

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 4, No.1 (Jan-2015)

E-mail: naina@uvic.ca, haytham@ieee.org, fayez@uvic.ca

http://journals.uob.edu.bh

Performance Evaluation of Real-Time Systems

Mridula Sharma
1
, Haytham Elmiligi

2
, Fayez Gebali

1

1 ECE Department, University of Victoria, Victoria, BC, Canada

2Computing Science Department, Thompson Rivers University, Kamloops, BC, Canada

Received 15 Apr. 2014, Revised 17 Jul. 2014, Accepted 16 Aug. 2014, Published 1 Jan. 2015

Abstract: Performance evaluation of the Computer Systems has been a challenging task. Measurement of Worst Case Execution

Time (WCET) is an important metrics for evaluating the performance of the Real Time Systems (RTSs). In this paper, we explore

different methods used for WCET estimation. We mainly focus on three different techniques that are used for WCET estimation i.e.

Static, Measurement-based, and Hybrid. The objective here is to provide a comparative analysis of various popularly used WCET

measurement tools to guide researchers and engineers to be able use the most suitable techniques for their target applications. We

also explore the probabilistic approach through model checking in our work.

Keywords: WCET, Performance Evaluation, Real-Time, Static Tools, Measurement based tools, Hybrid Tools, Simulation,

Probabilistic Model

1. INTRODUCTION

Real-Time System (RTS) design has developed
rapidly over the last decade. With the introduction of new
emerging technologies and the development of consumer
electronics, RTSs have become a very popular solution
for researchers and engineers [1]. The need for RTSs in
different industries is not rationalized only because they
guarantee satisfying timing constraints while executing
complex tasks, but also because they offer a reliable
solution for portable electronic devices. RTSs have been
successfully implemented on mobile devices to run many
complex applications [2].

Designing a RTS is always a challenging task.
Although various Real-Time Operating Systems (RTOSs)
are currently available for developers [1], it is very
difficult to compare the performance of these different
RTOSs for the target application. Some research work has
been done to address this problem for small
microcontrollers [3]. However, there is no one answer for
the performance evaluation question that works for all
platforms. The problem becomes even more complex with
RTS because not all RTS use RTOS so designers now
have to spend a lot of time to study different
implementations before choosing the right design for the
target application.

In this paper, we tackle the performance evaluation

problem and explore different methods to evaluate the

performance of RTSs. We are extending the work done in

[4] and present a comparative analysis of three different

techniques that evaluate the performance of RTSs based

on the estimation of Worst Case Execution Time

(WCET). WCET is the measurement of the maximum

possible time required to process a task on a given

processor [5]. The system is thus defined to meet the

deadline of the task in order to guarantee its functionality

in all scenarios [6]. In Figure 1, the relativity of WCET

with other real-time system parameters is depicted.

Figure 1: WCET for Real Time Systems

http://dx.doi.org/10.12785/ijcds/040105

44 Mridula Sharma et. al. : Performance Evaluation of Real-time Systems

http://journals.uob.edu.bh

Although a large number of metrics are currently
being used to measure the performance of embedded
systems, such as response time, throughput, or utilization
factor of the resources etc., we choose the WCET because
it is the most significant factor for the assurance and
verification of the reliability of RTSs [7].

The terms used for WCET estimates are:

 Safe bound - Estimate must be always greater
than the actual execution time

 Tight bound - Estimate must be as close as
possible to actual WCET

 Upper bound - The maximum possible time
of the execution

The safe bound and the tight bound are useful in
calculating the maximum time required for the overall
process. For RTSs, the success depends on the guaranteed
possibility of execution of all the tasks within their
available possible time i.e. deadline. Schedulability is the
process of defining the sequence of operation of different
tasks in the system. Both schedulability and WCET
analysis are critically important for the performance
evaluation of RTSs as:

 WCET analysis defines the execution times
of different tasks

 Schedulability analysis makes a decision
about the task to be used for execution
further [8].

In WCET estimation, measurement of the upper
bound may solve the issue of failure of the real-time
systems. For the overall processing, multiple tasks needs
to be processed in the defined sequence in a given defined
time in RTSs. In RTSs, the tasks are constrained by
deadlines. WCET of each task helps in ensuring that all
the tasks are executed to make the system work correctly.
Overall WCET can be calculated as the sum of the WCET
estimations of different tasks required to be complete
through different paths for the overall completion of the
process [9]. It is also possible to take decision about the
schedulability of the different sub-tasks only when their
upper bounds are known. The WCET over-estimation of
the sub-tasks will lead to a wrong decision about declaring
a task non-schedulable and hence making invalid
decisions. This may even lead to invalid or inaccurate
selection of the required hardware for the final
implementation [10]. WCET is realistic and relevant for
the RTSs and is used extensively for designing and
verifying the safety critical RTSs like vehicles or power
plants etc. WCET is useful for both soft as well as hard
RTS as:

 For the Soft real time systems WCET is
required for system understanding

 For hard real time systems, WCET are useful
for their guaranteed behavior [11]

 Challenges for real-time systems

Traditionally, WCET analysis presumes non-
interruptible program execution, but real-time systems
work on the principles of task pre-emption. Including this,
there are several issues which needs to be addressed while
performing timing analysis of the real-time systems [8].

 The common ones are:

 Control Flow: There may be multiple loops
and through go-to statements, control may
flow at different places, which creates
problem for the static analyzer to analyze the
loop bounds.

 Dynamic function calls: The dynamic calls
may only be measured at run-time, so for
static analyzers, it is an issue.

 Dynamic loop bounds: Same as previous, the
loop bounds are not known until the program
runs and in real-time systems, bound are not
known till it runs in the actual environment.
The tasks scheduling in real-time systems is
based in the priority of the tasks to be
processed.

 Interrupts call: As compared to traditional
systems, real-time systems has to manage
interrupts, so WCET analysis needs to have
detailed interrupt information about the
system.

 Shared Cache: In real-time systems, cache
state changes because of the priority and task
pre-emption, which leads to an
overestimation of the WCET.

In spite of all these challenges, WCET analysis has
been the most common and proven choice as it gives best
time estimation for different tasks in execution [12] [8].
WCET analyzers calculates un-interrupted execution time
of a program by presuming that the task alone has all the
resources it need. The real-time systems has many other
consideration like Cache and pipelining etc, and the tasks
are scheduled keeping these factors in mind. WCET
estimation helps in making the decisions about the
scheduling of new tasks to ensure that all the tasks are
processed in the given deadline. WCET estimations are
not only required to calculate the execution time, but also
helps in estimating arrival time, relative deadline or
absolute deadlines of different tasks. WCET measure is
equally important for all categories of [13].

There are number of tools used by the researchers or
used and in the industrial setting for estimating WCET of
the systems. In this paper, we are listing and comparing
the commonly used WCET tools i.e. Chronos, UPPAAL,

 Int. J. Com. Dig. Sys. 4, No.1, 43-52 (Jan-2015) 45

http://journals.uob.edu.bh

OTAWA, aiT, Bound-T, SWEET, Heptane, Volta,
VisualSim, TimeWeaver and rapiTime. The rest of the
paper is organized as follows. Section 2 talks about
WCET tools, Section 3 provides their brief descriptions,
section 4 has a comparative analysis of the tools and the
Section 5 contains discussions. Finally we conclude the
paper in Section 6.

2. CATEGORIES OF WCET TOOLS

The WCET tools are divided into three categories i.e.
Static tools, Measurement based tools and Hybrid tools
[9].

A. Static Tools

Static is the term used for mathematical modelling of
the system, without running on a specified processor,
rather by analyzing the sets of possible control flow paths
through the program. These tools are based largely on
high level abstraction of the systems and make lots of
assumptions and finally provide asymptotic results [14].
Since static analysis can theoretically consider all possible
execution of the program, it always provide safe
estimates.

 The static analysis is done in three phases:

 Phase I : Flow Analysis, where information
about the possible program execution paths is
derived. The flow analysis works on the
software and is developed by analyzing the
source or object code of a program to find the
constraints on the program flow. It is used to
find the bounds on the execution counts of
different sub-tasks. In this phase the program
is sliced into basic blocks which are
sequences of instructions with no jumps
within the block. These are then organized
into a Control Flow Graph (CFG) that
maintains the control flow of the program
[15].

 Phase II : Low-level Analysis, where
execution time of the sub-tasks are calculated
based on the effect of the target architecture
on execution time. The Low-level analysis is
primarily for analyzing the underlining
hardware based on its performance model.

 Phase III : Calculation Phase, where derived
flow and timing information are combined
for the overall WCET estimate [6]. The final
estimation of the WCET is done using the
methods of Integer Linear Programming
(ILP) or Implicit-Path Enumeration
Techniques (IPET).

Traditional WCET analysis methods involved
program path analysis for determining the infeasible paths
in the program’s control flow graph presuming all the
resources are available whenever needed. For complex

real-time systems, timing effects of micro-architectural
features of the system, such as pipelines, caches and
branch prediction are also needed to be considered. The
final WCET calculation is done via Integer Linear
Programming, where feasible path is defined using the
subtasks [16].

The relationship of these phases is shown in the Figure 2

Figure 2 : Steps of Static WCET Analysis

Since static tools are able to provide safe upper
bounds [8], and for the hard-real time systems, safety is
critical, so, static methods is the better choice for
analyzing real-time systems by the research groups [8].

B. Measurement based Tools

In the measurement based tools to calculate WCET,
the calculations are done by actually running the code.
Through these tools, measurements are done by running
the program with proper input data on the host machine
and measure the actual time taken to run the program
using the measuring tools like oscilloscope, logic
analyzers or in-circuit emulators. The host machine may
be the real target system or some other simulated
environment [17]. Once executed, the maximal and
minimal values are calculated. These tools are primarily
used for the industrial practices. Experimental results are
found through the testbeds i.e. through the new build
systems and then a safety margin is added to get the
WCET. Each measurement runs through only through one
path of the program, whereas there may be several
possible execution path of a program. Even if exhaustic
checking is done, it is not ensured that it may have run
through the worst-case input, hence measured times are
often the underestimation of WCET [14]. In the actual
implementation, the WCET would never be reached i.e.
the system will always be able to measure the time taken

46 Mridula Sharma et. al. : Performance Evaluation of Real-time Systems

http://journals.uob.edu.bh

to process the given task. To get WCET, some safe
margin is added to the calculated WCET, but it is not
appropriately known about how much is the safe margin
for the accurate WCET calculations. Because of this
reason, the results are not very safe and tight [9] and
hence these tools are only suitable for less time critical
systems. For the more accurate results for RTSs, static
methods are more used.

C. Hybrid Tools

Some specialized hybrid tools are also available,
which combines both static and measurement based tools
for the overall estimation. In most of the cases,
measurements of sub-tasks are done using the
measurement tools and then the static tool is used for
calculating the estimated WCET. These tools identifies
the single feasible path which is followed irrespective of
the variation of the input and data to be processed. In
hybrid analysis, measurements may replace or
additionally used with the detailed low-level static WCET
analysis. However, hybrid methods also, do not result in a
safe WCET estimate, and hence be useful and appropriate
for the soft real-time systems where such WCET
estimates are not crucial [8].

D. Probabilistic Model

Although this is a comparatively new area or working,
yet this is an important method as it may take into the
consideration the features of the platform like cache,
branch predictors, and dynamic out-of-order instruction
scheduling. Since, The program is run on the actual
machine in this model, it may be called as hybrid method.
For the purpose of calculations, a program is run several
times on the system, with numerous sets of random input
data and the end-to-end execution time of the program
runs are measured. Once the timing information is
gathered with the input sets, extreme value statistics are
deployed on the data. The main concern of this modelling
is the right and/or left hand tail of a normal probability
distribution, as opposed to the modelling of the average
case with conventional statistics [18]. In this approach, the
execution times of atomic units of execution, so-called
basic blocks is measured, to obtain a probabilistic
distribution. These basic blocks distributions are then
combined by applying different rules for each control
structure in the syntax tree in a bottom-up process. This
results in a distribution for different execution times of an
entire program [19]. Lv et al. [15] compared the
performance of Model analysis and Static methods and
concluded:

 Model checking only works well for simple
programs,

 It is inclined to scalability problems when
dealing with programs that have complex
structures and large loop counts.

SPIN was used as the model checker in their work.

Another study by Huber and Schoeberl [20] is done on
Java uni-processors and they concluded:

 Model checking is fast enough for local
analysis and small applications.

They used UPPAAL as model checker and
recommended that model checking is more important for
code fragments and it may be combined with the IPET
approach for attaining tight WCET bounds.

3. DESCRIPTION OF THE TOOLS

Numerous WCET tools are available free or
commercially, belonging to the different categories. As
listed in Figure 3, we discuss these tools in the
subsequent paragraphs. The basic features of these tools
are studied for the purpose of developing a comparative
analysis in the next section.

Figure 3: Categories of WCET Tools

A. Static Tools

1) Chronos :
It is an open source software developed at National

University of Singapore (NUS) specifically for the
academic research community. It generates WCET
estimates by taking input in the form of C programs
\cite{myref_4}. The binary version of the 'C' code is used
to explore the internal features of the underlying
processor. The different blocks of the code are analyzed
by the Chronos Analyzer and then by using Integer Linear
Programming (ILP) formulations, the WCET estimation is
calculated. One of the characteristic feature of this tool is
to be able to pass the parameters for defining different
hardware features to make estimation simpler and more
accurate. Chronos also provides support for some

 Int. J. Com. Dig. Sys. 4, No.1, 43-52 (Jan-2015) 47

http://journals.uob.edu.bh

simulators to calculate WCET by running the code on the
same processor configuration to compare the values of the
estimated WCET and observed WCET. The results
obtained through simulation are Observed WCET. These
are less than actual WCET. The estimated WCET is
always more than actual WCET [21].

Estimated WCET >=Actual WCET >= Observed WCET

Chronos is a popular tool as :

 It allows the definition of different hardware
features for accurate estimations

 Provides support to some simulators to run
the code and get actual WCET

2) aiT
It is from AbsInt Angewandte Infomatik, is another

static tool, which works on abstract interpretations (so
called aiT) [22]. It also works on the binary conversion of
the code and reconstructs the CFG. It works on the
optimized code but does not need any changes on the code
for the implementation. The interpretations are followed
by Value Analysis, Cache Analysis and Loop Bound
Analysis for each sub-task. Using ILP again, the final
WCET is estimated. This is not a open source tool, and
supports many powerful simulator to provide a facility to
calculate observed WCET for the purpose of final
calculations. This tool is mainly used for the timing
verification in the avionics, aeronautics and automotive
industries. The results of the analysis can be visualized for
the user through their own tool named aiSee. aiT tool can
also take the hardware configuration as annotations e.g.
memories, buses or register values and has support for
large number of target hardwares [23].

Some features of aiT are:

 It is used for the timing verification in the
avionics, aeronautics and automotive
industries.

 Facility to pass the values for the hardware
configuration as annotations.

3) Bound-T
It is developed by Tidorum Ltd. This is used to

compute the upper bounds of WCET for real-time
embedded software [24]. It is independent of the
programming language, but takes input as binary
instructions from the executable files. It can accept user's
assertions on the program behavior through the interface
and generates the output that may be used by many other
tools as well. Bound-T can

 Run through many standard programming
languages.

 be used for the small to medium sized
embedded processors and supports pipelining
feature

 Does not support cache or other micro-
architectural features.

4) Heptane
 Hades Embedded Processor Timing Analyzer is
provided by Hades environment and also works on C
code. Operating on two program representatives, namely
program syntax tree and targeteable assembly code
manipulation tool named Salto, this is a another processor
independent tool and can be used over any underlined
architecture and therefore used by researchers often. It is
also able to consider cache, branching and pipe-lining
concepts and hence is also suitable for the performance
analysis of the multi-core systems [25].

 It is a promising tool for the performance
evaluation of the multi-core systems.

5) OTAWA
 A popular toolbox i.e. a combination of various tools,

is developed by TRACES team at IRIT labs, University of
Toulouse, France, and is used for Adaptive WCET
Analysis. It works by creating an abstraction layer on the
underlined hardware. It is an open source and because of
the abstraction layer, it can run on any platform [6].
Toolbox contains various tools to facilitate the
implementation of new analysis with limited effort by the
programmers. This toolbox also provides the possibility of
defining properties to annotate any kind of object defined
in the library (e.g. an instruction) in a very convenient
way. The toolbox has a many components like a language
and a simulator to decode, disassemble and emulate the
instructions. OTAWA successfully supports several
architectures like PowerPC, ARM, Sparc or M68HCS. the
most well known implementation project of OTAWA is
in MERASA (Multi-core Execution of Hard Real-time
Application Supporting Analysability) [26] architecture
where it is the main static tool for their WCET analysis.
For measurements, RapiTime is used in this project.

The exciting features of OTAWA are:

 Availability of the components like language
and simulator to decode, disassemble and
emulate the instructions.

 Possibility to annotate the objects stored in its
library.

6) SWEET
SWEedish Execution Time Analysis Tool is a research

prototype developed by a research team in Västerås,
Sweden since 2001, and analysis the programs in Artist
Flow Analysis Language(ALF), which has been
developed for the flow analysis. ALF code can be
generated from different sources, like C code and
assembler code, and a number of translators are available
for this conversion. The ALF tools like AlfBackend or
Melmac are the examples. SWEET can handle complex
'C' features like pointers, unstructured code as well as

48 Mridula Sharma et. al. : Performance Evaluation of Real-time Systems

http://journals.uob.edu.bh

recursion [27]. It works by collecting the information
about loop bounds and infeasible paths to find the safe
and tight WCET for the program in consideration. The
main goal of SWEET's flow analysis is to automatically
calculate flow information. It has flow analyzer, which
takes input in ALF format and produce flow fact files
which may be interpreted by aiT or Rapita or through the
low sweet tool (developed by Uppsala University and
Malardalen University), it may generate WCET/BCET
analysis [22]. SWEET is well known for :

 It's ability to automatically calculate flow
information.

 Ability to handle complex features like
pointers, loops and recursion in a 'C' code

7) Volta
 A special toolkit developed for the java language

implementations, is developed at Vienna University of
Technology, Austria. It is useful as java is an excellent
choice for the real-time systems and in the past there are
not tools for java based architectures \cite{ [7]}. To focus
on Real-time Specification for Java (RTSJ), a WCET tool
is required that could evaluate the performance of the
Java-specific processors. Two implementations namely
Javelin and WCA are out and unmaintained. Volta is a
suite designed for analyzing real-time software on java
processors. Having two tools namely Cascade – the
control flow analyzer and Clepsydra – the static WCET
analyzer, this suite is open source and can be used by the
researchers of the field to build their own functionality on
top. Cascade provides visualizations of control-flow
graph that may even be used by other tools for the further
processing and visualizations, whereas Clepsydra
has a unique support for back annotation interactively
through which this can be integrated into the real-time
programmer’s development environment. Volta has great
usability ion future as:

 It works on RTSJ, which is promising
technology, and

 Its two analyzers make it more adaptable and
easy to use.

B. Measurement-based Tools(MBT)

1) RapiTime
 An automated performance measurement timing

analysis tool, is targeted at real-time, embedded
applications. RapiTime collects execution traces to
provide the execution time measurement statistics to the
use to aid determination of worst-case execution time to
guides for the optimization efforts [28]. This works on the
source or the binary conversion of the source code. This
tool can analyze complex embedded software comprising
of more than 50,000 lines of 'C' or Ada code [29]. This
tool produces easy to navigate WCET reports and graphs
of execution of the worst case path and also any gaps in

testing. Some of the reasons for the popularity of this tool
are:

 It's ability to analyze complex embedded
software

 It's ability to identify the worst case hotspots
(which contribute heavily to WCET).

 Ability to produce easy to navigate WCET
reports and graphs of execution

2) VisualSim
The modeling and simulation software, tha is used for

system's engineering. This software has a graphical model
editor, through which a real-time analysis modeling is
generated. Based on the build-in libraries, which has pre-
built parameterized building blocks, the three simulators
can perform timed computations for measuring the timing,
power and arbitration of the system. One of the
simulators is used for the WCET measurements through
the web browser interface [30]. It provides a graphical
interface through which it is possible for the user to
construct debug, simulate, analyze and share their
specifications. It allows user to test the logic flow,
operation correctness, debugging and system optimization
to meet the requirements.

3) TimeWeaver
Another product of AbsInt's, and is usable for any

processor. Designed with the main focus on simplicity for
the measurements of the WCET in a fully automatic way,
this time estimation tool takes input in the form of set of
input traces and the analysis starting point. Using these
traces, the ILP is constructed to represent the dynamic
control-flow graphs based on the measurements. This is
not a popular tool as the traces measurement is not fully
achieved because of various limitations like smaller trace
buffer etc. [31].

C. Hybrid Tools/Toolboxes

1) UPPAAL
It is a toolbox used for verification of real-time

systems. This tool is jointly developed by Uppsala
University and Aalborg University. It is targeted for the
model-checking of the real-time systems, through the
modeling language based on the timed-automata
formalism [32]. The tool is a hybrid of an extended
subset of C and TA. The most appropriate application of
this tool is for the systems having a collection of non-
deterministic processes with finite control structure and
real-valued clocks and are communicating through
channels and shared variables [10]. The main features of
UPPAAL are:

 It is Well known for its efficiency and easy
usability

 Int. J. Com. Dig. Sys. 4, No.1, 43-52 (Jan-2015) 49

http://journals.uob.edu.bh

 It can automatically generates the diagnostic
trace which is used by many other simulators
to generate graphical outcomes [33].

2) FORTAS
A FORmal timing Analysis Tool. Developed at

Vienna University of Technology, this works specially
for the estimation of the execution time for embedded
real-time software [34]. The main focus here is also on the
control software's written in C language. It uses abstract
models of the software to derive test data automatically
independently of the target hardware. This tool is based
on the hybrid approach where analysis and decomposition
of the code is done statically and execution time
measurement is done on the target system to have the final
WCET estimate. The main features of FORTAS are:

 It can provide refinement control to answer
the specific need of the user.

 It is mainly used for the WCET estimation of
embedded real-time systems.

D. Model Checking Tool

1) SPIN
 A generic verification system used for the design and

verification of asynchronous process systems [35]. It has
program like notations and is a widely used professional
software tool. The Models are written in a simple
language called Promela, and these models can be
simulated randomly or interactively using SPIN. Spin can
generate efficient verifiers that search for a
counterexample to correctness specifications applied to a
model [36].

4. COMPARATIVE ANALYSIS OF THE TOOLS

Error! Reference source not found. is summarizing

our research:

TABLE 1:COMPARATIVE ANALYSIS OF THE TOOLS

Category Tool Name
Supporting

Language
Usability Main Features Hardware Support References

Static
Tools

Chronos ‘C’ Program

Open source, mainly
used for research on

single core as well as

multi-core

Annotations for

hardware features

Support large number

of target hardware
[21]

aiT
Binary

conversion of

'C' code

Industrial tool used in
Avionics, Aeronautics

and Automotives

Annotations for

hardware features

Support large number

of target hardware
[22]

Heptane 'C' code Open Source

Supports cache
architectures through

several replacement

policies

Processor

independent
[25]

SWEET ALF Language
Research prototype used

by Volvo CE

Supports pointers,
recursion and

unstructured code

ARM9 and

NECV850E
[27]

Volta Java Language

Research project used
for real time

development

environment

Provide Visual control

Flow Graph

Java based

Architecture
[37]

Bound-T
Language

independent

Used for real-time

embedded systems

Accept user assertion

through the interface

Supports large

number of target

hardware

[24]

OTAWA
Language

independent
Industrial tool

Few annotations for
hardware featured

through libraries

Platform independent

[6]

Measurement

Based
Tools

RapiTime
Binary

conversion of

'C' and Ada

Commercial tool for
real-time embedded

systems

Identify WCET

hotspots

Supports large
number of target

hardware

[28]

TimeWeaver

Input in the

form of input
traces

Research tool for small

embedded systems

Calculates Worst Case

timing behavior on
actual hardware

Processor

Independent
[31]

VisualSim Not known Industrial
Supports Web Browser

interface

Supports large

number of target
hardware

[35]

Hybrid
Tools

UPAAL
'C' and timed

Automata (TA)
Model checking of the

real-time systems
Efficiency and ease of

use

Supports large

number of target

hardware

[10]

50 Mridula Sharma et. al. : Performance Evaluation of Real-time Systems

http://journals.uob.edu.bh

FORTAS 'C' Embedded real-time
May be refined for the

specific need of the user

Processor

independent
[34]

Model
Checker

SPIN Promela

specifying and verifying

concurrent and

distributed systems

Professional Tool

Supports large

number of target

hardware

[35]

5. DISCUSSIONS

WCET estimation is an important metric for real-time
systems as it provides a basis for timing analysis which is
used with scheduling to get safe time estimations. The
Static WCET estimation tools are well known for their
ability to provide tight and safe upper bounds. Chronos
WCET tool is used for the timing analysis of RTSs as it
has the ability to get extended and modified to match the
need and requirements of the user. This feature makes
Chronos popular and relevant for the researchers in their
further studies.

 aiT is used in the industrial settings and provides
the visual analysis of the produced results through the
related component names aiSee. This is used
commercially as this also provide support with many
powerful simulators to calculate observed WCET for the
purpose of final calculations and comparisons. Bound-T
and Heptane are used for the performance evaluation of
the embedded processors. These tools can also run on
various platforms through many standard programming
languages, and have support for cache, branching and
pipe-lining etc., and hence is suitable for RTSs timing
analysis. OTAWA, the toolbox, claims to provide the
most accurate results within the competitive time frame
[6]. OTAWA is already used in MERASA project (Multi-
core Execution of Hard Real-time Application Supporting
Analysability), where it is used for the static analysis for
predicting timings for hard real-time tasks with RapiTime,
which is its measurement based counterpart. SWEET
analyzes program in ALF format and is quite automatic.
Current real time systems are Java based, where Volta is
used for WCET estimations. This tool has a definite future
and usability for the real-time systems as more and more
newer real-time systems are Java based.

 Measurement based WCET tool, VisualSim is
the set of three simulators used for measuring timing,
power and

arbitration of the system and one of its tool works for
WCET estimations. TimeWeaver is fully automatic, easy
to use WCET tool that may run on any processor. The
hybrid tool, UPAAL is the toolbox, having various tools
and measures WCET using both the features of static and
measurement based. it is known for its efficiency and easy
usability and has the capability of automatically
generating the diagnostic trace for many other simulators
to be used.

 Many groups use static WCET analysis tools for
their research. Colin and Puaut used Heptane for their
research on real-time systems [25]. SWEET and Bound-T
are used by the researchers at Malardalen University for

timing analysis of Real-time systems [11]. aiT is used as
an integral part of the SCADE development environment
(a DO-178B qualified environment) for Military and
Aerospace Industries up to Level A [38].

6. CONCLUSIONS

WCET estimation is an important metrics for the
performance evaluation of the RTSs. Numerous WCET
estimation tools are available as research projects or
commercial products. Some of these tools are used purely
for research purposes, whereas few are used in the
industry. The commonly used category is static analysis,
where WCET estimation is done without running the code
on the actual hardware. The commonly used static WCET
measurement tool is Chronos, which is widely applied in
many research and industrial settings. Other well adapted
static tools are aiT, bound-T, OTAWA, FORTAS,
Heptane and SWEET. These all are used for performing
timing analysis in common language 'C'. Volta is a special
WCET tool, specifically designed for Java based Real-
time systems. Measurement based tool, RapiTime is used
for performance evaluation of the MERASA project with
OTAWA. UPAAL is the hybrid toolbox which can also
be used as the Model checker. WCET tools are used for
measuring the performance of the real-time embedded
systems, but are only used for single-core machines. In
this paper, we presented an overview of the tools for the
real-time systems to helps researchers to understand the
functions of currently available WCET tools. We would
like to continue working in this field further to be able to
get a tool specifically useful for the multi-core RTSs.

7. REFERENCES

[1] P. Hambarde, R. Varma and S. Jha, "The Survey of Real

Time Operating System: RTOS," in 2014 International

Conference on Electronic Systems, Signal Processing

and Computing Technologies (ICESC), 2014.

[2] Z. Liu and S. Song, "An embedded real-time finger-vein

recognition system for mobile devices," IEEE

Transactions on Consumer Electronics, pp. 522-527,

2012.

[3] S.-L. Tan and B. Tran Nguyen, "Survey and performance

evaluation of real-time operating systems (RTOS) for

small microcontrollers," IEEE Micro, 2009.

[4] M. Lv, N. Guan, Y. Zhang, Q. Deng, G. Yu and J. Zhang,

"A Survey of WCET Analysis of Real-Time Operating

Systems," in International Conference on Embedded

Software and Systems, 2009, 2009.

[5] J. Gustafsson, "Usability Aspects of WCET Analysis," in

11th IEEE international symposium on Object Oriented

Real-Time Distributed Computing (ISORC), 2008 , 2008.

 Int. J. Com. Dig. Sys. 4, No.1, 43-52 (Jan-2015) 51

http://journals.uob.edu.bh

[6] C. Ballabriga, H. Cassé, C. Rochange and P. Sainrt,

"OTAWA: An Open Toolbox for Adaptive WCET

Analysis.," Springer, vol. 6399, pp. 35-46, 2010.

[7] T. Harmon and R. Klefstad, "A Survey of Worst-Case

Execution Time Analysis for Real-Time Java," in IEEE

international conference on parallel and distributed

processing, 2007.

[8] B. Lisper and M. Santos, "Model Identification for

WCET Analysis," in 15th IEEE Real-Time and

Embedded Technology and Applications symposium,

2009.

[9] R. Wilhelm, J. Engblom, A. Ermedahl and N. Holsti,

"The Worst-case Execution-time Problem:Overview of

Methods," ACM trans. Embed, Computer Systems, vol. 7,

no. 3, pp. 1-53, 2008.

[10] F. Cassez and J. L. Bechennec, "Timing Analysis of

Binary Programs with UPPAAL," in 13th International

Conference on Application of Concurrency to System

Design (ACSD), 2013.

[11] Worst Case Execution Time Analysis, Malardalen Real-

Time Research Center, 2013.

[12] S. M. Petters, "How much worst case is needed in WCET

estimation," in 2nd International Workshop on Worst

Case Execution Time Analysis, Vienna, 2002.

[13] L. K. Chong, C. Ballabriga, V.-T. Pham, S.

Chattopadhyay and A. Roychoudhury, "Integrated

Timing Analysis of Application and Operating Systems

code," in 34th IEEE Real-Time Systems Symposium

(RTSS), 2013.

[14] L. Tan, "The worst-case execution time tool challenge

2006," International Journal on Software Tools for

Technology Transfer, vol. 11, no. 2, pp. 133-152, 2009.

[15] M. Lv, Z. Gu, N. Guan, Q. Deng and G. Yu,

"Performance Comparison of Techniques on Static Path

Analysis of WCET," in EEE/IFIP International

Conference on Embedded and Ubiquitous Computing,

2008.

[16] S. Chattopadhyay and A. Roychoudhury, "Unified Cache

Modeling for WCET Analysis and Layout

Optimizations," in 30th IEEE Real-Time Systems

Symposium,, 2009.

[17] Jong-In Lee et al., "A Hybrid Framework of Worst-Case

Execution Time Analysis for Real-time Embedded

Systems," in Aerospace Conference, 2005.

[18] J. Engblom, A. Ermedahl, M. Sjödin, J. Gustafsson and

H. Hansson, "Worst-case execution-time analysis for

embedded real-time systems," International Journal on

Software Tools for Technology Transfer, vol. 4, no. 4, pp.

437-455, 2003.

[19] K. Höfig, "Failure-Dependent Timing Analysis - A New

Methodology for Probabilistic Worst-Case Execution

Time Analysis," Measurement, Modelling, and

Evaluation of Computing Systems and Dependability and

Fault Tolerance, pp. 61-75, 2012.

[20] B. H. Schoeberl and M. Schoeberl, "Comparison of

Implicit Path Enumeration and Model checking based

WCET Analysis," in 9th International Workshop on

Worst-Case Execution Time Analysis, 2009.

[21] Xianfeng Li et al., "Chronos: A timing analyzer for

embedded software," Science of Computer Programming,

vol. 69, no. 1-3, pp. 56-67, 2007.

[22] C. Ferdinand, "Worst case execution time prediction by

static program analysis," in 18th International Parallel

and Distributed Processing symposium,, 2004.

[23] J. Gustafsson and A. Ermedahl, "Experiences from

Applying WCET Analysis in Industrial Settings," in 10th

IEEE International Symposium on Object and

Component-Oriented Real-Time Distributed Computing,

2007.

[24] Bound-T, "Bound-T Manual," 2013. [Online]. Available:

http://www.bound-T.com/user-guide.pdf.

[25] A. Colin and I. Puaut, "Worst-case execution time

analysis of the RTEMS real-time operating Systems," in

13th Euromicro Conference on Real-Time Systems, 2001.

[26] T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat, Z. Petrov,

C. Rochange, E. Quiñones, M. Gerdes, M. Paolieri, J.

Wolf, H. Cass . hrig I. uliashvili . ouston .

Kluge, S. Metzlaff and J. Mische, "Merasa: Multicore

Execution of Hard Real-Time Applications supporting

Analyzability," in IEEE conference on micro, 2010.

[27] D. Barkah, A. Ermedahl, J. Gustafsson, B. Lisper and C.

Sandberg, "Evaluation of Automatic Flow Analysis for

WCET Calculation on Industrial Real-Time System

Code," in 20th Euromicro Conference of Real-Time

Systems, (ECRTS’08), 2008.

[28] "RapiTimeExplained.pdf," Rpita Systems, 2008.

[Online]. Available:

http://www.rapitasystems.com/system/files/RapiTimeExp

lained.pdf.

[29] "RapiTime Worst-Case execution time analysis," Rapita

systems, 2011. [Online]. Available: http://www.artist-

embedded.org/docs/ToolsPlatforms/CompilersTA/RapiTi

me/RptmeWrstCsetoolkit.p.

[30] "Visual Sim Introduction," Mirabilis Design, 2013.

[31] Reinhard von Hanxleden et al., "WCET Tool Challenge

2011: Report," in Workshop on Worst-Case Execution

Time Analysis, 2011.

[32] C. Thrane and U. Sorensen, "Slicing for uppaal," in

Annual IEEE Conference Student Paper,, 2008.

[33] K. G. Larsen, P. Pettersson and W. Yi, "Upaal in a

nutshell," International Journal on Software Tools for

Technology Transfer, vol. 1, pp. 134-152, 1997.

[34] S. Bunte and M. Tautschnig, "A Benchmarking Suite for

Measurement-Based WCET Analysis Tools," IEEE

International Conference on Software Testing

Verification and Validation Workshop, no. April, pp.

353-356, 2008.

[35] G. Holzmann, "The model checker SPIN," IEEE

Transactions on Software Engineering, pp. 279-295, May

1997.

[36] A. Metzner, "Why Model Checking Can Improve WCET

Analysis," Lecture Notes in Computer Science, vol. 3114,

pp. 334-347, 2004.

52 Mridula Sharma et. al. : Performance Evaluation of Real-time Systems

http://journals.uob.edu.bh

[37] T. Harmon, M. Schoeberl, R. Kirner and R. Klefstad, "A

Modular Worst-case Execution Time Analysis Tool for

Java Processors," in Real-Time and Embedded

Technology and Applications Symposium,, 2008.

[38] aiT reference Manual, The AbsInt Group, 2013. [Online].

Available: www.absint.com/ait/

Mridula Sharma received her aster’s

degree in Computers Applications from

India in 2006. She also did Masters of

Science (Information Technology) in 2003.

She is currently a Ph. D. candidate at the

University of Victoria and she is also

teaching in the Computing Science department at

Thompson Rivers University, Kamloops, BC, Canada.

 ridula’s research work focuses on the design

automation of real-time multi-core systems.

Haytham Elmiligi received his Ph.D.

degree in Electrical Engineering from the

University of Victoria, Victoria, BC,

Canada, in 2011. He is currently affiliated

with the IMS research group at the

University of Victoria and the Computing

Science department at TRU. Haytham is a senior

member IEEE and a book series Co-editor with CRC

press. aytham’s research work strongly relies on

combining advanced analytical models and optimization

techniques to improve the overall performance of multi-

core systems.

Fayez Gebali received the BSc degree in

electrical engineering (first class honors)

from Cairo University, the BSc degree in

mathematics (first class honors) from Ain

Shams University, and the PhD degree in

electrical engineering from the University

of British Columbia where he was a holder of the

NSERC postgraduate scholar- ship. Dr. Gebali is a

professor of computer engineering and Chair of Electrical

& Computer Engineering Department at University of

Victoria. His research interests include parallel

algorithms, 3D IC design, hardware verification and

security, and wireless communications.

