
 

 

 

International Journal of Computing and Digital Systems 
ISSN (2210-142X)  

Int. J. Com. Dig. Sys.9, No.5 (Sep-2020) 

 

 

E-mail: ali.almajed@gmail.com, fred_lacy@subr.edu, yasser_ismail@subr.edu 

  http://journals.uob.edu.bh 

 

Smart Detection Under Different Weather Conditions 
 

Ali Al Majed1, Fred Lacy1 and Yasser Ismail1 

 
1Electrical Engineering Department, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge,  

LA, USA 

 
Received 6 Jun.2020, Revised 17 Jul. 2020, Accepted 29 Jul. 2020, Published 1 Sep. 2020 

 

 

Abstract: Object detection is one of the most essential and challenging tasks in computer vision and deep learning. The 

main goal of object detection is to determine whether the image has an object from predefined categories and then to 

return the class and spatial location of that object. Researchers achieved a significant improvement in object detection in 

both speed and accuracy due to the ability to learn from raw pixels. There are three main stages in object detection: region 

proposal, feature extraction, and classification. The current state-of-art object detection algorithms are divided into two 

categories: two-stage and one-stage. The two-stage algorithms perform the first two stages separately, while the one-stage 

algorithms perform these two stages together. A two-stage algorithm like faster R-CNN is known for its superb accuracy, 

while the one-stage algorithms like YOLO and SSD are much faster than two-stage algorithms. Still, they lack accuracy, 

especially with a small object. This work targeted the accuracy, so the two-stage detection algorithms, faster R-CNN, 

were adopted as the basic structure for the detection network, evaluated under different weather conditions. The study 

implemented and tested the faster R-CNN with VGG16 as a feature extractor with images under differing weather 

conditions. First, the study trained the network under different training parameters to obtain the best detector. Then, the 

study tested and evaluated the two best detectors under different weather conditions. The results show that the accuracy 

of the detector is affected differently under different conditions, and more complex environments result in greater 

inaccuracy. 
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1. INTRODUCTION 

Object detection, as a subdivision of computer vision, 

is considered to be one of the difficult computer visions 

tasks. It deals with detecting instances of predefined 

categories in images. Object detection constitutes an 

essential and significant task in a wide range of 

applications like robot vision, pedestrian and face 

detection, security, digitalizing texts, intelligent video 

surveillance, automotive safety, and advanced driving 

assistant systems (ADAS). The objective of object 

detection is to determine the existence of any instances of 

an object from predefined categories (e.g., person, cat, car) 

in an image and return the class and spatial location (via 

bounding box) of that object. 

Object detection is a challenging task, mainly due to 

the complexity of the background. The detector attempts 

to detect objects in the foreground and eliminate the 

background. The complexity of the background most 

affects the accuracy, and weather conditions tend to 

increase the complexity of the background. The weather 

conditions may also affect the lighting and the clarity of 

the image; therefore, these affect the detection accuracy. 

Recently, object detection gained significant 

improvement by employing deep learning technologies. 

Deep Learning, as a powerful methodology for learning 

feature representation artificially in the image, led to 

notable development in object detection. The accuracy of 

the object detection algorithm provides a significant 

reason to choose which algorithm to use. Faster R-CNN 

[1] is known for its accuracy, but further evaluation must 

be applied to test its accuracy under different conditions. 

The purpose of this work is to evaluate the accuracy of 

faster R-CNN under different weather conditions. 

Researchers focused on a hand-crafted method to 

extract a low-level feature to detect pedestrians by 

designing a manual algorithm. Recently, the researchers 

initially combined the hand-crafted method with a deep 

convolutional network to take advantage of the 

development of deep learning. Development in the feature 

extraction stage for the detection of the human has been in 

place since Dalal presented the Histogram of Oriented 

http://dx.doi.org/10.12785/ijcds/090501 
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Gradients (HOG) to detect pedestrian [2].  To improve 

HOG, which computes multi-resolution image features 

explicitly, Pitor approximated these features via 

extrapolation and called this method aggregated channel 

features (ACF) [3]. ACF used boost decision trees with 

orthogonal (single feature) splits, while Locally 

Decorrelated Channel Features (LDCF) used decision 

trees with oblique (multi-feature) splits, which were more 

effective given the highly correlated data; Nam proposed 

this approach [4].  

The paper is organized as follows, in section 2, a 

literature review is elaborated. Object detection algorithms 

are elaborated in section 3. Methodology and Implemented 

Algorithm is discussed in detail in section 4. The training 

procedure is described in section 5. Simulation and 

implementation are discussed in section 6. A conclusion 

will be drawn in section 7.  

2. LITERATURE REVIEW 

Recently, Sermant employed the convolutional neural 

network (ConvNet) in pedestrian detection, showing that 

ConvNet ‒ with a few twists ‒ yields competitive results. 

[5]. To further benefit from deep learning for pedestrian 

detection, Tome et al. [6] proposed a new architecture by 

analyzing and optimizing each step of the detection 

pipeline and called the pipeline (DeepPed).  Object 

detection presents three main stages: region proposals, 

feature extraction, and classification, as seen in Figure 1. 

 
Figure 1. A common pipeline for object detection. 

A. Region Proposals 

The sliding window (Figure 2) is a traditional region 

proposals technique. The technique works by running a 

window from right to left and top to bottom to thoroughly 

search for a RoI, by the use of a different size of the 

window to detect an object at a different viewing location. 

However, the sliding window tends to generate a huge 

number of region proposals. 

 
Figure 2. Sliding Window [7]. 

The other method used in the region proposals is 

Selective search [8].  This alternate method combines the 

strength of both the exhaustive search and segmentation 

methods to generate a region of proposals. The method 

applies the segmentation as a selective search that returns 

a small set of objects location as compared to the sliding 

window. Figure 3 shows the outputs of the selective search 

method. There exist three goals of the selective search 

algorithm: accounts for all object scales holds a diverse set 

of techniques to deal with all cases and displays a 

reasonably fast speed. Forming the basis of the selective 

search takes a hierarchical and bottom-up grouping 

algorithm. Then, the selective search algorithm uses four 

complementary similarity criteria to deal with all cases: 

color, texture, size, and fill. 

 

Figure 3. The image in the left is the input image, while the image in the 
right is the output of the selective search method [9]. 

The algorithm performed in two steps: first, it added 

all bounding boxes that corresponded with the segmented 

parts to the list of proposed regions. Second, the algorithm 

applies a bottom-up grouping of the adjacent segments 

based on similarity. All these measures are within the 

range [0, 1], which serves to facilitate the combinations of 

these measures.  The last complementary is the sum of all 

of the four measures (Equation 7).  The First 

complementary measure which measures color similarity 

is 𝑠𝑐𝑜𝑙𝑜𝑢𝑟(𝑟𝑖 , 𝑟𝑗)  (Equation 1), which uses one-

dimensional color histograms for each color channel using 

25 pins. This leads to a color histogram 𝑐𝑖 =  {𝑐𝑖
1, … , 𝑐𝑖

𝑛} 

for each region 𝑟𝑖  with dimensionality n = 75, when the 

three color channels are used. The color histograms are 

normalized using the 𝐿1 norm. The similarity is measured 

using the histogram intersection: 

scolour(ri, rj) =  ∑ min(ci
k, cj

k)n
k=1                 (1) 

 The color histograms can be efficiently propagated 

through the hierarchy by:  

𝐶𝑡 =
𝑠𝑖𝑧𝑒(ri)× 𝐶𝑖+𝑠𝑖𝑧𝑒(rj)× 𝐶𝑗

𝑠𝑖𝑧𝑒(ri)+ 𝑠𝑖𝑧𝑒(rj)
                                   (2) 

The size of a resulting region is simply the sum of its 

constituents: 

𝑠𝑖𝑧𝑒(rt) =  𝑠𝑖𝑧𝑒(ri) +  𝑠𝑖𝑧𝑒(rj)                          (3) 
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The second complementary measure which measures 

texture similarity is 𝑠𝑡𝑒𝑥𝑡𝑢𝑟𝑒(𝑟𝑖 , 𝑟𝑗)  (Equation 4). The 

histogram is extracted using a bin of size 10 for each 

orientation for each color channel. This led to a texture 

histogram Ti = {ti
1,··· ,ti

n} for each region ri with 

dimensionality n = 240, using three color channels. The 

study used the L1 norm to normalize the texture 

histograms. The histogram intersection measured the 

similarity: 

𝑠𝑡𝑒𝑥𝑡𝑢𝑟𝑒(𝑟𝑖 , 𝑟𝑗) =  ∑ 𝑚𝑖𝑛 (𝑡𝑖
𝑘 , 𝑡𝑗

𝑘)𝑛
𝑘=1                       (4) 

The research applied an efficient propagation of the 

texture histograms through the hierarchy in the same 

manner as the color histograms. 

The third complementary measure, encouraging small 

regions to merge early is 𝑠𝑠𝑖𝑧𝑒(𝑟𝑖 , 𝑟𝑗)(Equation 5).  This 

measure forced regions in S to be of similar sizes 

throughout the algorithm ‒ 𝑠𝑠𝑖𝑧𝑒(𝑟𝑖 , 𝑟𝑗)  ‒ defined as the 

fraction of the image that 𝑟𝑖 and 𝑟𝑗 jointly occupy: 

𝑠𝑠𝑖𝑧𝑒(𝑟𝑖 , 𝑟𝑗) =  1 − 
𝑠𝑖𝑧𝑒(𝑟𝑖)+𝑠𝑖𝑧𝑒(𝑟𝑗)

𝑠𝑖𝑧𝑒(𝑖𝑚)
                  (5) 

Size (im) denotes the size of the image in pixels 

The fourth complementary measure measured how 

well the region 𝑟𝑖 and 𝑟𝑗 fit into each other, is 𝑠𝑓𝑖𝑙𝑙(𝑟𝑖 , 𝑟𝑗) 

(Equation 6). The notion intent is to fill gaps to avoid any 

holes. Only the regions’ size and the containing boxes 

were used to keep the measure fast. Specifically, BBij is 

defined to be the tight bounding box around 𝑟𝑖 and 𝑟𝑗. Now 

sfill(ri, rj) =  becomes the fraction of the image contained 

in BBij which is not covered by the regions of 𝑟𝑖 and 𝑟𝑗: 

sfill(ri, rj) =  1 −  
size(BBij)−size(ri)−size(rj)

size(im)
       (6) 

The final similarity measure is a combination of the above 

four: 

s(ri, rj) =  a1scolor(ri, rj) + a2stexture(ri, rj) +

a3ssize(ri, rj) + a4sfill(ri, rj)                                   (7) 

where ai ∈ {0,1} denoted whether the similarity measure 

is used or not. As we aim to diversify our strategies, we do 

not consider any weighted similarities. 

B. Feature Extraction 

The second stage in object detection is feature 

extraction. The first breakthrough in the object detection 

was in 2005 when Dalal et al. [2] proposed the Histogram 

of oriented gradients (HOG). Dalal, accompanied by his 

team, detected a pedestrian with reasonable accuracy at 

that time. The HOG descriptor will read an image as an 

array of size n. Then, HOG used the distribution of the 

direction of gradients as features to determine whether 

there is a pedestrian. By approximation of multi-resolution 

features via extrapolation from nearby scales, Pitor et al. 

[3] improved HOG by combining the descriptor with 

channel features. This method is called the aggregated 

channel feature (ACF). By utilizing the high correlation, 

the study proposed an efficient feature transform to 

remove correlation in local neighborhoods; this approach 

was called the local decorrelated channel feature (LDCF) 

[4].  LDCF uses decision trees with oblique splits because 

the feature can be more productive with correlated 

features, such as when the topology of the resulting 

classifier matches the natural topology of the data.  

2012 was the first year for the Convolutional Neural 

Network (CNN) to induce attention in object detection, 

once Kirzhevsky [10] used the CNN to win the ImageNet 

Large Scale Visual Recognition (ILSVR) 2012 

competition. Using CNN, Kirzhevsky dropped the 

classification error from 26% to 15%. CNN takes as an 

input an image with a fixed size and then processes that 

image through different layers to extract a feature map. By 

employing a differentiable function, every layer carries the 

ability to perform a transformation from one volume to 

another.  

Simo et al. [11] attempted to improve the content by 

increasing the depth of the network through the use of an 

architecture that employed very small convolutional filters 

with the size of (3 × 3), astride 1, the same padding, and 

by max-pooling a layer of 2 × 2 filters of stride 2. As a 

result, Visual Geometry Group-16 (VGG16) did not 

incorporate a large number of hyperparameters. The 

researchers used this architecture (Figure 4) to win the 

(ILSVR) competition in 2014 in the localization and 

classification tracks, respectively. As shown in Figure 4, 

VGG16 follows the same arrangement of convolutional 

and max-pooling layers consistently throughout the 

architecture. The last 3 layers construct 2 Fully Connected 

(FC) layers, followed by softmax function for output. 

VGG16 has 16 layers with weights, and is considered to 

be an outstanding model architecture, composed of a large 

network with around 138 million parameters.    



 

 

770                     Ali Al Majed, et.al: Smart Detection Under Different Weather Conditions 

 

http://journals.uob.edu.bh 

 

Figure 4. VGG16 Architecture. 

3. DETECTION ALGORITHMS 
The detection algorithms divide into two categories: 

two-stage detectors and one-stage detectors [11]. Two-

stage detectors perform the detection task in two stages. 

First, this category generates regions of interest (RoI) that 

may have an object and then extracts a feature map form 

those RoI’s. The most popular approach in the two-stage 

detection algorithm is a faster R-CNN. On the other hand, 

the one-stage detection algorithm performs both steps 

together. The most popular one-stage detection algorithms 

are YOLO and single-shut-detector (SSD). YOLO and 

SSD eliminate the region proposals stage and perform the 

region proposals and feature extraction in one step. 

One of the most popular two-stage detection 

algorithms is Faster R-CNN.  Girshick et al. proposed a 

region-based convolutional neural network (R-CNN) [12] 

as an inspiration, due to the breakthrough in object 

detection using CNN. R-CNN combines the region-based 

method with a convolutional network which applies a 

high-capacity CNN to bottom-up region proposals, using 

selective search as an external region proposal method to 

extract about 2000 RoI. Regions are resized and then fed 

to the CNN network for feature extraction. The last step is 

to feed the patches to the linear Support Vector Machine 

(SVM) to predict the category of each patch. R-CNN does 

not share computation; instead, it performs a deep 

ConvNet forward pass for every RoI. It obtains a superb 

accuracy; however, it is very slow and computationally 

costly.  

Figure 5 shows the system overview of R-CNN: (1) 

The network takes an input image with a fixed size, (2) 

uses the selective search method to generate around 2000 

proposals, (3) uses the CNN to extract features for each 

proposal, and (4) uses linear SVM for classification [12]. 

 
Figure 5. Object Detection System Overview [12]. 

 

Girshick proposed fast R-CNN [7] as an improvement 

of R-CNN, after recognizing the drawbacks. R-CNN 

detection is slower because it extracts the feature for every 

proposal. Moreover, the training is done in a multi-stage 

pipeline and is expensive in both space and time, 

extracting the feature of the entire input image using CNN. 

Also, it uses the selective search as an external feature 

extractor to generate a RoI, which when combined with 

the corresponding feature map, forms patches for object 

detection.  Figure 6 shows the architecture of Faster R-

CNN; first, it uses selective search to generate RoI, and 

CNN to extract the feature map from the input image. 

Then, the model utilizes an RoI pooling layer to combine 

RoI and feature maps. Finally, the model applies softmax 

and abounding boxes regressor to output the class and 

bounding box offset.   

Faster R-CNN extracts the feature map from the input 

image, rather than extracting the feature from each RoI, 

similar to R-CNN ‒ thus exhibiting why it is much faster 

than R-CNN. 

 
Figure 6. The Architecture of Fast R-CNN [7]. 

 

Fast R-CNN uses ROI pooling to wrap the patches to 

a fixed size, then feeds the patches to a fully connected 

layer for classification and localization. ROI pooling 

reduces the feature maps into an identical size by splitting 

the input feature map into a fixed number (k) of roughly 

equal regions, and then by applying max pooling on every 

region. Therefore, the output of ROI pooling is always a 

fixed number (k), regardless of the size of the input. Lastly, 

fast R-CNN employs the softmax function for 

classification and probability bounding box regressor for 

localization. One of the essential capabilities of fast R-

CNN is that it trains all network weights with back-

propagation. [7] 

Faster R-CNN [1] replaces the selective search 

method, the slowest part of the fast R-CNN, by Region 

Proposal Network (RPN) to generate RoI. RPN shows a 
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much less computational cost when compared to selective 

search (external), and also shares most of the computation 

with an object detection network. Besides, RPN ranks 

region boxes (called anchors) and then proposes the ones 

most likely containing objects (Figure 7). Anchor boxes 

handle the variations in aspects of ratio and scale of objects. 

The RPN may be trained end-to-end by stochastic gradient 

descent (SGD) and back-propagation. 

 
Figure 7. Region Proposal Network (RPN) [1]. 

 

Figure 8 shows high-level diagrams of the two-stage 

detection algorithm frameworks. The diagrams indicate 

the main differences between the region-based detection 

algorithms. R-CNN extracts the features from each RoI 

generated by the selective search method, which causes 

the process to become very slow. Fast R-CNN, on the 

other hand, extracts the feature map directly from the input 

image to speed up the process. Then it uses the RoI pooling 

layer to combine ROIs with feature maps. Since the 

selective search method is the slowest part of fast R-CNN, 

faster R-CNN replaces it with a Region Proposal Network 

(RPN). 

The second category of the detection algorithm is a 

one-stage detection algorithm. One of the most popular 

algorithms in this category is YOLO [13]. YOLO deals 

with object detection as a regression problem to predict 

bounding boxes and class probabilities at once from the 

full image. Figure 9 shows how YOLO works; it divides 

every image into an SXS grid, and every grid cell predicts 

B bounding boxes and confidence scores for those boxes. 

The accuracy of the bounding boxes is reflected by the 

confidence score, as well as whether there is an object or 

not. The confidence score reflects how likely the box has 

an object, and how accurately it thinks the box is a 

boundary box. If no other object-located confidence score 

is zero, the finding is equal to the intersection over union 

(IOU) between the predicted box and the ground truth box. 

Each prediction box has five elements: x,y,w,h, and a 

confidence score. Figure 10 shows the architecture of 

YOLO: The network has 24 convolutional layers followed 

by two fully connected layers. and uses a reduction layer 

of size 1 × 1 to reduce the feature space from preceding 

layers [13]. 

 

 
Figure 8. High-level diagrams of the two-stage detection algorithms 

frameworks. 

 

 
Figure 9.YOLO divides the image into SXS for each grid, and each grid 

cell predicts B bounding boxes, confidence for those boxes, and C class 
probabilities [13]. 

 

Liu proposed that YOLOv2 [14] remains focused on 

improving the recall and localization of YOLO while 

maintaining the classification accuracy. The researcher 

simplifies the network and then makes the representation 

simpler to learn. YOLOv2 uses a high-resolution 

classification network that enhances accuracy by replacing 

the fully connected layer with an anchor box to predict 
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bounding boxes, which increase the predicted boxes per 

image. These replace the classification model VGG-16 

with a new proposed model, Darknet-19, that displays 19 

convolutional layers and five max-pooling layers. 

 
Figure 10. YOLO Architecture [13]. 

The other most popular one-stage algorithm is a single 

shot detector (SSD) [15]. SSD is a technique that uses a 

single, deep, neural network for detecting objects in 

images. SSD eliminates region proposals and a subsequent 

pixel or feature resampling stages, thus encapsulating all 

computation into a single network. This approach makes it 

simple, relative to other techniques that require region 

proposals. By employing small convolutional filters 

applied to feature maps, SSD predicts box offsets and 

category scores for a set of default bounding boxes. To 

achieve high detection accuracy, SSD produces 

predictions of different scales from feature maps and 

explicitly separates predictions by an aspect ratio. Figure 

11 shows the architecture of SSD, which uses VGG-16 as 

a base network, then adds several feature layers. These 

layers predict the offset of different aspect ratios and 

scales and their associated confidences to the default box. 

 
Figure 11. SSD Architecture [15]. 

 

Figure 12 shows the high-level diagrams of both 

YOLO and SSD. YOLO predicts detection, directly using 

a small set of candidate regions, employing fully 

connected layers at the top of the network for 

classification. On the other hand, SSD uses multiple scales 

at the top of the network to perform detection by operating 

on multiple convolutional feature maps; each predicts 

category scores and box offsets for bounding boxes of 

appropriate size. 

Two-stage detectors use RPN to generate nearly 300 

proposals to glean the best performance. The overall speed 

decreases because each region must pass through 

convolutional layers and fully connected layers for 

classification to fine-tune the bounding boxes. The ideas 

based on this approach gives one of the best performances 

in Common Objects in Context (COCO) detection 

challenge, even though these do not suit the real-time 

application [1]. 

Generally, one-stage detectors are not as accurate as 

two-stage detectors, even though the one-stage detectors 

are faster [17]. YOLO is extremely fast, but it is not as 

accurate as of the two-stage detectors. Moreover, YOLO 

struggles with small objects, because it only predicts one 

type of object in one grid [13]. Another disadvantage of 

The YOLO algorithm is that it uses a feature map solely 

on a single scale. SSD, on the other hand, considers 

prediction from various feature maps, instead of one, thus 

improving the accuracy over YOLO. Yet SSD still 

presents a lower performance, as compared to two-stage 

detectors [18].     

The two-stage methods reached supremacy over the 

best performing object detection of deep, convolutional, 

neural networks [18]. 

 

 
Figure 12. High-level Diagrams of the one-stage detection algorithm 

frameworks [16]. 

4. METHODOLOGY AND IMPLEMENTED ALGORITHM 

To obtain the best result from the detection algorithm 

that is used in this work, the research applied the following 

methodology. First, the study preprocessed the training 

and testing data by labeling the class and bounding boxes 

in each image. Second, the study determined the optimal 

size of the training data set by training and then tested the 

model with four different dataset sizes and with three 

different number of anchor boxes (3,6,9) (Please see Table 

1). 

Then, the study used the optimal size of the dataset to 

further tune the training parameters, training the base 

model with a different number of anchors from 3 to 9. 

Finally, the study evaluated the best models showing the 

best accuracy results under different weather conditions. 

The weather conditions were showers, rain, snow, 

nighttime, high pedestrian traffic, and heavy background.    
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TABLE 1. THE SIZES OF THE DATASETS USED TO DETERMINE 
THE OPTIMAL SIZE OF THE TRAINING DATA, EACH DATASET 

WAS TRAINED WITH FOUR DIFFERENT ANCHOR BOXES. 

 

Set Number I II 

Set Size (images) 40 60 

Number of Epochs 20 20 

Number of 

Anchors 
3 6 9 12 3 6 9 12 

Model Name 

I-
2

0
-3

 

I-
2

0
-6

 

I-
2

0
-9

 

I-
2

0
-1

2
 

I-
2

0
-3

 

I-
2

0
-6

 

I-
2

0
-9

 

I-
2

0
-1

2
 

Set Number III IV 

Set Size (images) 80 100 

Number of Epochs 20 20 

Number of 
Anchors 

3 6 9 12 3 6 9 12 

Model Name 

I-
2

0
-3

 

I-
2

0
-6

 

I-
2

0
-9

 

I-
2

0
-1

2
 

I-
2

0
-3

 

I-
2

0
-6

 

I-
2

0
-9

 

I-
2

0
-1

2
 

 

A. Implemented Algorithm 

The algorithm divided into four steps: loading the 

dataset, creating a faster R-CNN detection network, 

training, and evaluation. The first step was loading the 

dataset. This step involved loading the ground truth data 

for training and testing. The ground truth data presented 

image information together with the classes and the spatial 

location of bounding boxes.  The study then created 

datastores for loading the image, as well as label data for 

training and evaluation.  

The second step was Creating faster R-CNN Detection 

Network. This step involved preprocessing the training 

data, which included image resizing, data augmentation, 

and choosing the network parameters. The preprocessing 

of the training data included image resizing and 

augmentation. The resizing of the image was required 

since the input layer expected the input image to be the 

same size.  The study used the data augmentation to 

increase the number of training images artificially, as well 

as to also reduce overfitting. 

The faster R-CNN parameters included a selection of 

the feature extraction CNN, feature layer, number of 

anchor boxes, and number of classes to be detected. The 

third step was to choose the training options that contribute 

more to the accuracy of training network that involved 

maximum epochs, min-Batch sizes, and learning rates.  

The last step after training the network was evaluating 

the resulted trained detector. In this step, the trained 

detector using the trained data by comparing the prediction 

with the ground truth data. The output showed the average 

precision (AP) of the comparison. 

B. Data Preprocessing 

Dataset 

The research obtained images used in this work from 

Penn-Fudan Database [20]. The process took images from 

campus and urban streets, and during the daytime as well, 

with the pedestrian shown in a straight-up position. The 

images divided into five sets of different sizes. The 

training sets numbered four: the first set consisted of 40 

images. The second set showed 40 images from the first 

set, plus an additional 20 images. Each set would 

encompass all the images from the previous set, plus 20 

additional images. The last set was the testing set, which 

displayed uniquely 20 images for testing.     

 

Ground Truth Labeling 

The study labeled all the sets of images with the class and 

bounding boxes, manually using an Image labeler 

application from MATLAB. The research applied the 

ground truth data of the labeled images, together with 

other images, for the training and testing of the model. 

This work labeled the images with a class identified as 

"pedestrian."  

 

Evaluating Metrics 

The accuracy of the prediction of both the class and 

bounding boxes is evaluated using average precision (AP). 

Over the last years, AP was the most commonly used 

evaluation metrics in object detection [19]. AP may be 

defined as the average precision under different recalls. 

AP = ∫  𝑝(𝑟)
1

0
 𝑑𝑟          (8) 

The precision is the total true positive over the total of 

true positive and false positive, or the ratio of true object 

detections to the total number of objects that the classifier 

predicted. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
    (9) 

Recall is the true positive over the total of a true 

positive and false negative or the ratio of true object 

detections to the total number of objects in the data set. 

Recall =
True Positive

True Positive+False Negative
     (10) 

Intersection over Union (IoU) threshold is used to 

measure the object localization accuracy. IoU is the 

overlap of a predicted versus ground truth bounding box 

for an object. 

IoU =  
Area of Intersection

Area of Union
        (11) 
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Determining the optimal training samples 

To determine the optimal number of images for the 

training dataset, the network trained with four sets of 

images (40, 60, 80, and 100) and a different number of 

anchor boxes (3,6, 9 and 12). All the models (See Table1) 

trained with the SGD as with a momentum of 0.9, a 

learning rate of 0.001, a mini-batch size of 2, and 20 

epochs. Then, the study tested and evaluated all the 

resulted detectors with the same testing dataset that 

showed 20 images and evaluated with a mean AP.   

Tuning Training Parameters 

The study used the training set with 100 images as a 

dataset to train the models with many anchor boxes 

between 3 and 9 and maintained the same training 

parameters.  

The research increased the number of epochs gradually 

by 10 with each number of anchors. All the trained 

networks with less than 80% average precision were 

eliminated. Finally, all the remaining networks were 

trained with more epochs until the precision decreased. 
 

Evaluation of the best model under different weather 

Conditions 

The study tested and evaluated the best-obtained models 

under different weather conditions. The conditions were 

showers, rain, snow, nighttime, high pedestrian traffic, and 

a heavy background. The research added the effects of 

showers, rain, snow, and nighttime to the images 

artificially. To consider an image under high pedestrian 

traffic, it should have at least three pedestrians. The Heavy 

Background category has images showing many objects in 

the background. Figure 13 shows examples of different 

weather conditions that are used in this paper.  

 

   

Showers Rain Snow 

   

Nighttime High Pedestrian Traffic Heavy Background 

Figure 13. Examples of image categories used for evaluation. The original images were obtained from [20]. 

5. TRAINING 

A. CNN Layers 

To understand how to train a CNN, we should first 

understand the main layers used to build a CNN. The main 

layers used to build the CNN architecture are the 

Convolutional layer (conv), the Rectified Linear Unit 

(ReLU) layer, the Pool layer, and the Fully connected 

layer (FC) (Please refer to Figure 14). 

 
Figure 14. CNN Architecture Layers.[21]   

 
The convolutional layer was the first layer in the 

Convolutional Neural Network (CNN). This layer required 
an image with size [W × H × D], where W, H, and D are 
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width, height, and depth respectively, and then run a filter 
(kernel) with size [k × k × D], where k is filter size, to do a 
product multiplication with the receptive field ‒ starting 
from the right corner and moving one pixel at a time (when 
stride=1). The output of the conv layer exhibited a feature 
map with size [(W - k+1) × (H+1-k) × D]. 

The Rectified Linear Unit (ReLU) represented the 
activation function. The ReLU increased the nonlinear 
properties of the model and also the overall network, 
applying an elementwise activation function f(x) = 
max(x,0) (Figure 15). The size of the feature map was not 
changed. 

 

Figure 15. The rectifier Linear Function is used to increase the 
nonlinearity of the network [21]. 

The Pooling Layer was a down-sampling layer, which 
applied a filter (normally 2 × 2, and stride =2) to the input 
volume and outputted the maximum (max pooling), or 
average (average pooling).  The output spatial dimension 
reduced to half with 2 × 2 filters (Figure 16).  

The Fully connected Layer (FC) drew the input volume 
from the preceding layer and determined which feature 
correlated to a particular class. The output was an N-
dimensional vector containing an N number of classes from 
which the program will choose. 

 

Figure 16. Average and Max Pooling [22]. 

B. What is Training? 

The goal of the training was to optimize the weights 
within the model by solving the optimization problem. This 
goal may be achieved by employing an optimizer to 
minimize the loss function to be as close to zero as possible. 
There were three well-known optimizers: Stochastic 
Gradient Descent (SGD), Root Mean Square Propagation 
(RMSP), and Adam. The study used the SGD with a 
momentum optimizer in this work because SGD is the most 
known optimizer in the deep learning tasks. An SGD 
algorithm updated the weight of the network, with every 
iteration using the back-propagation algorithm. 

C. Training Process 
The training incorporated four steps: forward pass, 

loss function, backward pass, and weight update. The first 
step was to pass an image array of numbers throughout the 
entire network. The image array would then pass from the 
input layer through all the hidden layers until reaching the 
output layer.  

The loss function (12) calculated the error by 
comparing the prediction and the true label of the image. 
The input to the loss function was the output of the forward 
pass and ground truth data. The overall loss was the 
classification loss and regression loss.  

𝐿({𝑝𝑖}, {𝑡𝑖}) =  
1

𝑁𝑐𝑙𝑠
 ∑ 𝐿𝑐𝑙𝑠  (𝑖 𝑝𝑖 , 𝑝𝑖

∗) +

 𝜆
1

𝑁𝑟𝑒𝑔
 ∑ 𝑝𝑖

∗𝐿𝑟𝑒𝑔  (𝑖 𝑡𝑖 , 𝑡𝑖
∗)         (12) 

 

𝑡𝑥 = (𝑥 − 𝑥𝑎)/ 𝑤𝑎 , 𝑡𝑦 = (𝑦 −  𝑦𝑎)/ ℎ𝑎 ,  

𝑡𝑤 =  log (
𝑤

𝑤𝑎

) , 𝑡ℎ =  log (
ℎ

ℎ𝑎

) , 
 

𝑡𝑥
∗ = (𝑥∗ − 𝑥𝑎)/ 𝑤𝑎  , 𝑡𝑦

∗ = (𝑦∗ −  𝑦𝑎)/ ℎ , (13) 

𝑡𝑤
∗ =  log (

𝑤∗

𝑤𝑎

) , 𝑡ℎ
∗ =  log (

ℎ∗

ℎ𝑎

) , 
 

 

 

 𝐿𝑙𝑜𝑐(𝑡𝑢, 𝑣) =  ∑ 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1
 (𝑡𝑖

𝑢 − 𝑣𝑖),𝑖∈{𝑥,𝑦,𝑤,ℎ}  (14) 

 

in Which  𝑠𝑚𝑜𝑜𝑡ℎ𝐿1
 (𝑥) =  {

0.5𝑥2   𝑖𝑓 |𝑥| < 1
|𝑥| − 0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      

 

 

In equation 12, i is the index of an anchor in a mini-
batch, the number of training samples present in a single 
batch, and pi is the predicted probability of anchor i being 
an object. The ground-truth label pi is 0 if the anchor is 
negative and is 1 if the anchor is positive; ti is a vector 
representing the 4 parameterized coordinates (Equation 13) 
of the predicted bounding box;  ti is also that of the ground-
truth box associated with a positive anchor. The 
classification loss Lcls represents log loss over two classes 
(object vs. not object). For the regression loss, we used Lreg 
(𝑡𝑖 , 𝑡𝑖

∗) = R(𝑡𝑖 − 𝑡𝑖
∗), where R is the robust loss function 

(smooth L1) in Equation 14. The term 𝑝𝑖
∗𝐿𝑟𝑒𝑔  means the 

regression loss is activated only for positive anchors (𝑝𝑖
∗= 
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1) and is disabled otherwise (𝑝𝑖
∗= 0). The outputs of the cls 

and reg layers consist of {pi} and {ti}, respectively. Ncls and 
Nreg are normalized and weighted by a balancing parameter 
λs. The cls term in Equation 12 is normalized by the mini-
batch size, and the reg term is normalized by the number of 
anchor locations.  

After that, the backward pass determined which weight 
contributed more to the loss to reduce it through utilizing 
optimization. Put another way, the backward pass is the 
process of counting changes in weights.  

The last step is updating the weight. First, a set of 
arbitrary weights used to initialize the network. After each 
epoch, a single pass of the data through the model, the 
weights updated by computing the gradient (dL/dW) of the 
loss function with respect to each of the weights that were 
set. Then, the new weight (W) is the current weight (Wi), 

subtracted by the gradient 𝑊 = 𝑊𝑖 −  
𝑑𝐿

𝑑𝑊
. 

6. SIMULATION AND IMPLEMENTATION 

A. Determining the optimal training samples 
Table 2 presents the result of training the base 

network, with a different set of training images and a 
different number of anchor boxes. This table reflects the 
result of evaluating all the models trained and tested with 

different training images size (40, 60, 80, and 100), and 
also with a different number of anchor boxes (3, 6, 9, 12). 
The result listed in the table includes the mean Intersection 
over Union (IoU) and Average Precision (AP) as an 
evaluation metric of the model accuracy. 

Figure 17 shows the result of each training set; the 
result indicates the AP (y-axis) as an evaluation measure of 
the accuracy and the number of anchors (x-axis). Figure 17-
A evidences the result of evaluating 40 images of training 
dataset models, with 3,6,9 and 12 anchors. The best 
accuracy result with 40 images training set models obtained 
0.75 when trained with 6 anchors. Figure 17-B shows the 
result of evaluating 60 images training dataset models 
when trained with the same number of anchors. The best 
accuracy result was obtained 0.83 when trained with 9 
anchors.  Figure 17-C shows the result of evaluating 80 
images training dataset models when trained with the same 
number of anchors. The best accuracy result was obtained 
0.83 when trained with 6 anchors. Figure 17-D shows the 
result of evaluating 100 images training dataset models 
when trained with the same number of anchors. The best 
accuracy result was obtained 0.83 when trained with 3, 6, 
and 12 anchors. 

 The models trained with 100 images dataset show the 
best overall AP results; therefore, these were chosen for 
further tuning with training parameters.    

TABLE 2. THE RESULT OF TRAINING THE BASE NETWORK WITH A SET OF 40,60,80 AND 100 IMAGES AND ALSO THE NUMBER 
OF ANCHORS WAS CHANGED FROM 3,6,9,12. THIS TABLE HAS THE RESULTED AVERAGE PRECISION (AP), AND ALSO THE MEAN 

INTERSECTION OVER THE UNION. 

 

Sr. Model 
Training 
Images 

Anchor 
Boxes 

mean 
IoU 

AP Sr. Model 
Training 
Images 

Anchor 
Boxes 

mean 
IoU 

AP 

1 I-20-3 

40 

3 0.71 0.60 9 III-20-3 

80 

3 0.66 0.77 

2 I-20-6 6 0.80 0.75 10 III-20-6 6 0.79 0.83 

3 I-20-9 9 0.85 0.65 11 III-20-9 9 0.84 0.70 

4 I-20-12 12 0.88 0.74 12 III-20-12 12 0.86 0.81 

5 II-20-3 

60 

3 0.70 0.81 13 IV-20-3 

100 

3 0.70 0.83 

6 II-20-6 6 0.81 0.78 14 IV-20-6 6 0.80 0.83 

7 II-20-9 9 0.84 0.83 15 IV-20-9 9 0.77 0.82 

8 
II-20-

12 
12 0.86 0.82 16 IV-20-12 12 0.86 0.83 
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(A) (B) 

  

(C) (D) 
Figure 17. The result of training the base network with a different number of images, the plot of the accuracy versus the number of 

anchors with each set.   

B. Tuning Training Parameters 

The study trained and evaluated models with 100 
images training datasets with more of a range in the number 
of anchor boxes from 3 to 9 to determine the optimal 
number of anchors, but kept the other training parameters 
fixed. This step helped to tune the base network to get the 
best model. 

The number of epochs increased gradually with each 
number of anchors. The research eliminated all the trained 
networks with less than 80% average precision. Then all 
the remaining networks were trained with more epochs 
until there was no improvement in the accuracy. 

Table 3 presents the result of training and the model 
with 100 images dataset, showing many anchors from 3 to 
9. The model (IV-20-4), trained with 20 epochs and 4 
anchors, obtained an AP result of 0.81. Since AP is more 
than 0.8, the model, trained with 30 epochs, gave a result 
of 0.83. Therefore, we trained the model further with 40 
epochs, yet attained the same result of 0.83. So 

this study can identify that the best result from the model 
with 4 anchors showed when the model trained with 30 
epochs. The research applied the same method with all 

numbers of anchors. The comparison between all numbers 
of anchors and the AP result is shown in Figure 18. This 
figure shows not only the AP result but also the number of 
epochs used to reach this result for all number of anchors. 
The best results obtained were 0.86 when model IV-30-7 
and IV-30-8 trained with 7 and 8 anchors and 30 epochs. 

C. Testing and evaluating 
The tuning of the training parameters provides the best 

accuracy result, which is 86% with two models trained with 
7 and 8 anchors: Models IV-30-7 and IV-30-8, where both 
were trained with 30 epochs (Table 3). Generally, the result 
obtained from Model IV-30-7 is better than the second 
model IV-30-8 when tested under different conditions.  

The resulting detectors from these two models tested 
under different weather conditions: showers, heavy rain, 
snow, nighttime, and heavy background. Generally, Model 
IV-30-7 performs better than the other model except when 
evaluated with showers and high traffic, showing only a 1% 
difference. Figure 19 shows the result of testing both 
models under different conditions.  
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Table 4 shows drops of the average precision (AP) for 
both Models IV-30-7 and IV-30-8 when tested under 
different weather conditions. The accuracy dropped with 
3% and 4% when tested under showers and heavy rain, but 
dropped by 8% under snow weather since snow affects the 
background more than rain. The nighttime had a slight drop 
(1%) to the accuracy, but both the high traffic and the heavy 
background were the most dropped in terms of accuracy. 

 

The conclusion is that the more complex the 
background, the more the loss in the accuracy. The snow 
affects the complexity of the background more than the 
rain, which is why the drop in the accuracy increases with 
the snow. Since nighttime only changes the brightness of 
the image and does not change the background, there was 
only a slight drop in accuracy. When evaluating a model 
with a complex background, such as high traffic and heavy 
background, the accuracy drops considerably. 

 

TABLE 3. THE RESULT OF THE TRAINED NETWORK WITH 100 IMAGES AND DIFFERENT NUMBER OF ANCHOR BOXES AND 
EPOCHS, THE BEST ACCURACY RESULT OF 0.86 WAS OBTAINED WITH MODEL IV-30-7/8 

Model 
Anchor 
Boxes 

epochs AP Model 
Anchor 
Boxes 

epochs AP 

IV-20-3 

3 

20 0.83 IV-20-7 

7 

20 0.85 

IV-30-3 30 0.81 IV-30-7 30 0.86 

IV-40-3 40 0.76 IV-40-7 40 0.85 

IV-20-4 

4 

20 0.81 IV-20-8 

8 

20 0.83 

IV-30-4 30 0.83 IV-30-8 30 0.86 

IV-40-4 40 0.83 IV-40-8 40 0.81 

IV-20-5 5 20 0.77 IV-20-9 

9 

20 0.82 

IV-20-6 6 20 0.78 IV-20-9 30 0.83 

  IV-40-9 40 0.83 

 

 

Figure 18. The accuracy of the network with a different number of 
anchor boxes. This graph shows the plot of average precision versus each 

number of boxes 

 

 

 

 

 

 

D. Implementation Details 

The base network was implemented in a CPU with a 
processor of 3.1 GHz Dual-Core Intel Core i5 and 8 GB 
2133 MHZ LPDDR memory. The software used is 
MATLAB R2019b (student license#40861480) with both 
image processing and computer vision toolbox, as well as 
machine learning and a deep learning toolbox. The faster 
R-CNN [1] structure was implemented with a pretrained 
VGG16 [11] for feature extraction. 

Figure 20 shows some of the examples of output images 
from the detector. Each image has a rectangular box around 
each pedestrian. Also, each box will have a confidence 
score associated with each box. Figure 22-A shows some 
examples of the output image when the original images 
tested with the detector, accompanied by 7 anchor boxes. 
Furthermore, Figure 22-B/C/D/E/F shows examples of the 
output images from all other categories used in this work. 
It is worth mentioning that the number associated with the 
bounding box, in Figure 22, indicates the confidence of the 
detector regarding the accuracy of the detection. The close 
the number to “1”, the more confidence that the object 
shows as “Pedestrian.”  
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Figure 19. Network Performance of Model IV-30-7 and IV-30-8 when they tested and evaluated under showers, rain,  snow, high pedestrian traffic, and 
heavy background Conditions. 

TABLE 4. THIS TABLE SHOWS THE DROP IN THE ACCURACY AFTER TESTING THE MODEL WITH DIFFERENT WEATHER 
CONDITIONS. 

Model  Showers Heavy Rain Snow High Traffic Nighttime Heavy Background 

IV-30-7 
AP (%) 83 82 78 67 85 73 

Drop 3 4 8 19 1 13 

IV-30-8 
AP (%) 84 75 73 68 62 65 

Drop 2 11 13 18 24 21 

 

    
(A) Original (no affect) 

    
(B) Shower 

Base Showers Rain Snow
High
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Traffic

Nighttime
Heavy
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 IV-30-7 86 83 82 78 67 85 73

IV-30-8 86 84 75 73 68 62 64
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(C) Rain 

    
(D) Snow 

    

(E) Nighttime 

    
(F) Heavy Background 
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(G) High Pedestrian Traffic 

 
Figure 20. Examples of detector output images, the number at the top of the rectangle is the probability that this rectangle has an object. 

  

7. CONCLUSION AND FUTURE WORK 

In this paper, the study evaluates the accuracy of the 
state-of-art smart object detection algorithm, faster R-
CNN, under different weather conditions. The research 
implemented faster R-CNN with vgg16, tuning and 
evaluating the parameters for the best result. In the first 
chapter, the study explored the object detection methods 
employed with CNN to automatically detect and classify 
object detection. The study explained the methods used for 
generating RoI, then considered the convolutional neural 
networks that are vgg16. Finally, the study explored the 
state-of-art object detection algorithms in both two-stage 
and one-stage algorithms. Determining the optimal number 
of images for the training dataset was the first step in this 
work.  Then the study tuned the training parameters tuned 
to obtain the best setup for the base model that in turn led 
to a more accurate detector. The research implemented a 
two-stage detection algorithm, faster R-CNN with VGG16, 
as a base model. Finally, the best two results in detectors 
were used to evaluate the performance of the model under 
different conditions. The final results after testing the two 
models with the different sets showed each model 
representing one weather condition. The accuracy was not 
decreased when the model tested for rain and snow weather 
conditions. Yet the accuracy decreased as the background 
became more complex, i.e., the study tested the model with 
sets of high traffic and heavy background images. In 
general, the results obtained showed good accuracy, even 
when subjected to different weather conditions. The more 
the weather affected the background, the more the accuracy 
decreased.  
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