

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 10, No.1 (Apr-2021)

E-mail: yaser.ali@uomosul.edu.iq, ayad_alezzi@uomosul.edu.iq

 http://journals.uob.edu.bh

A Platform for Porting IPv4 Applications to IPv6

Yasir Mahmood1 and Ayad Abdulqader1

1Department of Computer Science, College of Computer Science and Mathematics, University of Mosul, Mosul, Iraq

Received 12 May. 2020, Revised 1 Jan. 2021, Accepted 29 Jan. 2021, Published 21 Apr. 2021

Abstract: Developing a new application passes through several stages needing considerable effort from analysts, designers, and

programmers, which can be extremely time-consuming and often results in the unnecessary expenditure of large sums of money. It is also

known that there is currently a myriad of applications that only support the internet protocol version 4 (IPv4) network. Building a new

application from scratch that supports the internet protocol version 6 (IPv6) network is very expensive. Re-engineering these applications

that support the IPv4 network to make them support the IPv6 network is the best solution to reduce effort and cost. The aim of this paper is

to design and implement a platform used for automatically porting the C++, C#, and visual basic IPv4 network applications to IPv6, by

using a partial re-engineering approach. The re-engineered system portion shall be integrated with the current non-re-engineered portion.

The main process of porting is conducted by replacing all the IPv4 dependent statements with their corresponding IPv6 dependent

statements. Furthermore, all constant values of IPv4 addresses are replaced by suitable IPv6 ones. The proposed porting platform will

reduce the duration time for porting network applications to support IPv6 to minutes rather than hours, days, months in manual porting.

Keywords: IPv4; IPv6; Porting; Re-Engineering; Platform

 INTRODUCTION

Every device connected to the internet needs a logical
address to be defined on the Internet. This logical address is
used in the process of directing information to the concerned
device. Given that the number of devices connected to the
internet is increasing, this device needs logical addresses for
all these devices connected to the internet. The current
protocol used is the internet protocol version 4 (IPv4), and it
is expected that in the projected future this protocol cannot
meet the needs of addresses for new devices. The need for a
protocol that meets these needs has emerged, leading to the
role of internet protocol version 6 (IPv6) to solve this
problem, as this new protocol provides more logical
addresses than IPv4.

Because IPv4 cannot meet the needs of the current
internet, the use of IPv6 is necessary to solve the problems
encountered by IPv4. Nowadays, applications spread over the
internet use the IPv4 network to communicate with servers or
to communicate with each other. This paper proposes the
design and implementation of a porting platform, which port
applications (written for the IPv4 network) to applications
working on the IPv6 network with the lowest cost and effort,
instead of building a new application from scratch that needs
great effort and huge cost.

 literature review

Established scholars in [1] including companies and
academic institutions have been inclined to port existing
applications to IPv6. In [2],

International Business Machines Corporation (IBM)

explores the principles behind a simple IPv6 system; in

particular, how IPv6 solves the address space problems and

large routing tables. IBM also discusses tunneling, mapped

addresses, and porting IPv4 to IPv6 applications. In [3], it

outlines the improvements that must be made for an IPv4-

compatible application to run within a network environment

of IPv6. Then, in [4], it discusses the transition from IPv4 to

IPv6 network applications and the way to port the IPv4

broadcast applications to IPv6. This IPv6, however, does not

have an implemented broadcasting concept, and several

other issues during the transition from the platform to IPv6.

Furthermore, in [5], the article describes the author's

experiences in porting session initiation protocol (SIP) to

IPv6. Next, [6] explains (1) how IPv6 applications can be

introduced; (2) how IPv4 applications can be ported to IPv6;

and (3) what specific application porting problems should be

considered. After that, [7] discusses different issues when

porting an IPv4 application to IPv6 with an emphasis on

issues facing an application developer. In addition, [8]

contains instructions for source code porting with some

examples, used to illustrate the required changes in the client

http://dx.doi.org/10.12785/ijcds/100148

502 Yasir Mahmood & Ayad Abdulqader: A Platform for Porting IPv4 Applications to IPv6

http://journals.uob.edu.bh

and server components. Moreover, [9] includes experiences

of a case study for porting applications to IPv6. It presents

the results of the effort to port OpenH323, an open-source

H.323 platform to IPv6, and can serve as guidelines for other

projects with similar goals. Additionally, [10] concludes

with general recommendations for new IPv6 applications

and provides some examples of code porting processes.

Besides, [11] explains the application scenarios sensitive to

changes to the IP protocol and the solutions that permit

applications to work with different IP versions on

heterogeneous networks.

 Comparing related works to the proposed porting

platform

The research mentioned above discusses how to port an

application from IPv4 to IPv6 manually and provides some

instructions that help in the porting process. Our work

implements porting platform that also provides guidance to

the developer in the process of porting application, as well

as the proposed porting platform that ports the application

automatically and reduces the effort and time to complete the

porting process. The proposed platform provides the

possibility to compile and build the source code after it is

ported and creates an executable file for the ported source

code, as well as providing the possibility to test the ported

application.

More importantly, the development process using the

proposed platform is performed automatically. The proposed

platform provides the possibility to update the configuration

of the development process and this feature allows the

platform to be dynamic with the ability to port applications

in languages other than C++, C#, and visual basic, by placing

the appropriate instructions in the configuration file. Table 1

summarizes the comparison.

The proposed porting platform is distinguished from the

other works with the following two main features:

1. Automatic: the porting process is done

automatically.

2. General: can port any IPv4 application in any

language by entering the appropriate instructions

in the configuration file.

 Problem statement

In the near future, the IPv6 protocol will become widespread

and this development will require applications that use the

IPv6 protocol. This entails the need for designing and

programming new applications that meet the needs of this

protocol. Building applications from scratch is not an easy

task, needing effort, time, and financial resources. Most

applications currently use the IPv4 protocol, however, taking

advantage of IPv4 applications and re-engineering them to

making them compatible with the IPv6 protocol is an

important step in terms of reducing the effort, time, and

money needed to create new applications that work on the

IPv6 protocol. We propose to implement a platform to

porting the IPv4 applications to IPv6 automatically.

TABLE 1. COMPARING RELATED WORKS AND PROPOSED

PLATFORM

 IPV4 AND IPV6 SOCKET PROGRAMMING

In this section, the structure of the socket in IPv4 and how to

port it to IPv6 will be reviewed.

 Socket programming

A socket is an abstraction through which an application

may send and receive data, in much the same way as an

open-file handle allows an application to read and write data

to stable storage. A socket allows an application to plug into

the network and communicate with other applications that

are plugged into the same network. Network applications

based on sockets have a basic procedure for client and server

as shown in Figure 1.

 Porting IPv4 server application to IPv6

Create socket:

SOCKET listening = socket(AF_INET, SOCK_STREAM,

0);

Bind IP address and port number to socket and listening

sockaddr_in hint;

R
e

fere
n

ce

n
u

m
b

e
r

In
stru

ctio
n

 fo
r

P
o

rtin
g so

u
rce

co
d

e

Save
 Effo

rt

Save
 d

u
ratio

n

M
ake

 p
o

rtin
g

p
latfo

rm

Te
stin

g

A
u

to
m

atically

p
o

rtin
g

static o
r

d
yn

am
ic

1 √ × × × × × S

2 √ × × × × × S

3 √ × × × × × S

4 √ × × × × × S

5 √ × × × × × S

6 √ × × × × × S

7 √ × × × × × S

8 √ × × × × × S

9 √ × × × × × S

10 √ × × × × × S

11 √ × × × × × S

p
ro

p
o

se
d

p
latfo

rm

√ √ √ √ √ √ D

 Int. J. Com. Dig. Sys. 10, No.1, 501-508 (Apr-2021) 503

http://journals.uob.edu.bh

hint.sin_family = AF_INET;

hint.sin_port = htons(54000);

hint.sin_addr.S_un.S_addr = INADDR_ANY;

bind(listening, (sockaddr*)&hint, sizeof(hint));

listen(listening, SOMAXCONN);

Figure. 1. The basic procedure for client-server application

Accept connection

SOCKET clientSocket = accept(listening,

(sockaddr*)&client, &clientSize);

For porting the IPv4 server application to IPv6, all the IPv4

dependent statements are replaced with their corresponding

IPv6 using Table 2.

SOCKET listening = socket(AF_INET6, SOCK_STREAM,

0);

sockaddr_in6 hint;

hint.sin6_family = AF_INET6;

hint.sin6_port = htons(54000);

hint.sin6_addr = in6addr_any;

bind(listening, (sockaddr*)&hint, sizeof(hint));

listen(listening, SOMAXCONN);

SOCKET clientSocket = accept(listening,

(sockaddr*)&client, &clientSize);

 Porting IPv4 Client application to IPv6

Create socket:

SOCKET sock = socket(AF_INET, SOCK_STREAM, 0);

Assign IP address:

sockaddr_in hint;

hint.sin_family = AF_INET;

hint.sin_port = htons(port);

hint.sin_addr.s_addr = in4addr_loopback;

connect to server:

int connResult = connect(sock, (sockaddr*)&hint,

sizeof(hint));

For porting the IPv4 client application to IPv6, all the IPv4

dependent statements are replaced with their corresponding

IPv6 using Table 2.

Create socket:

SOCKET sock = socket(AF_INET6, SOCK_STREAM, 0);

Assign IP address:

sockaddr_in6 hint;

hint.sin6_family = AF_INET6;

hint.sin6_port = htons(port);

hint.sin6_addr = in6addr_loopback;

connect to server:

int connResult = connect(sock, (sockaddr*)&hint,

sizeof(hint));

 Domain Name System (DNS)

If an application requires a name service, a DNS name

resolver shall be used to convert it into a list of addresses of

the destination. It should be pointed out that the IP version

for carrying DNS queries is independent of the protocol

version of the addresses in the DNS data records. This means

that you can connect to a DNS server by IPv4 to look for

IPv6-related information and vice versa. If you want to

access your application through IPv6 or to connect with

other services using IPv6, you would probably want to add

(or ask your Systems Administrator to include) the relevant

records in your DNS server using IPv6 data on the name used

for accessing your device [21].

 Internet control message protocol (ICMP)

The translator drops ICMP with a single hop and ICMP

messages with unknown Type fields silently. The Header

Format of ICMPv4 and ICMPv6 are almost the same for the

remaining ICMP message. The only exception is the ICMP

Parameter Problem message, which has an 8-bit pointer

value in ICMPv4 and a 32-bit pointer value in ICMPv6 [21].

Interface parts of DNS and ICMP application

programming interface (API) for both IPv4 and IPv6 are the

same, so no need for porting. If that has any change in the

API it is simply added to the API for the IPv4 and the

corresponding API for the IPv6 in the configuration file [22].

3. PROPOSED ALGORITHM

The proposed algorithm relies on the concept of re-

engineering in the process of developing applications from

IPv4 to IPv6, where a partial re-engineering approach was

relied upon. Figure 2 shows the proposed algorithm used to

implement the porting platform.

listen() // listen socket

accept() // accept

client claim

recv()/send() //

receive/send data

Close(socket) // close

socket

Socket() // create

socket

bind() // bind IP

address

Socket() // create

socket

Connect() // connect to

socket

recv()/send() //

receive/send data

Close(socket) // close

socket

TCP server TCP client

504 Yasir Mahmood & Ayad Abdulqader: A Platform for Porting IPv4 Applications to IPv6

http://journals.uob.edu.bh

Figure. 2. Flow chart of the proposed algorithm

 Software Re-engineering

Re-engineering is the process of amending the product in

some new form. Re-engineering means making fundamental

changes to the code. Software re-engineering is concerned

with re-implementing legacy systems to make them more

maintainable. Re-engineering may involve re-documenting

the system, organizing and restructuring the system,

translating the system to a more modern programming

language, and modifying and updating the structure and

values of the system’s data. The functionality of the software

is not changed and, normally, the system architecture also

remains the same.

There are several specific approaches to re-engineering,

that involve a particular way of achieving the same goal, i.e.,

to build the target system (re-engineered system version).

 Partial re-engineering

In partial re-engineering, the system is only partially re-

engineered, where it is separated into two parts: the first part

for re-engineering and the second part remains the same. The

re-engineered system portion shall be integrated with the

current non re-engineered portion; hence this reduces

potential system improvements. Firstly, the existing system

shall be separated into two parts, i.e., a section which must

be re-engineering and another which will not be re-

engineering. The re-engineered portion can be part of the

system that must be changed or a larger portion of the system

that consists of the part that must be changed and another

part whose inclusion simplifies the interface to the remainder

of the system. Secondly, the re-engineering work must be

done. Thirdly, the portions of the system must be merged to

produce the target system. Figure 3 shows the three steps of

the partial re-engineering approach. In this paper, partial re-

engineering is used to re-engineer the applications, because

only part of the applications related to IPv4 should be

changed to accommodate the applications with the IPv6

network, thus achieving the desired goal of reducing cost and

effort.

Figure. 3. partial re-engineering

 Porting process

The process of porting applications is considered

exceedingly difficult unless the developer (the person who

performs the porting) is aware of the special structure of

IPv6 as well as possessing knowledge of IPv6 programming.

After much effort, through the use of partial re-engineering

of applications, a quick method in the process of applying

the porting will be obtained as this method provides a

process of separating a portion of the source code for the

application of IPv4 that needs to be changed in order for the

application to be suitable for work on the IPv6 network. The

process of porting the source code needs to be familiar with

all aspects of developing IPv6 applications like the details of

header files and libraries. The porting process passes through

two main phases: analysis and generation. The former is

used for finding all IPv4 dependent statements. The latter is

used for generating the IPv6 version after replacing all IPv4

dependent statements into their corresponding IPv6

statements as shown in Fig. 4.

Figure. 4. The main phases of porting process

Re-

engineerin

sp
lit

m
erg

e

Existing
system

Target
system

Rest of code

analysis synthesis

IPv4

application
IPv6

statements

IPv4 application with

highlighted IPv4

statement

 Int. J. Com. Dig. Sys. 10, No.1, 501-508 (Apr-2021) 505

http://journals.uob.edu.bh

 The design of the proposed platform

The porting process passes through several phases. The

first phase is the reading, and it works on reading the source

code of the application. The second phase is the analysis,

where the IPv4 dependent statements are found. The third

phase is the exchanging phase where it changes the IPv4

dependent statements to the equivalent IPv6 dependent

statements. The last phase is the testing phase where it works

to ensure the integrity of the resulting source code after

porting and generate the IPv6 application. Figure 5 shows

the phases of the proposed porting platform and the input and

the output for each phase.

Figure. 5. The phases of the porting platform

 Reading phase

The program works by reading the source code file

written in C ++, C#, visual basic and converts the file

extension to a text file to be readable and editable by the

platform in the remaining phases.

 Analyzing phase

After reading the source code file, the program uses

either the client configuration or server configuration as a

dataset in the porting process depending on the source code

that was read. The dataset contains all the statements that

must be ported as shown in Table 2 and Table 3. The

program uses them to detect the IPv4 statements that must

be ported with the IPv6 statements. There is an executable

file checkv4.exe that is included in the Microsoft Windows

Software Development Kit (SDK) and intended to furnish

you with recognizes potential issues or features code that

could profit from IPv6-competent capacities or structures.

However, the recognition is limited on the basic items from

Table 2 like AF_INET, sockaddr_in, while the other items

are not recognized. The main process of this phase is to find

the IPv4 dependent statements depending on the dataset and

use them in the next phase.

 Exchanging phase

After finding all the IPv4 dependent statements, the next

step is to replace all the IPv4 dependent statements with the

corresponding IPv6 dependent statements and inform the

users to add the IP and port addresses that are used to

communicate. The principal procedure of this phase is

replacing the IPv4 dependent statements with the

corresponding IPv6 dependent statements. That is shown in

Table 2 and Table 3.

TABLE 2. IPV4 STATEMENT AND CORRESPONDING IPV6

STATEMENT FOR C++ LANGUAGE

IPV4 dependent

statements

IPV6 dependent

statements

127.0.0.1 ::1

AF_INET AF_INET6

SOCKADDR_IN SOCKADDR_IN6

sockaddr_in sockaddr_in6

sin_family sin6_family

sin_addr.S_addr

sin_addr.S_un.s_addr

sin_addr

sin6_addr

sin_port sin6_port

in4addr_loopback in6addr_loopback

INADDR_ANY in6addr_any

TABLE 3. IPV4 STATEMENT AND CORRESPONDING IPV6
STATEMENT FOR C# AND VISUAL BASIC LANGUAGE

IPv4 dependent

statements

IPv6 dependent

statements

127.0.0.1 ::1

.Any .IPv6Any

.InterNetwork .InterNetworkV6

.Any .IPv6Any

.Loopback .IPv6Loopback

 Testing phase

Save the ported source code and then compile it, and build

the ported object code to generate a (.exe) file and test the

new IPv6 application by running the ported source code as

shown in Figure 6. The compilation and building processes

are performed by the Developer Command Prompt for VS

2019 in the windows environment by the command

(Cl/EHsc mycode.cpp) to generate the mycode.exe.

506 Yasir Mahmood & Ayad Abdulqader: A Platform for Porting IPv4 Applications to IPv6

http://journals.uob.edu.bh

Figure. 6. Steps of the testing phase

 REDUCING COST EVALUATION

Depending on the basic constructive cost model

(COCOMO) equations, the effort and duration are increased

if the line of code is increased. The equation of COCOMO

is written as

𝐸 = 𝑎 ∗ (𝐾𝐿𝑂𝐶)𝑏. (1)

𝐷 = 𝑐 ∗ (𝐸)𝑑. (2)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑠𝑜𝑛 = 𝐸/𝐷. (3)

where E is the effort applied in person-months, D is the

development time in chronological months, KLOC is the

estimated number of lines of code for the project (expressed

in thousands). The coefficients a and c and the exponents b

and d are given in Table 4.

TABLE 4. COEFFICIENTS VALUE

Software Project a b c d

Organic 2.4 1.05 2.5 0.38

Semi-detached 3.0 1.12 2.5 0.35

Embedded 3.6 1.20 2.5 0.32

The process of calculating the effort and duration time of

the application to be ported takes place in three stages.

The first stage is calculating the effort and time during

the reading phase; the process of reading the source code of

the application to be ported. After reading the source code,

we can easily count the line of code that exists in the source

code file. Then, by applying the COCOMO equation we

obtain the estimated effort and time needed to develop the

source code of the application.

By using the COCOMO equations the Effort is calculated by

this equation: 𝐸 = 2.4 ∗ (𝐾𝐿𝑂𝐶)1.05 and the duration time is

calculated by this equation: 𝐷 = 2.5 ∗ (𝐸)0.38

The second stage is calculating the effort and duration

time during the analyzing phase; the process of finding all

the IPv4 dependent statements and highlighted them by

counting the line of code of the IPv4 dependent statements.

Then, by applying the COCOMO equation we find the effort

and time needed for analyzing and find IPv4 dependent

statement.

The third stage is calculating the effort and duration time

during the exchanging phase. The process of exchanging all

the IPv4 dependent statements with corresponding IPv6

dependent statements is also considered extra effort and

extra time for general effort and time, and by applying the

COCOMO equation we find the effort and time needed for

porting IPv4 dependent statements to corresponding IPv6

dependent statements. The proposed porting platform

reduces the effort and time for developing the IPv4

application.

Table 5 shows the estimated effort and duration time and

number of persons required for a different line of code for

developing the source code. After applying the COCOMO

equation, it is noted that the effort and duration increase

progressively as the number of source code lines increases.

Figure 7 and Figure 8 show the curvature of the effort

and duration time in Table 5 required to develop a different

size of the line of code. We note that effort and duration

increase depending on the size of lines of code.

We use three case studies of client/server applications in

three different languages to evaluate the proposed porting

platform. The size of these applications is 184 lines of code

for C++ application, 151 lines of code for C# application,

and 334 lines of code for a visual basic application.

Figures 9, 10, and 11 show the estimated effort, duration,

and number of persons needed using COCOMO equations

(1), (2), (3) for developing these three cases of client/server

applications manually.

TABLE 5. ESTIMATED EFFORT, DURATION, AND NUMBER OF

PERSONS FOR A DIFFERENT SIZE OF LINES OF CODE

lines of code Effort

(person-month)

Duration

(month)

Number of

persons

100 0.21 1.39 0.15

200 0.44 1.83 0.24

300 0.67 2.156 0.31

400 0.91 2.41 0.37

500 1.15 2.64 0.43

1000 2.4 3.48 0.68

1500 3.67 4.09 0.89

2000 4.96 4.59 1.08

2500 6.28 5.02 1.24

3000 7.60 5.40 1.40

3500 8.94 5.74 1.55

4000 10.28 6.06 1.69

5000 13.00 6.62 1.96

5500 14.37 6.88 2.08

Compile Build Run

IPv6
dependent

statement

Rest of

code

Object

file

EXE

file

IPv6

application

 Int. J. Com. Dig. Sys. 10, No.1, 501-508 (Apr-2021) 507

http://journals.uob.edu.bh

Figure. 7. Effort required to develop source code

Figure. 8. Duration time required to develop source code

The first application in C++ language and its size is (184)

lines of code, so to port this application manually we find it

needs 0.41 person-month effort and 3.21 months’ duration

time and 0.13 person as shown in Figure 9. By using the

proposed porting platform to port this application we note

that it needs several minutes to complete the porting and

building the source code and running the object, so by

comparing the proposed porting platform to manually

porting, the proposed porting platform reduces the duration

time to several minutes while it was 3.21 months.

Figure. 9. The effort, duration time, and number of persons for developing

applications manually for C++ language

The second application is in C# language and its size is

(151) lines of code. To port this application manually we find

it needs 0.33 person-month effort and 3.16 months’ duration

time and 0.10 person as shown in Figure 10. By using the

proposed porting platform to port this application we note

that it needs several minutes to complete the porting and

compiling the ported source code and build the object. So,

by comparing the proposed porting platform to manually

porting the proposed porting platform the duration time was

reduced to several minutes while it was 3.16 months.

Figure. 10. The effort, duration time, and number of persons for

developing applications manually for C# language

The third application in visual basic language and its size

is (334) lines of code. So, to port this application manually

we find it needs 0.76 person-month effort and 3.40 months’

duration time, and 0.22 person as shown in Figure 11. By

using the proposed porting platform to port this application

we note that it needs several minutes to complete the porting

and compiling the source code and build the object. By

comparing the proposed porting platform to manually

porting, the proposed porting platform reduced the duration

time to several minutes while it was 3.40 months.

0.41

3.21

0.13

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50

C++ application

Effort (person-month) Duration time (month) person

0.33

3.16

0.10
0.00

1.00

2.00

3.00

4.00

C# application

Effort (person-month) Duration time (month)

person

508 Yasir Mahmood & Ayad Abdulqader: A Platform for Porting IPv4 Applications to IPv6

http://journals.uob.edu.bh

Figure. 11. The effort, duration time, and number of persons for

developing applications manually for visual basic language

The proposed porting platform reduces the duration time

needed for porting the application and economizes the effort.

A significant result was obtained because the analyzing,

translating, and testing was done automatically by the

proposed porting platform.

 CONCLUSION

Re-engineering turns out to be helpful for creating new

applications utilizing existing ones. Re-engineering does not

totally change the current applications, however, with the

assistance of the current applications, it creates new and

altered models, acquires a few capacities from the previously

running applications, and adds a few capacities to deliver

new applications. When we want to develop any network

application, we have to look at the transport model in the

source code. The transport model (socket procedures) is

responsible for the network connection and the data

transmission, so in our case of porting IPv4 network

applications to IPv6, we must be porting the transport model

to make the application run in IPv6 network. By using a

partial re-engineering, we can separate parts of the code,

which is the transport model, that needs to be ported from

the rest of the code. The effort and duration are reduced,

using the proposed platform and the result is IPv6

application from IPv4 application with the lowest effort and

time. The effort and cost are decreased using this platform if

the source code was large in a line of code compared to

manual porting.

REFERENCES

[1] R. Gilligan, S. Thomson, J. Bound, and W. Stevens, “RFC2553: Basic

Socket Interface Extensions for IPv6.” RFC Editor, 1999.

[2] S. Sundaram, “Writing a simple IPv6 program.” 2001, [Online].

Available: https://www.ibm.com/developerworks/library/wa-

ipv6.html.

[3] S. S. Johar, “Porting IPv4 Applications to IPv6 By.”

2002,[Online].Available:

https://www.hpc.mil/images/hpcdocs/ipv6/porting_ipv4tov6_johar_2

002.pdf.

[4] H. J. and M. D H, “Transition of IPv4 Network Applications to IPv6

Applications [TIPv4 toTIPv6],” in IEEE International Conference on

emerging trends in computing(ICETiC-2009), Jan. 2009.

[5] T. Robles, R. Ortiz, and J. Salvachja, “Porting the session initiation

protocol to IPv6,” IEEE Internet Comput., vol. 7, no. 3, pp. 43–50,

2003.

[6] “Implementing IPv6 Applications.” 2010, [Online]. Available:

[7] K. Ettikan and T. W. Chong, “PORTABILITY ISSUES FOR IPv4 to

IPv6 APPLICATIONS,” APRICOT, 2001.

[8] E. M. Castro, “Porting applications to IPv6 HowTo,” Lab. Over Next

Gener. Networks.

[9] C. Bouras, A. Gkamas, D. Primpas, and K. Stamos, “Porting and

performance aspects from IPv4 to IPv6: The case of OpenH323,” Int.

J. Commun. Syst., vol. 18, no. 9, pp. 847–866, 2005.

[10] T. De Miguel and E. M. Castro, “Programming guidelines on

transition to IPv6,” Transition, no. January. 2003, doi: 10.1.1.6.7440.

[11] E. M. Castro-Barbero, T. P. de Miguel-Moro, and S. Pavón-Gómez,
“Transition of applications to IPv6,” IPv6 More than A Protoc., vol.

6, no. 2, p. 15, 2005.

[12] H. Singh, “Software Reengineering: New Approach to Software
Development,” International Journal Of Research In Education

Methodology www.cirworld.com Council For Innovative Research,

vol. 1, no. 3. 2012.

[13] Stevens WR. Network Programming, vol. 1 (2nd edn). Prentice-Hall:

Englewood Cliffs, NJ, 1998.

[14] M. Xue and C. Zhu, “The socket programming and software design
for communication based on client/server,” in 2009 Pacific-Asia

Conference on Circuits, Communications and Systems, 2009, pp.

775–777.

[15] Zeadally S, Raicu I. Evaluating IPv6 on Windows and Solaris.

IEEE Internet Computing 2003; May–June:51–57.

[16] R. S. Pressman and B. R. Maxin, Software Engineering_ A
Practitioner’s Approach-McGraw-Hill Education, EIGHTH EDI.

Raghu Srinivasan, 2014.

[17] L. Kalita, “Socket programming,” Int. J. Comput. Sci. Inf. Technol.,

vol. 5, no. 3, pp. 4802–4807, 2014.

[18] S. G. ZHANG, S. LIANG, and G. X. FU, “Transition of socket
application from IPv4 to IPv6,” J. on Communications, Beijing,

vol.27(11), pp.24-27, November 2006.

[19] W. Stevens, M. Thomas, E. Nordmark, and T. Jinmei, “RFC3542:
Advanced Sockets Application Program Interface (API) for IPv6.”

RFC Editor, 2003.

[20] Gilligan R, Thomson S, Bound J, McCann J, Stevens W. Basic socket
interface extensions for IPv6. Internet Engineering Task Force RFC

3493, February 2003.

[21] M. E. Fiuczynski, V. K. Lam, and B. N. Bershad, “The Design and
Implementation of an IPv6/IPv4 Network Address and Protocol

Translator.,” in USENIX Annual Technical Conference, 1998.

[22] J.-ichiro itojun. Hagino, IPv6 network programming. Amsterdam:

Elsevier-Digital Press, 2005.

0.76

3.40

0.22

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00

visual basic application

Effort (person-month) Duration time (month) person

 Int. J. Com. Dig. Sys. 10, No.1, 501-508 (Apr-2021) 509

http://journals.uob.edu.bh

Yasir Ali Mahmood
B.Sc. in Computer Science 2009/ Mosul

University.

M.Sc. student in Computer Science/
Mosul University2018-2020.

M.Sc. in Computer Science/ University

of Mosul 2020

Ayad Hussain Abdulqader

B.Sc. in Computer Science 1989/ Mosul

University.
M.Sc. in Computer Science 1993/
Nahrain University.

Ph.D. in Computer Networks 2012/

University Sains Malaysia.

