faults

Solved

1 5 0

1

5 0

1

5

16

1 5 0

2 4 5 4 0 4 2 4 2

3 3 4 3 0 3 3 3 4

4 4 3 4 0 4 4 4 3

5 0 4 0 16 0 5 0 5

Novel Framework Algorithm clearly steers past the

other three popular models by two major factors:

1. Every Iteration is delivered only when the

previous faults are answered. Hence keeping

each timeline and module of development

independent. This enhances the re-usability.

The component Based Development model

does not take care of this and hence the

deliverables are more prone to delay.

2. As it is Iterative in nature, the requirements are

justified and could be run parallel to maximize

the use of each functional team. This will lead

to early deliverables which can be tested and

deployed at user site for limited functionality.

The other functionalities are later added as

enhancements.

Now, assuming that each fault occurrence refers to

change in 2 LOC per fault, then the Table 2 comes into role.

Using the values in Table 2 and the Re-use Factor Table

3 is generated and it confirms the Novel Framework

delivers an early to use re-usable component which can be

deployed easily without and dependency other than

Hardware oriented.

Table 3 indicates that each model delivers a re-usable

component at some stage of development cycle if it’s

presumed that the platform remains same for the system

development with evidently no coupling between the

modules which is dependent directly on the process flow.

These models deliver a MEDIUM OR HARD re-usable

software module; but, Novel Framework due to its process

flow and strong resource prioritization technique delivers

an early working independent re-usable module which has

SOFT module development feature as its goal.

TABLE II. COMPARATIVE ANALYSIS OF FAULTS FOR RE-USE FACTOR

Novel Framework Value Based Development Architecture Based

Development

Component Based

Development

Iteration Faults

Occur

LOC

Faults

Solved

LOC

Iteration Faults

Occur

LOC

Faults

Solved

LOC

Iteration Faults

Occur

LOC

Faults

Solved

LOC

Iteration Faults

Occur

LOC

Faults

Solved

LOC

1 10 0

1

10 0

1

10

32

1 10 0

2 8 10 8 0 8 2 8 4

3 6 8 6 0 6 3 6 8

4 8 6 8 0 8 4 8 6

5 0 8 0 32 0 5 0 10

TABLE III. RE-USE FACTOR TABLE

Novel Framework Value Based Development Architecture Based

Development

Component Based

Development

Iteration Re-Use

Factor

Iteration Re-Use

Factor

Iteration Re-Use

Factor

Iteration Re-Use

Factor

1 0

1

0

1

0 1 0

2 1 0 0 2 0.4

3 1 0 0 3 0.57

4 1 0 0 4 0.5

5 1 1 1 5 1

 Int. J. Com. Dig. Sys. 9, No.5, 993-1000 (Sep-2020) 999

http://journal.uob.edu.bh

5. CONCLUSION

The results drawn through comparison amongst

multiple software modules depict that Novel Framework

has one strong feature of dividing the requirements and

development of each requirement as an independent

functional SOFT module. This independent module passes

through a rigorous testing framework to ensure the quality

of the system and enhanced reliability in terms of code

stability and value passing.

The Novel framework algorithm is a complex software

development module with evolutionary iterative strategy to

isolate the faults from module affecting the successor. This

strategy is also clear in answering the issues which might

occur at different stages of development cycle due to

Language, Algebra, Architecture and the Refinement of

modules at each level.

Removal of these all hindrances result in a goal oriented

module which is effective and developed in a shorter time

frame with highest quality and low cost.

6. FUTURE SCOPE

The Novel Framework algorithm is a generalized

approach and it could be refined for use in multiple

environments. However, few modifications can be done to

suit the platform of each product being developed such that

crisper handling or process flow can be derived. Each step

can itself be modified as per the need of the user and being

an easily understandable process, it can take AI tools as

decision enhancing means and can give relevant results

which could be deployed in Business Intelligence.

REFERENCES

[1] D. Manjhi and A. Chaturvedi, "Software Component Reusability
Classification in Functional Paradigm," 2019 IEEE International
Conference on Electrical, Computer and Communication
Technologies (ICECCT), Coimbatore, India, 2019, pp. 1-7.

[2] G. S. Saini, S. K. Dubey, S. K. Bharti, “Fuzzy Based Algorithm for
Resource Allocation”, Springer- Advances in Intelligent Systems
and Computing, Proceedings of the 5th International Conference on
Frontiers in Intelligent Computing: Theory and Applications,
FICTA 2016, Volume 1 – 515, pp 69-78

[3] F. Lanubile and G. Visaggio, “Extracting Reusable Functions by
Flow Graph Based Program Slicing”, IEEE Trans. Software Eng.
vol. 23, no. 4, pp. 246-259, Apr. 1997.

[4] N. Soundarajan, J. O. Hallstrom, “Responsibilities and Rewards:
Specifying Design Patterns”, Proceedings of 26th International
Conference on Software Engineering, pp. 666-675, May 2004.

[5] J. K. H. Mak, C. S. T. Choy, and D. P. K. Lun, “Precise Modeling
of Design Patterns in UML”, Proceedings of 26th International
Conference on Software Engineering, pp. 252-261, May 2004.

[6] Y. Peng, Y. Shi, J. Xiang-Yang, Y. Jun-Feng, L. Ju-Bo, Y. Wen-
Jie. “A Reflective Information Model for Reusing Software
Architecture”, ISECS 2008 International Colloquium on
Computing, Communication, Control, and Management. 2008.

[7] J. Sametinger, “Software Engineering with Reusable Components”,
Springer-Verlag Berlin Heidelberg. 1997.

[8] N. Padhy, S. Satapathy, R. P. Singh, “State-of-the-Art Object-
Oriented Metrics and Its Reusability: A Decade Review”, S. C.
Satapathy et al. (eds.), Smart Computing and Informatics, Smart
Innovation, Systems and Technologies, Springer, 2018

[9] Y. Xu, J. Ramanathan, R. Ramnath, N. Singh, S. Deshpande.
“Reuse by Placement: A Paradigm for Cross-Domain Software
Reuse with High Level of Granularity”, ICSR 2011, LNCS 6727,
pp. 69–77, 2011.

[10] G. S. Saini, S. K. Dubey, S. K. Bharti, “Fuzzy Based Novel
Framework for User Oriented Software Engineering”, Journal of
Engineering Science and Technology, Vol. 14, No. 1, 2019

[11] G. S. Saini, S. K. Dubey, S. K. Bharti, “Novel algorithm for
software planning & development” ACM - International
Conference Proceeding Series, Proceedings of ICAICR-2019.

[12] B. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. McLeod, M.
Merritt, “Characteristics of Software Quality”, North Holland,
1978.

[13] T. Dybå, B. A. Kitchenham, M. Jørgensen, “Evidence-Based
Software Engineering for Practitioners”, IEEE Software, Published
by the IEEE Computer Society. January-February, 2005

[14] R. Schmidt, “Software engineering: Architecture-driven
Development”, NDIA 15th Annual Systems Engineering
Conference, October-2012

[15] M. Yalhali, A. Chouarfia, “Towards a software component
assembly evaluation”, IET Software, 2015, Vol. 9, Issue 1, pp. 1–6

[16] Y. F. Perez, A. F. Estrada, C. Cruz, J. L. Verdegay, “Fuzzy Multi-
criteria Decision Making Methods Applied to Usability Software
Assessment: An Annotated Bibliography”, C. Berger-Vachon et al.
(eds.), Complex Systems: Solutions and Challenges in Economics,
Management and Engineering, Studies in Systems,Decision and
Control, Springer, 2018

[17] P. K. Kapur, H. Pham, A. Gupta, P. C. Jha,, “Software Reliability
Assessment with OR Applications”, Springer Series in Reliability
Engineering, 2011

[18] D. Kelly, “Scientific software development viewed as knowledge
acquisition: Towards understanding the development of risk-averse
scientific software” The Journal of Systems and Software, Elsevier,
Vol. 109, 2015

[19] C. Y. Chong, S. P. Lee, “Analyzing maintainability and reliability
of object oriented software using weighted complex network”, The
Journal of Systems and Software, Elsevier, Vol. 110, 2015

[20] B. M. Goel, P. K. Bhatia, “Analysis of reusability of object-oriented
systems using object-oriented metrics”, ACM SIGSOFT software
engineering notes, ACM; 2013. p. 1–5. Issue 4

[21] K. Tyagi, A. Sharma, “A rule-based approach for estimating the
reliability of component-based systems”, Advances in Engineering
Software, Elsevier, Vol 54, 2012

1000 Gurpreet S. Saini, et. al.: Novel Framework for Software Designing to …

http://journal.uob.edu.bh

Gurpreet Singh Saini
Gurpreet Singh Saini is a doctoral

candidate at Amity University

Uttar Pradesh, Noida working in

the field of Software Resource

Planning and Reliability. He has

keen interest in developing

solutions for the software industry

which can reduce the costing and

efforts put in a software project.

Also, currently he is working as an

Instructor of ICT in Directorate of

Education, Government of NCT of

Delhi, India.

Sanjay Kumar Dubey

Dr. Sanjay Kumar Dubey is

currently associated with Amity

University Uttar Pradesh, Noida

as Associate Professor and Head

of Research Division for Amity

School of Engineering And

Technology for Computer

Science and relevant streams. His

Areas of interest Include

Algorithm Analysis, Software

Engineering and Big Data

Analysis.

Sunil Kumar Bharti
Dr. Sunil Kumar Bharti is

currently associated with

Galgotias University Uttar

Pradesh, Noida and Central

University Of Haryana,

Mahendergarh as Associate

Professor for Computer Science

and relevant streams. His Areas

of interest Include Big Data,

Software Engineering, Algorithm

Design and Neural Architecture.

