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Abstract: In this paper, an advanced-and-reliable vehicle detection-and-tracking technique is proposed and implemented. The Real-
Time Vehicle Detection-and-Tracking (RT_VDT) technique is well suited for Advanced Driving Assistance Systems (ADAS) 
applications or Self-Driving Cars (SDC). The RT_VDT is mainly a pipeline of reliable computer vision and machine learning algorithms 
that augment each other and take in raw RGB images to produce the required boundary boxes of the vehicles that appear in the front 
driving space of the car. The main contribution of this paper is the precise fusion of the employed algorithms where some of them work 
in parallel to strengthen each other in order to produce a precise and sophisticated real-time output. In addition, the RT_VDT provides 
fast enough computation to be embedded in CPUs that are currently employed by ADAS systems. Each used algorithm is described in 
detail, implemented, its performance is evaluated using actual road images, and videos captured by the front-mounted camera of the 
car. The evaluation of the RT_VDT shows that it reliably detects and tracks vehicle boundaries under various conditions. 
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1. INTRODUCTION 
Increasing safety, reducing road accidents and enhancing 

comfort and driving experience are the major motivations 
behind equipping modern cars with Advanced Driving 
Assistance Systems (ADAS) [1, 2]. In the past couple of 
decades, major car manufacturers introduce many 
sophisticated ADAS functions [3, 4] like Electronic 
Stability Control (ESC), Anti-lock Brake System (ABS), 
Lane Departure Warning (LDW) [5], Lane Keep Assist 
(LKA) [6], etc. These functions represent steady 
incremental steps toward a hypothetical future of safe fully 
autonomous vehicles [7-11]. 

Most recent ADAS functions like Collision Avoidance, 
Automated Highway Driving (Autopilot), Automated 
Urban Driving, Automated Parking and Cooperative 
Maneuvering require more and more fast and reliable 
detection and tracking for on-road vehicles [12], which is 
among the most complex and challenging tasks. In order to 
successfully detect the other vehicles on the road, accurate 
localization of potential vehicles in camera images or 
LiDAR data is required, the relative position of these cars 
with respect to the road needs to be determined, and the 

vehicle's movement direction should be assessed and 
verified as well. 

Computer vision techniques are considered the main 
tools that provide the capabilities of sensing the 
surrounding environment for the detection, identification, 
and tracking of moving vehicles. The detection of vehicles 
consists mainly of the finding of specific patterns/features 
or cues such as edges, gradients, colored segments, and 
color distributions in images. Such kind of specification 
streamlines or guides the process of vehicle detection. This 
paper presents an approach based on sophisticated 
computer vision algorithms working together to reach a 
real-time robust performance in detection and tracking of 
moving vehicles with substantial variations in shapes. 

There are currently three main approaches to tackle the 
problem of vehicle detection and tracking, that have been 
proposed in the literature [13-34]. The first approach is 
based on the Camera as the only sensor [18, 19, 22, 23, 28, 
29, and 30]. The second one is based on LiDARs or Laser 
Range Finders [14, 15, 17, 26, 31, and 34]. Additionally, 
the third approach is based on the fusion between Camera 
& LiDAR outputs [13]. 



 
 
568       Wael Farag:  A Comprehensive Vehicle Detection and Tracking Technique for Autonomous Driving   

 

 

http://journals.uob.edu.bh 

An early endeavor for the third approach has been carried 
out by Premebida et al, who proposed a vehicle detection 
system that combines both the information provided by 
both a LiDAR and a monocular Camera [13]. The system 
phases work in the laser space using a Gaussian Mixture 
Model classifier and in the vision space using the AdaBoost 
classifier. The results are combined using a Bayesian sum 
decision rule. The preliminary experimental results show 
the effectiveness of 84% hit rate. 

Nevertheless, the pioneering work [14, 15] of Anna 
Petrovskaya and Sebastian Thrun in the Urban Grand 
Challenge [16] has to be highlighted, where they used laser 
range finders for reliable tracking of moving vehicles from 
a high-speed moving platform. The used approach models 
both dynamic and geometric properties of the tracked 
vehicles and estimates them using a single Bayes filter [17] 
per vehicle. Experimental results have shown the true 
positive vehicle detection rate was 97% compared to the 
theoretical maximum of 98%. 

Moreover, Jazayeri et al [18, 19] modeled the motion 
behavior of the vehicles and the background, captured by 
the front Camera, probabilistically. The targets got 
identified using Hidden Markov Models (HMM) [20, 21]. 
The results showed that the identification and tracking are 
robust to various illumination and environments and the 
processing was performed in real-time. However, the 
identification was only based on motion only, therefore, the 
results of the proposed method should be fused with the 
results of shape analysis methods. 

In [22], Romera et al proposed a lightweight technique 
for vehicle detection and tracking that is implemented on a 
smartphone. The technique detects lanes first and 
determines the vanishing points based on previous work 
[23]. The main pipeline has two stages, the first is the 
detection stage utilizing the AdaBoost classifier, and the 
second is the tracking stage based on Extended Kalman 
Filter implementation. The technique is tested on iPhone 5 
and iPhone 6 producing and execution time of 132ms and 
76ms respectively.    

An interesting study of using deep learning with LiDAR 
data is carried out by Ivan del Pino et al [24], who used a 
low resolution 3D laser sensor (Velodyne VLP-16 (PUCK) 
[25]) to detect and track vehicles on the road, incorporating 
a Convolutional Neural Network (CNN) that was 
constructed for this purpose and applied to the point cloud 
data of the PUCK. Moreover, a Multi-Hypothesis Extended 
Kalman Filters (MH-EKF) is utilized as well, to estimate 
the actual position and velocities of the detected vehicles. 
Comparative studies between the proposed lower 
resolution (VLP-16) tracking system and a high-end 
system, using Velodyne HDL-64 [26], showing that the 
proposed low-resolution VLP-16 Deep Learning 
architecture is able to close matching the performance of 
the high-end HDL-64 one in close ranges up to half the 
distance of the high-end sensor. 

An endeavor to implement a real-time car detection and 
tracking algorithm on very inexpensive hardware 
(Raspberry Pi v3 [27]) is carried out by M. Anandhalli et al 
[28]. The proposed algorithm converts the RGB video 
frame to the HSV one, and filtering and noise removal, the 
detection is mainly based on the color features, and the 
tracking by using a Kalman filter with the data association. 
The results are then compared with that of rear-view 
vehicle detection and tracking method [29] and 
morphological operation method [30] with a higher 
performance of 6-8%.  

To detect several objects on the road not only vehicles, 
Abdul Rachman presented an integrated framework of 
multi-target object detection and tracking using a 3D 
LiDAR geared towards the urban environment [31]. The 
framework combines occlusion-aware detection methods, 
probabilistic adaptive filtering, and computationally 
efficient heuristic logic-based filtering to handle 
uncertainties. The framework is tested using real-world 
pre-recorded 3D LiDAR data and shows that the proposed 
framework is achieving promising real-time tracking 
performance (accuracy of 94% and a precision of 92%) in 
varying urban driving scenarios. 

It is clear from the previous literature that LiDARs have 
a major role and potential in accurate vehicle detection and 
tracking, however, there are several drawbacks of using 
LiDARs in the commercial rollout. The first one is the cost, 
as an example, the lower end Velodyne VLP-16 (PUCK) 
price is 8000 USD, while the high-end Velodyne HDL-64E 
is 100,000 USD. The second drawback is the lack of 
reliability in the installation LiDARs in vehicles for 
commercial use [32]. The third one is the huge amount of 
data resulting from LiDARs that need to be processed to 
execute the detection algorithms which requires powerful 
dedicated hardware. 

Approaches based on neural networks [33] and deep 
learning [34, 35], and specifically Convolutional Neural 
Networks (CNN) stimulate a promising research direction 
despite its overwhelming computational overhead. 
However, considering that the vehicle detection runs on 
vehicle-based systems, where computation resources are 
severely limited, the computational cost of vehicle 
detection and tracking method should also be considered as 
a key indicator of the overall performance. 

Therefore, in this paper, a comprehensive, streamlined, 
vehicle detection-and-tracking algorithm is proposed and 
implemented. This algorithm is given the name “Real-Time 
Vehicle Detection and Tracking” (RT_VDT). RT_VDT is 
differentiated from the previously surveyed algorithms in 
that it streamlines a pipeline of computer vision and 
machine learning algorithms beginning with a camera 
calibration algorithm until boxing the identified vehicle. In 
between, several edge detection and color identification 
techniques are used employing multiple color spaces. The 
RT_VDT focuses on both robustness and speed with a 
delicate balance. The robustness is achieved by removing 
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distortion from images and fusing multiple methods to 
extract the vehicle features, working in parallel to strength 
each other, and the speed comes from using effective 
methods that do not depend on iterative searches but rather 
a single scan per camera frame, as well as concentrates the 
computation in the image sectors of higher interest. 

The next sections will describe the used algorithms in 
more detail. RT_VDT represents a further step towards the 
prospects of autonomous driving. 

2. OVERVIEW OF THE RT_VDT ALGORITHM 
The RT_VDT algorithm is designed to utilize a single 

Charge-Coupled Device (CCD) camera. This camera 
should be mounted on the front-windshield mirror of the 
car to capture the road front view. However, stereo cameras 
can also be employed, but for the matter of convenience, in 
this paper, a single front camera is only considered. In order 
to simplify the detection problem, it can be assumed that 
the setup makes the baseline horizontal, which assures “the 
horizon” is in the image and it is parallel to the X-axis (i.e. 
the projected intersection of left and right lines of the 
driving lane, after finding them using one of the techniques 
developed in [5], is referred to as “the horizon”). 
Nevertheless, for the matter of precision, in the RT_VDT, 
the image orientation will be adjusted using the calibration 
data of the front camera in conjunction with removing the 
visual distortions. 

In this work, it is assumed that the input to the RT_VDT 
algorithm is a 1200x720 RGB color image. Therefore, the 
first thing the algorithm does is to remove the distortion and 
adjust the orientation using a camera calibration routine 
and chessboard images. This camera calibration routine is 
only executed once at the initialization of the RT_VDT 
algorithmnot with every iteration/frame, hence, not 
affecting the real-time performance. Then, the image will 
be converted to grayscale as well as several color spaces 
[36] (e.g. HSL, HSV, LAB, LUV, YUV, YCrCb, etc. [37]).   

After the grayscale and color space conversion, several 
features will be extracted from the images such as the 
Histogram of Oriented Gradients (HOG) [38], color spatial 
features [39] and color histogram features [40]. These 
features are combined together to produce what is called 
“feature vectors”. These feature vectors are used by a 
vehicle/non-vehicle classifier built by the Support Vector 
Machine (SVM) algorithm [41] to detect vehicles in 
camera images. 

After the vehicle/non-vehicle classification, the 
vehicles are then detected using the sliding windows 
technique, which uses the results produced by the SVM 
classifier and scans each image to detect and localize the 
vehicle objects. The scan is not implemented of the full 
image, however, a Region of Interest (ROI) is defined and 
then extracted from each image to perform the exhaustive 
search. Therefore, the undesired image details are masked 
to improve the focus and accuracy of detecting the vehicle 
boundaries. The results of this scanning process are used to 

build active heat-maps that produce potential car boxes. 
The overlapped detected true-positive car boxes are then 
grouped in bigger boxes and labeled accordingly. As a final 
step, the labeled boxes are drawn on the original test image 
or video frame. For the matter of illustration, working 
examples of the resultant road boundary are displayed on 
the original color image as shown in Figure 1 and Figure 2.  

 
Figure 1.  Detected Vehicle boundaries by the RT_VDT algorithm. 

 

Figure 2.  Detected Vehicles’ boundaries by the RT_VDT algorithm. 

3. HISTOGRAM OF ORIENTED GRADIENTS 
The motivation behind the development of the HOG 

algorithm is best described by the authors [38] as: 

“Local object appearance and shape can often be 
characterized rather well by the distribution of local 
intensity gradients or edge directions, even without precise 
knowledge of the corresponding gradient or edge positions. 
In practice, this is implemented by dividing the image 
window into small spatial regions (“cells”), for each cell 
accumulating a local 1-D histogram of gradient directions 
or edge orientations over the pixels of the cell. The 
combined histogram entries form the representation. For 
better invariance to illumination, shadowing, etc., it is also 
useful to contrast-normalize the local responses before 
using them. This can be done by accumulating a measure 
of local histogram “energy” over somewhat larger spatial 
regions (“blocks”) and using the results to normalize all of 
the cells in the block. We will refer to the normalized 
descriptor blocks as Histogram of Oriented Gradient 
(HOG) descriptors” 
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For instance, to detect a specific object ‘Obj’ in a camera 
image the following steps can be followed: 

 

1) The camera image is converted to gray. 

2) Start by constructing a rectangle (or square) window 
that is 64 pixels tall by 64 pixels wide (the dimensions 
of the window are arbitrary depending on the designer 
choice). 

3) Use it to scan the grey camera image searching for Obj. 
The search is done by sliding the window both 
horizontally and vertically with a stride of 8 bits (as an 
example).  

4) The object Obj may have of course different sizes and 
occupy a bigger or small part of the image. Therefore, 
the analysis should be done not only on the original 
starting window (64×64) but also on a series (pyramid) 
of windows with an increment of 16 bits (as an 
example), like 80×80, 96×96, 112×112, etc. This 
pyramid of windows corresponds to larger portions of 
the original camera image where Obj or part of it could 
be inside one of them. 

5) In each step of the windows slide, the HOG features are 
computed and get associated with the center position of 
the corresponding window as a matter of “feature 
localization”. 

To compute the HOG features, the input to the 
algorithm is expected to be a certain window ‘WI’ from a 
gray-level image, possibly from a pyramid, and the 
workflow continues as follows and shown in Figure 3. : 

1) Calculate the two gradient components Gx and Gy of the 
gradient of WI by central differences: 

𝐺𝐺𝑥𝑥(𝑟𝑟, 𝑐𝑐) = 𝑊𝑊𝐼𝐼(𝑟𝑟, 𝑐𝑐 + 1) −𝑊𝑊𝐼𝐼(𝑟𝑟, 𝑐𝑐 − 1)                 (1) 

𝐺𝐺𝑦𝑦(𝑟𝑟, 𝑐𝑐) = 𝑊𝑊𝐼𝐼(𝑟𝑟 − 1, 𝑐𝑐) −𝑊𝑊𝐼𝐼(𝑟𝑟 + 1, 𝑐𝑐)                 (2) 

where r and c are the corresponding row and column 
numbers of the pixels in window WI. 

2) The calculated gradient is then converted to polar 
coordinates as below, with the angle constrained to be 
between 0º and 180º. As a result, gradients that point in 
opposite directions are computed as: 

𝐺𝐺 =  �𝐺𝐺𝑥𝑥 + 𝐺𝐺𝑦𝑦                                                        (3) 

𝜃𝜃 = 180
𝜋𝜋

(𝑡𝑡𝑡𝑡𝑡𝑡2−1 �
𝐺𝐺𝑦𝑦
𝐺𝐺𝑥𝑥
�𝑚𝑚𝑚𝑚𝑚𝑚 𝜋𝜋)                                  (4) 

where 𝑡𝑡𝑡𝑡𝑡𝑡2−1 is the four-quadrant inverse tangent, 
which yields values between -π and π. 

 

 

 

 

 

 

3) Construct the cell orientation histograms by dividing 
the window WI into adjacent, non-overlapping cells of 
size C×C pixels (could be C = 8). In each cell, calculate 
the histogram of gradient orientations that are enclosed 
(binned) into B bins (could be B = 9). If the bins are 
numbered 0 through B-1 and have width 𝑤𝑤 = 180

𝐵𝐵
, then 

bin i has boundaries [wi, w(i + 1)] and center 𝑐𝑐𝑖𝑖 =
𝑤𝑤(𝑖𝑖 + 1

2
). A pixel with magnitude G and orientation θ 

contributes a vote of: 

𝑣𝑣𝑗𝑗 = 𝐺𝐺
𝑐𝑐𝑗𝑗+1−𝜃𝜃

𝑤𝑤
 𝑡𝑡𝑚𝑚 𝑏𝑏𝑖𝑖𝑡𝑡 𝑡𝑡𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛𝑟𝑟 𝑗𝑗 = �𝜃𝜃

𝑤𝑤
− 1

2
�𝑚𝑚𝑚𝑚𝑚𝑚 𝐵𝐵  (5) 

and a vote of: 

𝑣𝑣𝑗𝑗+1 = 𝐺𝐺
𝜃𝜃−𝑐𝑐𝑗𝑗
𝑤𝑤

 𝑡𝑡𝑚𝑚 𝑏𝑏𝑖𝑖𝑡𝑡 𝑡𝑡𝑛𝑛𝑚𝑚𝑏𝑏𝑛𝑛𝑟𝑟 (𝑗𝑗 + 1) 𝑚𝑚𝑚𝑚𝑚𝑚 𝐵𝐵        (6) 

This scheme is called voting by bilinear interpolation 
and the resulting cell histogram is a vector with B 
positive entries. 

4) The block normalization step is then carried out by 
grouping the cells together into overlapping blocks of 
2×2 cells each. Therefore, each block has a size of 
2C×2C pixels. Accordingly, each two horizontally or 
vertically consecutive blocks overlap by two cells, that 
is, the block stride is C pixels. Consequently, each 
internal cell is covered by four blocks. The four-cell 
histograms in each block are concentred into a single 
block feature b and then the block feature ‘b’ get 
normalized by its Euclidean norm as: 

𝑏𝑏 ← 𝑏𝑏
�‖𝑏𝑏‖2+𝜖𝜖

                                                              (7) 

Where ϵ is a small positive constant that prevents 
division by zero in gradient-less blocks. 

5) The normalized block features are then concatenated 
into a single HOG feature vector h, which is normalized 
as follows: 

ℎ ← ℎ
�‖ℎ‖2+𝜖𝜖

                                                              (8) 

ℎ𝑛𝑛 ← min (ℎ𝑛𝑛, 𝜏𝜏)                                                      (9) 

Here, hn is the nth entry of h and τ is a positive threshold 
(τ = 0.2). Clipping the entries of h to be no greater than 
τ (after the first normalization) ensures that very large 
gradients do not have too much influence—they would 
end up washing out all other image detail. The final 
normalization makes the HOG feature independent of 
overall image contrast. An example of the output of the 
algorithm is shown in Figure 4. . 
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Figure 3.  The Histogram of Oriented Gradiens Workflow. 

 

Figure 4.  Results of applying HOG. 

4. SUPPORT VECTOR MACHINE CLASSIFIER 
Support Vector Machine (SVM) [42] is a supervised 

learning model with an associated learning algorithm that 
analyzes data used for classification and regression 
analysis [43, 44]. Given a set of training examples, each 
marked as belonging to one or the other of two categories, 
an SVM training algorithm builds a model that assigns new 
examples to one category or the other, making it a non-
probabilistic binary linear classifier.    

Given a training dataset of n points of the form 

(�⃗�𝑥1,𝑦𝑦2), … , (�⃗�𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖), … , (�⃗�𝑥𝑛𝑛,𝑦𝑦𝑛𝑛)                               (10) 

where 𝑦𝑦𝑖𝑖  are either 1 or -1, each indicating the class to 
which the point  �⃗�𝑥𝑖𝑖  belongs. Each is a p-
dimensional real vector. It is required to find the 
"maximum-margin hyperplane" that divides the group of 
points  �⃗�𝑥𝑖𝑖  for which 𝑦𝑦𝑖𝑖 = 1 from the group of points for 
which  𝑦𝑦𝑖𝑖 = −1  , which is defined so that the distance 
between the hyperplane and the nearest point  �⃗�𝑥𝑖𝑖  from 
either group is maximized. 

Any hyperplane can be written as the set of points �⃗�𝑥 
satisfying 

𝑤𝑤��⃗ . �⃗�𝑥 − 𝑏𝑏 = 0                                                            (11) 

where 𝑤𝑤��⃗ is the normal vector to the hyperplane. The 
parameter 𝑏𝑏

‖𝑤𝑤��⃗ ‖
 determines the offset of the hyperplane from 

the origin along the normal vector 𝑤𝑤��⃗ . 

If the training data is linearly separable, the optimization 
problem can be written as follows: 

"𝑀𝑀𝑖𝑖𝑡𝑡𝑖𝑖𝑚𝑚𝑖𝑖𝑀𝑀𝑛𝑛 ‖𝑤𝑤��⃗ ‖𝑠𝑠𝑛𝑛𝑏𝑏𝑗𝑗𝑛𝑛𝑐𝑐𝑡𝑡 𝑡𝑡𝑚𝑚 𝑦𝑦𝑖𝑖(𝑤𝑤��⃗ . �⃗�𝑥𝑖𝑖 − 𝑏𝑏) ≥ 1,   

𝑓𝑓𝑚𝑚𝑟𝑟 𝑖𝑖 = 1,2, … ,𝑡𝑡"                                                   (12)      

The 𝑤𝑤��⃗  and b that solve this problem determine our 
classifier, �⃗�𝑥 ↦ 𝑠𝑠𝑠𝑠𝑡𝑡(𝑤𝑤��⃗ . �⃗�𝑥 − 𝑏𝑏). 

If the training data is not linearly separable, the hinge loss 
function is introduced as 

max�0, 1 − 𝑦𝑦𝑖𝑖(𝑤𝑤��⃗ . �⃗�𝑥𝑖𝑖 − 𝑏𝑏)�                                      (13) 

This function is zero if the constraint 𝑦𝑦𝑖𝑖(𝑤𝑤��⃗ . �⃗�𝑥𝑖𝑖 − 𝑏𝑏) ≥ 1 is 
satisfied, in other words, if  �⃗�𝑥𝑖𝑖 lies on the correct side of the 
margin. For data on the wrong side of the margin, the 
function's value is proportional to the distance from the 
margin. Then the optimization function will be solved: 

𝑚𝑚𝑖𝑖𝑡𝑡𝑖𝑖𝑚𝑚𝑖𝑖𝑀𝑀𝑛𝑛 {�
1
𝑡𝑡
�max�0, 1 − 𝑦𝑦𝑖𝑖(𝑤𝑤��⃗ . �⃗�𝑥𝑖𝑖 − 𝑏𝑏)�
𝑛𝑛

𝑖𝑖=1

� + 𝜆𝜆‖𝑤𝑤��⃗ ‖2} 

                                                                                    (14)   

where the parameter 𝜆𝜆  plays a role of determining the 
tradeoff between two opposing requirements: one is 
increasing the margin-size and the other is ensuring that the 
 �⃗�𝑥𝑖𝑖 lie on the correct side of the margin. Accordingly, for 
sufficiently small values of 𝜆𝜆, the second term in the loss 
function will become negligible; consequently, it will 
perform similar to the hard-margin SVM, if the input data 
are linearly classifiable. However, it will still learn if a 
classification rule is viable or not. 

If a nonlinear classification rule need to be learned, and 
which this non-linear rule corresponds to a linear 
classification rule for the transformed data points 𝜑𝜑(�⃗�𝑥𝑖𝑖). 
Additionally, a kernel function k is given which 
satisfies 𝑘𝑘��⃗�𝑥𝑖𝑖 , �⃗�𝑥𝑗𝑗� =  φ(�⃗�𝑥𝑖𝑖).φ��⃗�𝑥𝑗𝑗� . Accordingly, the 
classification vector 𝑤𝑤��⃗  in the transformed spaces satisfies 

w���⃗ =  ∑ 𝑐𝑐𝑖𝑖𝑦𝑦𝑖𝑖 φ(�⃗�𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=0                                                (15)          

where the 𝑐𝑐𝑖𝑖 ’s are obtained by solving the optimization 
problem 

https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Probabilistic_classification
https://en.wikipedia.org/wiki/Binary_classifier
https://en.wikipedia.org/wiki/Linear_classifier
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𝑚𝑚𝑡𝑡𝑥𝑥𝑖𝑖𝑚𝑚𝑖𝑖𝑀𝑀𝑛𝑛 𝑓𝑓(𝑐𝑐𝑖𝑖 … 𝑐𝑐𝑛𝑛)

=  �𝑐𝑐𝑖𝑖

𝑛𝑛

𝑖𝑖=1
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                                                                                 (16) 

The coefficients 𝑐𝑐𝑖𝑖′𝑠𝑠  can be solved using quadratic 
programming [45], and then solve 

𝑏𝑏 =  w���⃗ .φ(�⃗�𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖 = ��𝑐𝑐𝑘𝑘𝑦𝑦𝑘𝑘 𝑘𝑘(�⃗�𝑥𝑘𝑘, �⃗�𝑥𝑖𝑖)
𝑛𝑛

𝑘𝑘=1

� − 𝑦𝑦𝑖𝑖 

                                                                                   (17) 

Finally, new points (𝑀𝑀) can be classified by computing 

𝑀𝑀 ↦ 𝑠𝑠𝑠𝑠𝑡𝑡(𝑤𝑤��⃗ .φ(�⃗�𝑥𝑖𝑖) − 𝑏𝑏)

= 𝑠𝑠𝑠𝑠𝑡𝑡 ���𝑐𝑐𝑘𝑘𝑦𝑦𝑘𝑘 𝑘𝑘(�⃗�𝑥𝑘𝑘, �⃗�𝑥𝑖𝑖)
𝑛𝑛

𝑘𝑘=1

� − 𝑏𝑏� 

                                                                            (18) 

5. COLOR SPACES 
A color space (model) is a specific organization of colors 

that provides a way to categorize colors and represent them 
in digital images [36]. It is an abstract mathematical model 
describing the colors as tuples of numbers (e.g. triples 
in RGB or quadruples in CMYK).  This representation is 
useful in understanding the color capabilities of a particular 
digital device or file (camera images). There are a variety 
of color spaces, such as RGB, LUV, YUV, HSV, HLS, 
CMY, LAB, etc. The following as some highlights on the 
most emphasized color spaces that have been experienced 
throughout this work: 

1) RGB: is a kind of color space that uses (R=Red, 
G=Green, and B=Blue) to elaborate the color model 
[30]. Simply, it contains all possible colors, by 
combining the three colors with different levels. Each 
pixel of an image has three components R, G and B. 
Each component is assigned a range of 0→255 of 
intensity values. Obviously, it can be said, using only 
these three color components, there can be 16,777,216 
distinct colors on the screen by different mixing ratios. 

2) HSL and HSV: (Hue, Saturation, Lightness) and (Hue, 
Saturation, Value) color spaces are both constructed 
geometrically from cylindrical structures as shown in 
Figure 5. . They are sometimes used to define gradients 
for data visualization as a compromise between 
effectiveness for segmentation and computational 
complexity. Separating hue, lightness, and chroma or 
saturation is proven effective in some object detection 
applications. 

 
Figure 5.  HSL and HSV cylindrical color spaces. 

3) LAB: (Lumination, ‘a’ and ‘b’ color channels) as 
shown in Figure 6. , is a color model (space) that covers 
the whole light spectrum, including as well spectrum 
outside of human vision. LAB is very powerful in 
identifying a spot color, possibly a focal “brand name” 
or “logo” color such as “Pepsi Blue” or “McDonald's 
Yellow”. This specific color definition can be used to 
specify many items such as vehicles, traffic signs, 
trees, buildings, lane markings, etc. 

  
Figure 6.  LAB color space structure, channels (L, ‘a’ and ‘b’). 

4) LUV: (Lumination, ‘U’ and ‘V’ color channels) is a 
color model that uses U and V channels to represent the 
chromaticity or color values, which are completely 
independent of the L channel. This makes LUV color 
space much better suited for image difference 
comparisons. 

5) YUV: (lumination ‘Y’, ‘U’ and ‘V’ color 
differences)  is the principal color model used in analog 
color TV broadcasting. The luminance channel ‘Y’ can 
be calculated as a weighted sum of red, green and blue 
color components. Furthermore, the color difference, 
or chrominance, components ‘U’ and ‘V’ are formed 
by subtracting the channel ‘Y’ (luminance) from blue 
and from red components respectively. The principal 
advantage of the YUV color space in image processing 
is the decoupling of luminance and color information. 
The main advantage of this complete separation is that 
the luminance component of a certain image can be 

https://en.wikipedia.org/wiki/Color
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dealt with without affecting these images’ color 
components [46]. 

6. CAMERA CALIBRATION 
The conversion from three dimensional (3D) real-world 

scene to a two dimensional (2D) one, exhibits by a camera, 
results in image distortion, as the transformation from 
3D→2D is not perfect. Actually, the shape and size of 
objects get distorted (changed) in the resulting 2D image 
from the original 3D appearance. Therefore, before using 
the resulting 2D camera images, this distortion needs to be 
undone so that the correct and useful information can be 
extracted and analyzed.    

The construction of real cameras includes using a 
curved lens to form an image. The light rays usually bend 
around the edges of these lenses with low or high degrees 
depends on the focus and position of objects. Therefore, 
distortion at the images’ edges happens, in a way that lines 
or objects appear to be more or less curved than their actual 
reality. This effect is called the “radial distortion”, and 
represents the principal source of distortion. 

Moreover, there is another main source of distortion 
that is the “tangential distortion”. This distortion happens 
when the camera’s lens is not perfectly aligned parallel to 
the image plane that is associated with the camera sensor. 
This produces a tilt effect to the image, which shows 
objects nearer or farther away than they actually are. 

There are three needed coefficients to correct for radial 
distortion: k1, k2, and k3. To correct the appearance of 
radially distorted points in an image, one can use a 
correction formula. 

In the following equations Eq. (19), and Eq. (20), (x, 
y) is a point in a distorted image. To undistort these points, 
the first step is to use OpenCV [47] to calculate r, which is 
the known distance between a point in an undistorted 
(corrected) image (xcorrected, ycorrected) and the center of the 
image distortion, which is often the center of that image (xc
, yc). This center point (xc, yc) is sometimes referred to as 
the distortion center. These points are illustrated below in 
Figure 7. . 

 
Figure 7.  Points in a distorted and undistorted (corrected) images. 

𝑥𝑥𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  𝑥𝑥𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 + (1 + 𝑘𝑘1𝑟𝑟2 + 𝑘𝑘2𝑟𝑟4 + 𝑘𝑘3𝑟𝑟6)      (19) 

𝑦𝑦𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  𝑦𝑦𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 + (1 + 𝑘𝑘1𝑟𝑟2 + 𝑘𝑘2𝑟𝑟4 + 𝑘𝑘3𝑟𝑟6)       (20) 

There are two more coefficients that account 
for tangential distortion: p1 and p2, and this distortion can 
be corrected using a different correction formula as given 
by Eq. (21) and (22).  

𝑥𝑥𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑥𝑥 + [2𝑝𝑝1𝑥𝑥𝑦𝑦 + 𝑝𝑝2(𝑟𝑟2 + 2𝑥𝑥2)]                  (21) 

𝑦𝑦𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑦𝑦 + [2𝑝𝑝1(𝑟𝑟2 + 2𝑦𝑦2) + 2𝑝𝑝2𝑥𝑥𝑦𝑦]               (22) 

To correct for the mentioned distortions, images of 
known shapes (chessboard images) are used. Selected 
points in the distorted plans are then mapped to undistorted 
plans as shown in Figure 8. . Accordingly, the camera 
images will be calibrated. The following procedure is 
implemented to undistort the captured camera images and 
improve the image quality: 

1) Step 1 – finding the chessboard corners: Using 20 
chessboard images that have different sizes and 
orientations as depicted in Figure 9. , the 
“cv2.findChessboardCorners()” function from the 
OpenCv3 library [47] is used to locate the chessboard 
corners. The detected number of corners is 9x6 as 
shown in the 17 out of the 20 images that are depicted 
in Figure 9. . In the other 3 images, only 9x5 corners 
have been detected. The corners are drawn using the 
“cv2.drawChessboardCorners()” function of openCv3. 

 
Figure 8.  Mapping from a distorted chessboard image to an 

undistorted one. 

2) Step 2 – get camera matrices: A test chessboard image 
that has not been used before in finding the corners; is 
used; after being converted to a greyscale; along with 
the found corners in step one; to find the camera 
matrices. “cv2.CalibrateCamera()” function is used to 
perform this step. To check the quality of the 
calibration, the gray test image together with the camera 
matrices to remove the distortion of this image as shown 
in Figure 10. . 

 

Figure 9.  Chessboard images used for calibration with corners drawn. 
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Figure 10.  A test chessboard image with distortion removal. 

3) Step 2 – saving camera matrices: using Pickle library 
[48], the camera data (the camera matrix as well as the 
distortion coefficients) are saved in the pickle file 
“camera_calibration.p” for easy retrieval later. 

Figure 11.  provides an example of applying the camera 
calibration procedure on one of the test images. 

 
Figure 11.  Camera calibration effect (undistortion of images). 

7. IMPLEMENTATION OF THE SUPPORT VECTOR 
MACHINES CLASSIFIER 

In this section, the steps to build a classifier based on 
the SVM algorithm described in Section 4 will be 
explained in detail, and it is given the abbreviation 
“SVMC”. 

A. Training Data Preparation 
The data preparation steps to train the SVMC is 

summarized as follows: 

1) The data supplied by Udacity [49, 50]: the Udacity 
supplied data have been used throughout this work. 
The data consists of almost balanced “non-
vehicles” and “vehicles” images:  
a) The “non-vehicles” collections consist of the 

“GTI” collection [51] and the “Extras”. Both 
contain 8968 RGB images of size (64, 64, 3) 
pixels.  

b) The “vehicles” collections consist of the “GTI” 
collection and the “KITTI” [52]. Both contain 
8792 RGB images of size (64, 64, 3) pixels. 

2) These collections with an unzipped size of 149MB. 
3) Data Augmentation: The data is augmented by 

flipping all the images around the “Y” axis. As a 
result, the training data become a total of 35,520 
images. 

B. Training Data Visualization 
The following steps describe the implemented data 

visualization steps in order of execution: 

1) Display of Vehicles Data: 50 randomly selected 
images of the vehicle data have been displayed as 
shown in Figure 12. . Each image has its order in the 
training data as a title. 

2) Display of Non-Vehicles Data: 50 randomly 
selected images of the non-vehicle data have been 
displayed as shown in Figure 13. . Each image has 
its order in the training data as a title. 

3) Display of HOG features of Vehicles Data: A 
selected image of the vehicle data has been used to 
extract its hog features after converting it to 
grayscale. Moreover, the hog features of non-
vehicle examples are also extracted, and the result of 
both is shown in Figure 14. .  

C. Training Data Visualization 
The following steps describe the implemented images 

feature extraction functions in order of execution: 

1) Color Spatial Features: a function is implemented to 
extract the contribution of different color channels 
in each image. Or in other words, to compute the 
binned color features. The channel of each image is 
resized to (32, 32) and then raveled.     

2) Color Histogram Features: a function is 
implemented to compute the histogram of each color 
channel in each image with a designated number of 
pins, and then concatenate them. 

3) HOG Features: a function is implemented to 
compute the histogram oriented gradients of each 
image channel separately and then can use them 
separately or append them together if this option is 
selected. The SciKit-Image function “hog” [53] is 
used in the implementation of this function. 

 
Figure 12.  Visualization of 50 randomly selected vehicle images. 
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Figure 13.  Visualization of 50 randomly selected non-vehicle images. 

4) Combining All: The above feature extraction 
functions produce the following feature vectors: 

a) Using the color spatial features and ‘spatial size 
= (32, 32)’ results in a feature vector of 
32×32×3 = 3072 elements.  

b) Using the color histogram features and 
‘histogram bins = 32’ results in a feature vector 
of 32×3 = 96 elements.   

c) Using the HOG features and ‘gradient 
orientations cells = 9’, ‘pixels per cell = 8×8’, 
‘cells per block = 2×2’, and using all hog 
channels results in a feature vector of 
7×7×2×2×9 = 1764×3 = 5292 elements. 

d) If all the above functions are used the resulting 
feature vector will be of the following length: 
3072+96+5292 = 8460 elements. 

D. Training The Classifier 
The following steps are used to build up and train the 

vehicle/non-vehicle SVMC classifier:  

1) Compiling a training data set “X” of 35,520×8,460 
size which includes 35,520 vehicle/nonvehicle 
feature vectors of length 8,460 each. This training 
set represents the input to the classifier.  

2) The feature sets must be scaled; before combining 
them together; using the SciKit-Learn 
“StandardScaler().fit()” function [46]. Figure 15.  
shows the visualization of raw and normalized 
feature vectors for two-vehicle images. 

3) Compiling an output training set “Y” of a 35,520×1 
size in which each element is of a Boolean value of 
1=>vehicle or 0=>non-vehicle. 

4) Shuffle the training sets randomly and split them to 
80% for training and 20% for testing using the 
SciKit-Learn “train_test_split()” function. 

 

Figure 14.  Visualization of HOG features for vehicles and non-vehicle 
images. 

 

Figure 15.  Visualization of feature vectors for vehicles’ images. 

5) Using a Linear Space Vector Machine Classifier 
function “LinearSVC()” of the Sci-Kit Learn library 
[55], the model got trained with high accuracy 
(above 97.7%) in almost all the selected parameters 
combinations. Then the trained model is tested on 
the prepared test images. The results were not good 
in several cases. Extreme experimentations have 
been done with many parameter combinations, 
however, the results still were not acceptable. 

6) After several trials and errors, it is found that the 
color spatial features are taking a significant portion 
of the feature vector length (>36%) without adding 
a real value (sometimes even represents a confusing 
element) to the distinction between the vehicles / 
non-vehicles. Moreover, the color histogram 
features are of a very insignificant contribution (~ 
1.1%) of the feature vector as well as to the 
distinction between vehicles / non-vehicles. 

7) Therefore, both the color special and histogram 
features have been removed from the feature vector 
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and keeping only the HOG features. By doing that, 
this results in a reduction in the length of the feature 
vector from 8,460 to 5,292 features only. This is off 
course simplifies the training and the real-time 
application of the algorithm, and results in a huge 
reduction of processing and training time. 

8) The new Linear SVC classifier with a training data 
set of size = 35,520×5,292 is constructed using 
several color spaces with the training results shown 
in Table 1. 

9) Almost all the color spaces produced comparable 
results except the “RGB”. The “LAB” color space 
produces the fastest performance in both training 
and prediction with second to highest accuracy 
behind the “YUV”. However, while testing on test-
images “YUV” produced false positives more than 
“LAB”. Therefore, “LAB” color space is selected 
for the next steps. 

TABLE I.  LINEARSVC TRAINING RESULTS. 

Colour 
Space  

Training 
Time 
(Sec)  

Prediction Time 
for 10 Labels (Sec) Test 

Accuracy  

RGB  19.5  0.01563  0.9716  
HSV  8.94  0.001    0.9865  
HLS  8.83  0.0015   0.9831  
LUV  8.79  0.002    0.9876  

YCrCb  7.76  0.002    0.9899  
YUV  8.34  0.003    0.9918  
LAB  5.7  0.001      0.9916  

8. VEHICLE DETECTION AND TRACKING PIPELINE 
The following steps constitute the pipeline used in the 

detection and tracking of other vehicles on the road 
(RT_VDT). These steps are presented in order of execution: 

1) Finding lane lines: this function is mainly to detect 
the road boundaries (in other words, the lane lines in 
front of the car) which represent the driving space 
(shown in green in Figure 1. ). This function is fully 
implemented in [2] and used here for convenience. 

2) Detecting vehicles by sliding windows technique: a 
dedicated function is implemented and called for 
each camera frame and used the following 
parameters:  

a) “orient = 9” defining the number of histogram 
bins per cell and it is used for the HOG feature 
extraction for images or video frames. 

b) “pix_per_cell = 8” defining the number of HOG 
pixels/cell. In this case, the cell will be 8×8 
pixels. 

c) “cell_per_block = 2” defining the number of 
HOG cells/block. In this case, the cell will be 
2×2 cells. 

d) xstart, xstop, ystart, ystop: these 4 parameters define a 
rectangular area on the image or frame that 
represents the region of interest (ROI) in which 
the function searches for a vehicle by the sliding 
windows technique. 

e) “step_size = 2” defining how many cells to step 
(or to slide) to construct a new search window 
that will overlap with the previous search 
window. 

f) “Scale_Step = 0.25” defining the step at which 
the search window sizes increments from one 
search scan to the next. 

g) Scale_Multiplier_Start, Scale_Multiplier_End: 
two parameters defining the starting and 
stopping of the windows sizes increment while 
scanning the ROI area. 

The function uses the trained SVMC classifier 
model and applies it to each constructed search 
window. Sliding windows with different sizes are 
being constructed to cover the defined ROI as shown 
in Figure 16. . This function as well may be applied 
several times with a different set of “a→g” 
parameters based on if it found necessary. 

3) Building active heat-maps: The goal is to construct 
a heat-map for each found car box during the search 
of a sliding-windows scan. This heat-maps is used 
to filter out (try to minimize) the false-positive 
boxes. A dedicated parameter 
“HEAT_THRESHOLD” is used to only pass (based 
on its value) the car boxes with multiple hits (true-
positive boxes) as shown in Figure 17.  

4) Labeling car boxes: the overlapped true-positive 
vehicle boxes are then grouped in bigger boxes and 
labeled using the “label()” function from the Sci-Kit 
Learn library. 

5) Drawing the labeled car boxes: as a final step, the 
labeled boxes are drawn on the original test image 
or video frame as shown by the red boxes in Figure 
1.  and Figure 2. .  

Figure 18.  & Figure 19.  show examples of the results 
after the execution of the above pipeline on the test images 
that include shadow patterns that usually confuse vision-
based algorithms. 

 
Figure 16.  Sliding windows with different sizes scanning the ROI. 
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Figure 17.  Detected vehicle boxes and the resulted heat-maps. 

9. TESTING AND VALIDATION 
The developed RT_VDT algorithm is further tested on 

various images representing different scenarios. The results 
show that the algorithm performs very well under different 
conditions (at full sunrise, at sunset, with shadows, without 
shadows, with cars on the other lanes and without). 
Furthermore, for robustness testing and validation of the 
developed pipeline, the algorithm is applied to several real-
time video samples representing different driving 
conditions. The RT_VDT proved to be very robust in all the 
pre-mentioned conditions as shown in Figure 1.  and Figure 
2. However, the scattered areas of shadows have an effect 
on the precision of producing the vehicles’ boundary boxes 
as shown in Figure 18.  and Figure 19. . However, the 
results are still acceptable and produce functional results. 

 

Figure 18.  The execution of vehicle detection and tracking pipeline. 

 
Figure 19.  The execution of vehicle detection and tracking pipeline. 

As shown in Figure 1 , Figure 2 , Figure 18  and Figure 
19  the images include as well lane detection results from 
the work in [6]. 

The pipeline proved to be acceptably fast in execution 
in real-time. Using an Intel Core i5 with 1.6 GHz and 8 GB 
RAM which very moderate computational platform, the 
following measurements are collected for two testing video 
streams: 

TABLE II.  COMPUTATION SPEED FOR THE RT_VDT ALGORITHM. 

Sample Name No. of 
Frames 

Total Time 
Min:Sec 

Frame per 
Sec 

Challenge Video 485 00:39 12.52 
Challenge Video + 

Lane Detection 485 01:24 5.77 

Project Video 1261 02:06 10.01 
Project Video +  
Lane Detection 1261 03:26 6.11 

The lowest measured processing speed is 10.01 frames 
per second, which is considered just adequate as per the 
recommended performance for this application [56]. 
Therefore, the more powerful computational hardware if 
employed should significantly enhance the real-time 
performance of the proposed pipeline [57]. 

10. DISCUSSION OF THE IMPLEMENTED 
APPROACHES 

The following points shed some light on some technical 
tricks and aspects that have been tried or implemented in 
the described pipelines: 

1) Color spaces: around 7 different color spaces have been 
tried on both testing images and videos. Throughout the 
experimentation, both HSV and LAB produced the best 
results in both vehicle finding and lower false positives. 
The other color spaces like YUV, LUV, YCrCb, HLS 
produces comparable results. However, RGB produced 
the worst results among them by far. Therefore, HSV 
and LAB are adopted during the development and 
testing phases.    

2) Decision function: After applying the trained SVMC 
model on every constructed sliding widow to search for 
vehicles, the decision function [54] (from the SciKit-
Learn library) [52] is used instead of simple prediction 
function. The decision function returns the probability 
of the object being a vehicle or not [58]. So, positive 
probabilities mean that the object is at least 50% a 
vehicle, and accordingly, negative probabilities mean it 
is more than 50% non-vehicle object. By defining a new 
parameter     “Confidence_score” which identifies the 
confidence for an object of being a vehicle. The higher 
the positive value the higher the confidence for the 
object of being a car. Using decision function helped 
reducing false positives significantly. 

3) Heat-maps filtering: the calculated heat-maps on each 
frame are not used directly, however, they will be been 
filtered using an FIR filter. This FIR is designed to use 
the current and the previous values of the previous four 
frames, before applying a threshold. This technique 
helped to smooth out the constructed vehicle windows 
and helped in reducing false positives as well. 
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4) Vehicle box vertices filtering: Similar to the heat-maps 
filtering, the constructed vehicle boxes are also filtered 
out using FIRs. The calculated vertices are not used 
directly but got filtered first using the calculated values 
of the previous three frames. This technique helped to 
reduce the jitter of the position and the size of the 
identified final car boxes for each frame. 

5) Identification of the regions of interest: the RT_VDT 
pipeline has been constructed to include the designation 
of several ROI search areas by both x and y-axis. This 
approach helped to more accurately identify search 
areas, reduces the search time, improve search 
performance and eliminates undesired false positives. 

6) Frame sampling: throughout the experimentation, it is 
found that it is not necessary to search for vehicles 
every frame at the current sampling rate of the camera 
(25 fps), as the movement of vehicles from frame to 
frame is not that fast. Therefore, the active search for 
vehicles is restricted to every other frame, which 
reduces the video processing time by half and almost 
didn’t affect the result at all. 

7) Sanity checks: some sanity checks are used to improve 
the identified vehicle boxes like:  

a) Vehicle box size: the identified vehicle box size is 
being measured and checked out before it is being 
drawn to the image or video frame. This is done by 
measuring the diagonal of the identified box and 
compare it with certain specified constraints. 

b) Vehicle box position: some checks are added to 
validate the position of the identified car boxes. For 
example, in the test images, vehicle boxes can’t be 
found at a position lower than “y = 400”. 

11. CONCLUSION 
In this paper, reliable and sophisticated vehicle 

detection and tracking technique based on computer-
vision algorithms are developed, presented thoroughly and 
given the name RT_VDT. RT_VDT uses a pipeline of well-
known color spaces such as LAB, YUV, LUV, etc. 
Additionally, it uses computer-vision algorithms like 
HOG features, and machine learning algorithms like 
Support Vector Machines. Moreover, the pipeline uses a 
comprehensive image distortion suppression and camera 
calibration techniques to produce undistorted road images 
suitable for more accurate vehicle detection. In addition to 
that, several sanity-check tricks are exercised to improve 
the robustness of the techniques used. The proposed 
RT_VDT technique needs only raw RGB images from a 
single CCD camera mounted behind the front windshield 
of the vehicle. The performance of the RT_VDT algorithm 
is tested and evaluated using many stationary images and 
several real-time videos. The validation results show a 
fairly accurate and robust detection with slight 

insignificant deviation in one scenario where complex 
shadow patterns exist. The measured throughput 
(execution time) using an affordable CPU proved that the 
RT_VDT is very suitable for real-time vehicle detection if 
more processing power, like GPUs, is added. Therefore, 
the proposed technique is well suited to be used in 
Advanced Driving Assistance Systems (ADAS) or self-
driving cars. 
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