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Abstract: The escalating numbers of on-chip processing cores necessitate the introduction of a high performance and scalable 

communication backbone. In respond to this, Network on Chip (NoC) systems are introduced to play an important role in 

determining the performance and power of the entire chip. Specifically, Packet-based NoC is known as the most viable 

communication solution for the multi-core SoC of the future. In NoC design, the buffering organization directs the control of data 

flow as well as facilitates the use of Virtual Channels (VC). In terms of buffering, the VC mechanism is categorized into static and 

dynamic models. In dynamic VC mechanism, VCs employ a variable number of buffer slots according to the on-chip traffic. This 

feature of dynamic VC mechanism encourages us to introduce the Packet Based Virtual Channel (PBVC) approach. The idea is that a 

VC is reserved when a packet comes in a router, and released when the packet leaves the router. This prevents a VC to hold more 

than one packet that subsequently removes the Head-of-Line (HOL) blocking in NoCs. Our proposed technique is more suitable for 

dynamically allocated multi-queue (DAMQ) schemes. In these schemes, an input or output port comprises a centralized buffer whose 

slots are dynamically allocated to VCs in real-time and according to the traffic conditions. We introduce the architectural and 

structural details of our DAMQ buffer organization as well as the hardware that our approach imposes. The simulation results 

support the theoretical concepts of our proposed technique. The results of the hardware requirements for the proposed model are 

compared with the conventional models. The experimental results show that PBVC can improve the network latency by 40% and the 

network throughput by 23% on average as compared to the conventional designs for specific high HOL traffic. 
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1. INTRODUCTION  

In the NoC domain, wormhole routing is mainly 

employed for communication among multiple cores. In 

wormhole routing, packets are divided into small and 

equal sized flits (flow control digit or flow control unit). 

The flits of a packet are stored in the channel buffers that 

are first in first out type. The buffer size of a channel can 

be less than a packet but equal or more than a flit. When 

the header flit of a packet passes through a routing path, 

the route path is reserved by the packet. It means no other 

packets can utilize that route [1]. This kind of routing 

cannot avoid traffic congestion when a packet is blocked. 

The blocking of one packet leads to the blocking of other 

packets for a channel. This blocking is called HOL (Head 

of Line) blocking. The HOL blocking reduces the 

performance in terms of latency, throughput and lower 

buffer utilization. HOL problem can be alleviated by 

using Virtual Channels (VCs) [2]. The VC mechanism 

enables the multiplexing and buffering of several packets 

for a communication channel [3]. However, VC approach 

does not remove HOL problem completely [4, 5, 6, 7, 8, 

9, 10, 11]. We introduce a method that entirely removes 

the effect of HOL blocking in a VC based wormhole 

routing NoC. 

A. FIFO Buffers 

Queue is the main component of a router micro-
architecture and it temporarily stores packets in the form 
of first come first serve (FCFS) order until network 
resources become available. Two terms, “queue” and 
“FIFO” sometimes have the same meaning when the 
concept of first-in-first-out is considered. However, in 
terms of architecture, FIFO is mostly referred to serial or 
parallel FIFOs, and the queue is referred FCFS based 
buffer that also comprises FIFO buffers too. There are two 
types of FIFO designs and architectural schemes: serial 
and parallel [2, 12, 13, 14, 15, 16, 17, 18, 19]. The serial 
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FIFO (such as shift register) that works by fall-through 
principle is the first generation FIFO. However, the 
architecture of FIFO is constantly being improved. 
Currently, most of the FIFOs are parallel, which provides 
a considerable increase in the number of stored words, 
along with faster speed [15]. 

 

 

B. Dynamically Allocated Multi-Queue Buffers 

In industrial and academic research, many queue 
architectures have been proposed and the first-in-first-out 
queue (FIFO), circular queue (CQ), dynamically allocated 
multi-queue (DAMQ) and variants of them are well-
known queue designs [5, 6, 9, 10, 11, 12]. DAMQ that is a 
unified and dynamically-allocated buffer structure was 
originally presented by Frazier and Tamir [5]. It is a single 
storage array that maintains multiple FIFO queues. 
DAMQ can be a general solution to the HOL blocking 
problem discussed earlier [12]. In this technique, packets 
are stored into the queues of a multi-queue of the output 
port for routing. Therefore, in the case of blockage of the 
output port, the packets destined to that output port 
become blocked. According to Choi and Pinkston, this 
type of blocking is not HOL [12], but we argue that it is 
HOL blocking. In fact, HOL blocking can happen inside a 
queue of a DAMQ buffer [2, 20]. The packets in a queue 
of output port have different destinations, and they travel 
to different output ports in the downstream router. 
Therefore, if the head of line of these packets is blocked 
due to blocking of its output port in the next downstream 
router, the remaining packets will be blocked even though 
their output ports are open in the next downstream router. 
Figure 1 illustrates a HOL blocking case where eastward 
output port of router1 is blocked due to blocking of P1. 
The packets P2 and P3 are blocked despite the fact that 
their output ports are open in the downstream router. 

The DAMQ mechanism dynamically allocates 
multiple queues over a physical channel. In other words, 
the DAMQ buffers are able to efficiently adapt to network 
traffic by dynamically allocating queue space among the 
output ports according to the network traffic [12]. These 
dynamic queues of DAMQ buffers lead to a maximum 
buffer utilization. The DAMQ organization can be used in 
the VC organization of NoC.  This technique is able to 

solve the other NoC issues such as contention, deadlock 
or a fault. Jamli et al [6] has used DAMQ buffer scheme 
for fault tolerance in the NoC systems. 

 

 

Before moving ahead, it is better to get familiar with 
Linked-List based DAMQ mechanism [4]. In Fig. 2, the 
VC implementation of a physical channel is illustrated 
through two conventional queue types: static and DAMQ. 
In a static queue, the buffer slots are statically allocated to 
incoming packets where in DAMQ queue, the buffer slots 
are dynamically allocated to incoming packets. The 
pointers of each queue in Fig. 2a are updated circularly 
and sequentially for each read and write to the queue. 
However, DAMQ technique uses linked-list to update the 
contents of read and write pointers. The linked-list of 
buffer slots determines the VCs order in the channel 
buffer as well as the order of slots in each VC [5]. There 
is a linked-list for each channel that keeps the addresses of 
occupied buffer slots. Each read pointer is updated 
according to the occupied list and points to the first slot in 
the queue. The linked-list is also used to keep track of free 
slots available for incoming packets. The write pointers 
are updated according to the free list and point to the slot 
where incoming flit should be stored. In each read and 
write to the queues, the linked-list is updated.  

Despite the performance merits of DAMQ, it suffers 
from a few complications and limitations. The first 
problem is its hardware complexity caused by the linked-
list dynamic queue management [12, 20]. The second 
major problem is that the queue structure is tailored more 
for deterministic routing algorithms than for fully adaptive 
routing. In DAMQ, a routing decision for a new packet is 
made in order to assign the packet to one of the output 
queues. This forces the packet to be routed only through 

Figure 1: Head of line blocking in DAMQ output port. 
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that output. In this type of flow control, the routing 
adaptivity cannot be established [12]. The third problem is 
that there is no reserved space dedicated for each output 
port. The packets destined to one specific output port may 
occupy the whole buffer space, and the new packets 
destined to this output port have no chance to get into the 
buffer [6]. The fourth problem is that the DAMQ design 
uses hardware to implement a linked-list and manage 
dynamic queue buffer, resulting a larger delay for flit 
arrival/departure [20]. The remainder of this paper is 
organized as follows.  The previous research works are 
discussed in Section 2 while our PBVC approach is 
presented in Section 3. The linked-list based DAMQ 
buffer is described in Section 4 in terms of its structure 
and organization. In Section 5, we explain and provides 
the PBVC experimental results. Finally, the conclusions 
are drawn in Sections 6. 

2. PREVIOUS RESEARCH WORK 

Different buffer architectures are proposed to 
overcome various DAMQ drawbacks. Dynamically 
allocated multi-queue with recruit registers (DAMQWR) 
and virtual channel dynamically allocated multi-queue 
(VCDAMQ) are proposed by Choi and Pinkston [12]. 
DAMQWR uses DAMQ architecture with recruit 
registers to implement adaptive routing in NoC. The main 
function of recruit registers is to allow packets of blocked 
sub queues employ less congested sub queues. However, 
in addition to hardware overhead, DAMQWR method 
also has an additional delay due to recruit register updates 
and packet recruit operations. VCDAMQ queue 
organization that resembles DAMQ can efficiently adapt 
to unbalanced traffic loads among virtual channels by 
dynamically allocating queue space to virtual channels. In 
fact, the difference between the VCDAMQ and the 
traditional DAMQ is that the sub queues of VCDAMQ 
are associated with router virtual channels while those of 
the DAMQ are associated with router output ports. 

A multi-VC dynamically shared buffer named 
DAMQ-PF is presented by Zhang et al [11]. Their design 
has dedicated storage for each output port and a small pre-
fetch buffer is used for each VC to store data read from 
the shared buffer. The same mechanism is also used for 
the idle address list. In this way, a continuous and 
concurrent access of the shared buffer is created without 
any delay. They also proposed a fair credit management 
method to avoid a situation when a single VC occupies 
the shared buffer exclusively [11]. Liu et al proposed a 
DAMQ buffer organization scheme with reserved space 
for all the virtual channels [7]. The main feature of this 
scheme is to have a reserved space dedicated for each 
virtual channel. As shown in Fig. 3, two buffer slots are 
reserved for each virtual channel before the buffer accepts 
any incoming flit. 

 

 

A few researchers have presented the detailed design 
and implementation of DAMQ buffers. All of these 
techniques are either expensive in terms of hardware or 
inefficient due to data dependency (specifically when 
packet gets bigger). We can observe these problems in the 
following architectures. A centralized shared buffer 
architecture called Virtual Channel Regulator (ViChaR) is 
introduced by Nicopoulos et al [2]. This design avoids 
using linked list, but still incurs high cost in control logic. 
ViChaR can support a maximum number of VCs as many 
as the number of slots in channel buffer. This requires the 
arbiter in both VC allocation (VA) and switch allocation 
(SA) stages to be of s size, where s is the number of buffer 
slots. Such size of arbiter can create the latency bottleneck 
in the critical path of a router that may limit the frequency 
of NoC [20]. In spite of the advantage of supporting a 
large number of adaptive VCs, theoretically ViChaR 
cannot assign a specific room to each VC. In some cases, 
this will create a deadlock or high traffic contention. 
ViChaR dynamically allocates VCs and grants new flit on 
a First-Come-First-Served (FCFS) basis, and there is no 
priority for the new packets. Therefore, in case of 
blocking, a packet can occupy all the slots of a channel 
buffer and prevents any new packet to pass through the 
router. If the blocking of that packet continues, the 
upstream routers will be occupied by the packet and no 
other packets can pass through the route. This blocking 
can spread in the entire NoC system and create deadlock. 
Technically, this problem is due to the design of ViChaR 
structure where the VC size varies from one to a 
maximum size channel buffer. Another drawback of the 
approach is a huge NoC hardware in some configurations. 
In ViCHaR method, the information of incoming buffer is 
saved in a table and two trackers as illustrated in Fig. 4. 
The VC control table module that holds the slot IDs of all 
the current flits becomes very large when the flit size is 
small or the packet size is big. An advantage of ViChaR is 
that there is no HOL blocking in its communication. 

A few interesting features of ViChaR architecture has 
encouraged some researchers to employ it in their designs. 
The design of an intelligent buffer that logically reorders 
the entries in FIFO buffer to minimize overall leakage 
power consumption is presented by Nicopoulos et al [21]. 
They employ the ViChaR [2] concept to design their 
buffer architecture, called IntelliBuffer. In this design, the 
slots are classified in advance based on their leakage 
characteristics. Then, the write module always tries to 
direct incoming flits to the least leaky slots. Moreover, all 
unused slots are supply-gated using sleep transistors to 
minimize leakage power consumption. Other mechanisms 

Figure 3: Reserved space for virtual channel [7]. 
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that employed ViChaR architecture are in the research 
presented by Xu et al [20]. Their idea is that VCs are 
assigned based on the designated output port of a packet 
to reduce the Head-of-Line (HOL) blocking. Unlike 
ViChaR designs, they only use a small number of VCs to 
keep the arbitration latency low. In other words, their 
buffer design is similar to ViChaR except that each VC 
can  store  multiple  packets,  and  its  VC number is fixed. 

 

 

 
The buffer design uses smaller arbiter, however, their VC 
allocation scheme is between static and dynamic. Two 
advanced approaches are introduced by Evripidou et al for 
DAMQ implementation [4]. These two approaches are 
named Mask-based and Link-List-based mechanisms. The 
Mask-based approach is cheaper in terms of hardware but 
slower in performance. In fact, the credit for each VC 
fallows round robin and synchronized with clock. In other 
words, a VC waits for a round robin circle and responds at 
a clock to send its packet. It means that Mask-based 
communication is synchronous and therefore, the Mask-
based approach is not useful for asynchronous 
communication. One of the important advantages of NoC 
is to provide asynchronous capability to the system. The 
Link-List based approach (that mimics DAMQ 
organization [5]) is expensive in terms of hardware, but it 
is faster in terms of performance. All of the above DAMQ 
buffer implementation suffer from HOL blocking except 
ViChaR that has specific architecture that imposes high 

latency to the communication and expensive in term of 
hardware. Therefore, the introduction of a general solution 
to remove HOL blocking for DAMQ buffers is highly 
demanded for dynamic VC based NoC systems. 

3. NOVEL APPROACH IN DAMQ  ORGANIZATION 

In this section, we present a new mechanism that revises 
the function of virtual channel in wormhole flow control 
communication. We name this mechanism as Packet 
Based Virtual Channel (PBVC). The PBVC mechanism is 

 

 

 

more suitable for dynamically allocated multi-queue 
(DAMQ) buffers. Therefore, before presenting our PBVC 
approach, we intend to explain the basis of DAMQ buffer 
organization and conventional VC mechanism. DAMQ 
buffers are characterized as their queues (VCs in our 
proposal) are adapted with traffic condition. In other 
words, the depth of VC dynamically varies from zero to 
the size of channel buffer according to the traffic 
situation. To better describe DAMQ buffers, two different 
cases are illustrated in Fig. 5. Assume four VCs per 
channel and four flits per packet. In case 1, the depth of 
VC0 is thirteen, and in case 2, it is zero. These different 
depths of VC0 are due to the different traffic requests. 

Conventional Wormhole Virtual Channel (CWVC) 
mechanism is a common approach used in most of the 
NoC research projects. It is usually used as a basic 
approach to be compared with the other new approaches 
[4, 6, 8, 2, 9, 11]. In CWVC mechanism, when the header 
flit of a packet enters a VC, the VC is reserved by the 
packet. The reservation of VC is kept till the tail flit 
arrives. Then the VC can accept a new packet if it has free 
space. A VC can contain two parts of two packets at a 
time. The flits are stored in the form of first in first out 
style in a VC. Assume a VC has two parts of two packets 
simultaneously. Therefore, blocking of head of line packet 
blocks another packet in spite of the fact that the route of 
another packet is open.  This is the source of HOL 
blocking. As shown in Fig. 6, packet#0 is blocked that 

Figure 4: One big table and two trackers used in ViCHar method 
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leads to the blocking of packets#4 and #5. In CWVC 
mechanism, the HOL blocking leads to a number of 
problems in NoC such as contention, deadlock, 
disordering of series of packets and monopoly of whole 
channel buffer space by a packet. These problems have 
caused the HoL blocking to become a hot subject in the 
academia, and it has drawn a lot of attentions of 
researchers. HOL problem has not solved completely in 
NoC [4, 5, 6, 7, 8, 2, 9, 10, 11]. Our approach presented in 
this section provides a complete solution to this problem. 

  

 

A. PBVC Approach 

In PBVC mechanism, with the advent of header flit of a 
packet to a VC, the VC is reserved by the packet. Then on 
the departure of tail flit, the VC becomes free. In fact, the 
VC does not accept a new packet until there is any flit 
from the previous packet. This mechanism is different 
than the conventional (CWVC) mechanism that more than 
two packets can occupy a VC. Fig. 7 illustrates the PBVC 
approach from the situation of CWVC buffer shown in 
Fig. 6. PBVC mechanism has some advantages that can 
be charaterized as listed below. 

 

 PBVC completely remove the HoL blocking (which 
arises when some packets occupy a VC and the head 
of line packet is blocked, the other packets also 
become blocked) because only one packet can 
occupy a VC.  

 The chance of getting a free VC for the unblocked 
packets of a VC in our PBVC mechanism is much 
better than that of CWVC mechanism. For the sake 
of better understanding, we compare two situations 
of Figures 6 and 7. Figure 6 represents CWVC 
situation, where the packet#4 and #5 remain blocked 
until packet#0 becomes unblocked. In the case of 
PBVC (hown in Fig. 7), when one of the VC1, VC2 
or VC3 becomes free, the packet #4 and #5 can 
occupy the buffer.  

 A little bit of hardware is needed to CWVC structure 
to create the PBVC architecture. In terms of coding, 
when the incoming flit of a VC is a tail flit, one “if 
statement” is required to close the VC. When the 
departure flit of a VC is a tail flit, one “if statement” 
is also required to open the VC. 

 PBVC approach removes the sequential problem of 
a series of packets transferred from a source to a 
destination core. For better explanation, consider a 
scenario where a series of packets is to be transferred 
from a source core to a destination, and their route is 
available. We expect that the packets reach their 
destinations in a sequential order. In CWVC 
mechanism, HOL contention can happen in a VC 
and if a packet of a series is faced with HOL 
blocking, the remaining packets of the series can go 
to a free VC and reach the destination before the 
blocked packet. However, in the PBVC mechanism, 
as HOL blocking cannot happen, each packet of a 
series that comes to a channel will move forward and 
reach the destination in order. In case that a packet is 
blocked in a channel due to some other reasons, the 
next packet of series will also be blocked in that 
channel. Therefore, the series of packets will reach 
the destination in a sequential order. 

 In our PBVC approach, when a packet becomes 
blocked, its VC gets minimum space in a channel 
buffer. Consider a situation that a packet is blocked 
in a VC. In the traditional CWVC scheme, the 
upstream router continue sending new packets to this 
VC, and the VC will allocate more buffers and 
occupies all the free area of DAMQ buffer as 
illustrated in Fig. 8a. However, in our PBVC 
approach, the new packets stay in the upstream 
router until a downstream VC becomes empty. In 
fact, more free space for the other unblocked VCs is 
provided in the downstream router as shown in Fig. 
8b. Consequently, the performance and buffer 
utilization of PBVC will be much better than those 
of CWVC under such conditions. 

Figure 6: In CWVC, packet #0 is blocked leading to the blocking of 

packet #4 and #5 (HOL). 
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 There is also an insignificant drawback of our PBVC 
mechanism. If there is a free VC for a packet, then 
there is no advantage for it to go to a VC that still 
has flits. The only negotiable situation happens when 
the number of requesting packets for a physical 
channel is more than the number of VCs available 
for the physical channel. To better clarify the 
situation, we present the following example. Assume 
eight packets request for four VCs of a channel. In 
the CWVC approach, four packets go to four VCs, 
and four remaining packets will wait in the upstream 
router. They will stay there until any downstream 
VC becomes available as illustrated in step #1 of 
Fig. 9a. When any tail flit of four first packets 
departs from the upstream router, one of the head flit 
of waiting packets moves in it. In the downstream 
router, now two packets occupy a VC (step #2 of 
Fig. 9a). In PBVC mechanism, the same flow will 
happen i.e. four packets go for four VCs, and the 
remaining packets stay in the upstream router 
waiting for a free VC (step #1 of Fig. 9b). When any 
tail flit of the first four packets arrives to 
downstream router, its related VC becomes closed. 
The VC will be closed when its tail flit departs from 
the downstream router. We assume a minimum of 
four tail flits remaining in the downstream router 
(step #2.1 of Fig. 9b). If one of the tail flits (e.g. T0) 
departs, its VC (VC0) becomes free (step #2.2 of 
Fig. 9b). Then a new packet (e.g. H4) can come to 
the downstream router where three flits (T1, T2 and 
T3) are still in the channel buffer to be serviced. It 
indicates that there are always flits in the channel 
buffer, and the traffic flow of the channel is not 
interrupted. Consequently, in terms of throughput 
(rate of transfer), there is no delay of flow in PBVC 
as compared to CWVC. 

Only the buffer utilization of PBVC becomes a little 
bit lower than that of CWVC, but it will be compensated 
in most of the situations. In our example (where eight 
packets at the same time arrive to a 4-VC channel and at 
the same time depart from the channel), there is one of the 
large numbers of situations of flow. Mostly packets at  
different times reach a channel. Thus, due to the 
adaptivity of DAMQ buffer, the buffer utilization is 
compensated. As illustrated in Fig. 10, in both CWVC and 
PBVC buffers VC1 has the flit, T1. In CWVC buffer, 
VC1 also accepts new packet (P4). However, in PBVC 
buffer, VC1 doesn’t accept the new packet, but the buffer 
utilization is the same for both mechanisms. The above 
explanation clarifies the fact that our PBVC mechanism is 
not suitable for static buffer based virtual channels. In 
other words, PBVC mechanism leads to lower buffer 
utilization or performance when there is no adaptivity for 
virtual channels. Moreover, in NoCs where the 
communication involves a large numbers of HOL 
blockings, PBVC mechanism shows better performance 
as compared to CWVC. 

4. DAMQ BASED VC BUFFER ORGANIZATION 

PBVC mechanism is based on the DAMQ approach. 
In fact, by adding a little hardware to DAMQ structure, 
we can create the PBVC micro-architecture. Therefore, in 
order to introduce our PBVC approach, we will first 
introduce the DAMQ structure. There are different 
schemes to implement DAMQ method such as Linked-
list, Self-Compacting and ViCHaR [2, 4, 8]. Among them, 
the Link-List based is one of the best schemes to 
implement DAMQ technique [4]. In this report, we 
present our DAMQ Link-List based design and call it 
DLLB. Our DLLB design is coded in Verilog, simulated 
and implemented in Modelsim for FPGA platforms. 

A. DLLB Communication 

We employ asynchronous communication between 
routers, sink and source cores. The advantage of such 
communication is that the design can be easily 
implemented in HDL platforms such as FPGA. The 
asynchronous communication between two sender and 
receiver routers is achieved through handshaking via 
credit signals. Figure 11 illustrates an asynchronous 
communication between two routers in a DLLB scheme, 
and the following steps describe the communication for a 
cycle of data transferring. 

 

Figure 9: A special situation in CWVC and PBVC buffers 
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#1: In the sender router, a grant signal causes the data 
flit to go out of the sender.  

#2: At the negative edge of sender’s grant, the credit 
signal for the data is set. The sender’s credit-out causes 
two tasks: the data is stored in the receiver’s memory, and 
the receiver’s credit-out is set. 

#3: At the positive edge of sender’s clk, the high level 
of credit-in is detected and the sender’s, credit-out is 
reset. 

 

 

In short, first data and then credit are sent by the 
sender. In the receiver router, the credit signal causes the 
data to be stored in the channel buffer and an 
acknowledgement i.e. credit out is sent back to the sender. 

The following steps describe the movement of data 
inside a DLLB router’s input port where Figure 12 shows 
the timing diagram of this movement.  

 

  
 

 

 

Figure 10: Adaptivity of DAMQ buffers compensates buffer 

utilization in PBVC, resulting the same buffer utilization for both 
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#1: Data appears at the input-port of the router. 

#3: Credit-in becomes high that leads the storage of 
data in the channel buffer. 

#4: All lookup tables of the input-port are updated and 
the request signal is set. The request signal causes the 
arbiter to read the data. 

#5: After arbitration and at the positive edge of clock, 
a grant signal is issued that lead the data to move out of 
the input port. 

#6: All tables are updated and the request signal is 
reset. 

#7: High level of grant at the positive edge of clock 
causes the credit-out and the grant to be set and reset 
respectively. 

#9: High level of credit-out at the positive edge of 
clock will reset the credit-out. 

The pipeline communication in Figure 12 shows that a 
data flit is stored at two clock cycles, and is transferred in 
two clock cycles for a DLLB input-port. One important 
feature of the above pipeline is that it can be implemented 
using any HDL in an FPGA platform. This is because all 
the tables are updated at negative edge of clock, and the 
signals are detected and issued at the positive edge of 
clock. 

B. DLLB Router Architecture 

The architecture of DLLB input port (i.e. router input 
port) is illustrated in Figure 13. It contains an SRAM, five 
tables and some other logic circuits and ports. The SRAM 
module is the buffer of the channel. The slot size of 
SRAM is equal to the flit size. Moreover, the data pointed 
by the Read-Address is appeared at the SRAM output. 
When credit-in is active, the data is stored in the SRAM 
slot pointed by the Write-Address. Five tables are used in 
the DLLB architecture as illustrated in Fig. 14. They are 
used to implement the Link-List based mechanism. Their 
functions are briefly described here. The VC State table 
keeps the records of occupied VCs. The Header List table 
has the addresses of channel buffer (SRAM) that point to 
the header flits of VCs. The Tail List table keeps the 
addresses of SRAM buffers that point to the tail flits of 
VCs. The Linked List table tracks the address of next slot 
of each buffer slot in the SRAM. In fact, it links the 
address of flits of each VC in a FIFO manner. The Slot 
State table has the record of occupied slots in the SRAM. 

 

      
 

C. Slot State Process 

When a flit occupies a slot of SRAM, the 
corresponding bit of that slot is set in Slot State table. 
When a flit leaves the slot, the corresponding bit of that 
slot is reset in the Slot State table. The content of the Slot 
State table is decoded by the Decoder module as 
illustrated in the pseudo-code of Figure 15d and block-
diagram of Figure 15b. The output of Decoder is denoted 
as write-pointer and connected to the Address-Write port 
of SRAM. The Decoder points to the first unoccupied 
slot. The flowchart, block-diagram and pseudo-code of 
Slot State and Decoder are presented in Figure 15. 
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D. Data Arrival and Departure Process 

In this section, we briefly describe the arrival and 
departure of packet flit in a DLLB input port. We discuss 
the functions of various tables such as Header List, Tail 
List, VC State and Linked List. Assume a VC (e.g. VC#) is 
empty and ready to accept a packet flit. On the arrival of a 
flit to the VC#, the following three tasks occur 
simultaneously. First of all, the corresponding bit of VC# 
becomes high in the VC State table indicating the VC# is 
not empty. Then the content of write-pointer is stored in 
the Tail List and Header List tables. Finally in the SLOT 
State table, the corresponding bit becomes high. The 
write-pointer is updated and points to the next free slot for 
the incoming flit. Now, assume another incoming flit also 
tries to occupy the same VC#. As the VC# is not empty, 
two tasks take place simultaneously. First, the content of 
write-pointer is stored into a location of the Linked-List 
table where the Tail List table points. Secondly, the write-
pointer content is stored in the Tail List table. This kind of 
storage in various tables links the flits of a VC in a FIFO 
manner. When a flit exits from a VC, e.g. VC#, two 
conditions may happen. First, if the Header and Tail 

addresses are the same i.e. this is the last flit, the 
corresponding bit is reset in the VC State. It means that 
the VC# is empty. Second, if the Header and Tail 
addresses are not the same, the location of Linked List 
table pointed by the Header List table is stored in the 
Header List table. Figure 16 shows the flowchart and 
pseudo-code of flit arrival and departure module. 

 

 

E. VC-Selector Module 

In the router input-port, the VC-Selector module 
selects the VC to be arbitrated. It issues the request signal 
and the read-pointer address as illustrated in Figures 17 
and 18. The VC-Selector module contains a combinational 
logic circuit that operates on the contents of VC State and 
Header list. The combinational logic of the content of VC 
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always @ (negedge clk or posedge rst) 

begin : SLOT-ST 

   if (rst) begin 

 SLOT-ST <=0; 

   end else if (credit-in)begin   // data arrival  

 SLOT-ST[write- pointer]<=1; 

   end if (grant)begin    // data departure 

 SLOT-ST[read- pointer]<=0; 

    end 

end 

(c) SLOT-ST process pseudo-code. 

if (!SLOT-ST[0]) begin          

  

 write-pointer =0;  

end else if (!SLOT-ST[1]) begin           

 write-pointer =1; 

 …… 

 ….... 

end else (!SLOT-ST[15]) begin           

 write-pointer =15; 

 
 (d) Decoder logic pseudo-code. 
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     begin 
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        end else begin 

              Header-list  [VC-ID]=  
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     end 

  end 

end 

Figure 16: Arrival Departure Structure Detail. 

 

Arrival & 

Departure 
 

  
 

                                       
 

 

  
Grant 

 

RD-pointer 

 

WR-pointer 

 

Credit-in 

 

VC-ID 

 

VC-ID-out 

 VC State 

VC state 

0 1 

 1 1 

 2 1 

 3 0 

Header 

List 

VC state 

0 2 

 1 1 

 2 7 

 3 - 

Tail List 

VC state 

0 6 

 1 5 

 2 7 

 3 - 

  

Linked List 

VC state 

0 3 

 1 4 

 .. … 

  

Reset 

Negedge 

CLK 

Reset Linked List, VC 

State, Header List and 

Tail List. 

Y 

N 

Incomin
g data 

Y 

N 

Update Header 

list, Tail list, 
and VC State 

list 

 

Departin

g Data 

Y 

N 

Update VC 

State list 
 

 

Empty 

VC 

Update Tail 

list and 
Linked List 

 

 

Update 

Header 
List 

 

N 

N 

Y 

Y 

 

Tail==Header 

(b) Block-Diagram 

(c) Arrival Departure Pseudo-Code. (a) Process Flowchart. 



 

 

14       M. Oveis-Gharan and G. N. Khan:  Packet-based Adaptive Virtual Channel …  

 

 

http://journals.uob.edu.bh 

State table and VC-block signals (active when VC is 
blocked) creates the VC availability signal (VC-ava). In 
fact, VC-block signal is reversed and ANDed with its 
corresponding bit in the VC State as shown in Figure 17. 
For example, if VC0 is blocked, then the VC-block[0] 
signal is high to prevent the selection of VC0. The 
Request module selects a VC depending on the VC-ava 
signals. The Request module contains the logic elements 
based on the following codes. 

 

 
 

if (VC-ST[0]&& !VC-block[0]) begin 

                Req=1;      // VC0 request 

end else if (VC-ST[1] && !VC-block[1]) begin           

 Req =2;   // VC1 request 

end else if (VC- ST[2] && !VC-block[2]) begin 

        Req =4; 

end else if (VC- ST[3] && !VC-block[3]) begin         

Req =8; 

end else begin     

                 Req =0;    // no request 

 

The above code illustrates a deterministic scheduling 
policy that gives first priority to VC0, 2nd priority to VC1 
and so on. VC-ID-local signals select a free or available 
VC for arbitration. In fact, the header address of a VC is 
selected and the read-pointer is generated as illustrated in 
Figure 18. 

F. VC-block Signal 

As shown in Figures 15 and 16, all the tables are 
updated at the negative edge of router clock. Therefore, 
the request signal and read-pointer address is stable for 
arbitration at the positive edge of router clock and when 
the arbiter module checks the request signals. If at least 

one request signal is high, the arbiter reads the 
information of requested flit for arbitration. If the 
requested output of a flit is free, the arbiter issues a grant 
signal. The grant signal causes the flit to exit the router at 
the positive edge of clock.  If the requested output is 
blocked then the arbiter issues a block signal (VC-block). 
The VC-block causes the VC-Selector to select another 
available VC to be serviced as illustrated in Figure 17. 

G. Credit Module 

A credit signal is sent to the upstream routers to let 
them know about the open VC in the downstream router. 
When the capacity of a VC is full, the credit signal will 
change to close the VC. The capacity of each VC is 
dynamic. In our implementation, it varies from one to M 
slots dynamically, where:   

M = # of SRAM slots - # of VCs -1.  

 

        

For example, assuming sixteen SRAM slots and four 
VCs, the dynamic capacity of each VC varies from 1 slot 
to 13 slots. In the DLLB implementation, the credits are 
regulated only by two conditions as given below.  

If {(Current VC == Empty) OR  
(# of free Slots < # of free VC)} then credit = ON 

 

In short, a VC is open if it is empty or at least one slot 
is reserved for each free VC. These two conditions 
guarantee that at least one slot is dedicated to each VC. 
Subsequently, the rest of slots are dynamically utilized for 
all the VCs. This check will remove any starvation and 
protocol-level deadlocks in the NoC communication. 

H. Extra Hardware for PBVC Implementation 

As mentioned before, a little bit of extra hardware is 
required to implement the PBVC approach in DLLB 
structure. In fact, the coding of two Verilog “if” 
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statements is required to open and close each VC as 
shown in Figure 19a. The first “if” statement is used to 
close each VC when the arriving flit is a tail flit. The 
second “if” statement is used to open the VC when the 
exit flit is a tail flit. To open and close VC, we use a 
single bit register, pb-vc-blk. It will be set in the case of 
open and reset otherwise. The output of pb-vc-blk is 
reversed and ANDed with the credit out signal of the 
related VC. Therefore, when pb-vc-blk is set, the VC will 
be closed as shown in Fig. 19b. We also experiment and 
evaluate the efficiency of PBVC mechanism as compared 
to CWVC mechanism in DLLB structure and presented in 
the following section. 

5. SIMULATION AND EXPERIMENTAL RESULTS 

This section evaluates the efficiency of our PBVC 
approach as compared to the conventional DAMQ 
technique. The conventional DAMQ mechanism follows 
the CWVC approach, and we have used CWVC term for 
conventional DAMQ. In this experiment, we did 
experiment for three different traffic patterns including 
Random Traffic, Fixed Traffic and Special Traffic [22]. 
Random Traffic is defined where all the destinations are 
chosen randomly. In the Fixed Traffic, the destination 
selection is fix and far from the source cores. Special 
Traffic is a pattern that we have chosen to create a 
situation with higher Head-of-Line (HOL). By evaluating 
the results of these three traffic patterns, we will 
demonstrate the efficiency of our PBVC approach. 

A.  Experiment Setup 

We setup our simulator for PBVC and CWVC modes 
for DAMQ Link-List based (DLLB) architecture. Then 
we change the number of traffic packets or virtual 
channels to measure a couple of important performance 
metrics such as throughput and latency. We did not 
compare the hardware requirements of these two models 
as the PBVC model can be created by adding a small 
hardware to the CWVC model (as discussed earlier in 
Section 5). The NoC topology selected is a 4×4 mesh, and 
the communication of packets follows XY routing 
mechanism as shown in Figure 20. 

   

  
 
The communication of packets is in form of parallel 

wormhole routing where the channel width is equal to the 
flit size of 32 bits and each packet is made of 16 flits. The 
depth of SRAM buffer for each input-port is fixed to 16 
slots, where each slot stores a flit. A flit is sent or received 
by a source core or a router in two clock cycles (Fig. 12). 
We assume that the time delays of links between routers 
are negligible as compared to the router delay. Therefore, 
the time delays of links are ignored in our experiment. 
The performance of PBVC is compared with the CWVC 
during these two experiments. In the first experiment, two 
traffic patterns, Random and Fixed Traffics are applied 
[23]. In this case, all the sources, destinations and routers 
are clocked at the same rate (e.g. 1 nsec). In the second 
experiment, the Special Traffic pattern is applied, where 
all the source modules send their first packet to a 
destination (e.g. destination #9 in Fig. 20). The destination 
#9 is set to be two times slower than the other 
destinations. After sending the first packet, the rest of the 
packets of all the sources are sent randomly to all the 
destinations. We expect that the input-port buffers of 
router #9 are occupied and will deliver packets slowly at 
the start. This condition increases the HOL blocking 
especially when the second packets are being transferred. 
Our simulator is coded in Verilog and simulation is done 
by using the ModelSim for an Altera FPGA Platform. 

Figure 20: 4×4 Mesh NoC. 
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B. Performance Results 

In these experiments, the throughput is measured by 
the rate of receiving packets to the maximum number of 
packets being sent at a specific time. In other words, at a 
specific time the NoC that receives more packets is faster 
in terms of throughput. The latency is measured through 
the time that a specific number of packets are sent and 
received by the NoC. Figures 21 and 22 show the 
throughput and latency results in the case of Random 
Traffic. In the beginning of simulation (for 132 nsec), the 
performance of PBVC is much higher than that of 
CWVC, and as the time passes this advantage diminishes. 
This is due to the fact that in the beginning of simulation, 
the traffic is not crowded, and when the HOL blocking 
occurs in a channel, the incoming packet can move out of 
the channel. This situation will improve the performance 
of PBVC mode. On average, the performance of PBVC is 
better than that of CWVC. For example, in the case of 
four virtual channels (VC4), the PBVC throughput is2.6% 
higher and latency is 8.2% lower than those of CWVC. 

Figures 23 and 24 provide the throughput and latency 
results of Fixed Traffic pattern (a source core sends the 
packets to a farther-away destination). The performance 
of PBVC is the same as that of CWVC for all the VCs. 
For this traffic pattern, each source sends packet to a 
destination, and each destination receives packet from a 
source. Therefore, there will be very low contention, and 
PBVC technique will not show any improvement in the 
performance. In Figures 23 and 24, the results show the 
fact that when the contention is low, the PBVC approach 
does not have any drawback as compared to CWVC 
approach. 

 

 

In the second part of the experiment, both models are 
evaluated in a high contention environment. Figures 25 
and 26 show the throughput and latency results for the 
Special Traffic pattern where two conditions are applied. 
In the first condition, the first packets of all the sources 
are intended for destination #9, and afterward the packets 
travel to all the destinations randomly. In the second 
condition, the destination #9 is two times slower than the 
other destinations. In this traffic pattern, the PBVC 
performance improvement is much better than that for the 
previous two traffic patterns. In fact, by sending 1024 
packet, the average latency is 40% less than CWVC, and 
the average throughput is 23% higher than CWVC for 
2048 nsec. This is due to higher HOL blockings occurring 
in the beginning of simulation. Therefore, in the 
beginning, the throughput of PBVC is higher than that of 
CWVC. As the time passes the occurrence of HOL 
blockings will reduce, and the throughputs of two 
methods are going to be close to each other. It is obvious 
that if such traffic pattern is repeated every 164 ns, then 

 
Figure 21: Throughput in Random Traffic. 
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Figure 22: Average Latency in Random Traffic. 
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Figure 23: Throughput in Fixed Traffic. 
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the average throughput in PBVC is around 200% higher 
than the CWVC. Another important point is that as the 
number of VCs is reduced, the advantages of PBVC will 
diminish. This is due the fact that when an HOL blocking 
occurs in PBVC and there are free VCs, the new packet 
passes through and improves the performance. Free VCs 
will be mostly available when we have higher number of 
VCs. 

 

6.  CONCLUSION 

The architecture for a packet-based virtual channel 
(PBVC) approach is presented in detail. It is argued that 
PBVC buffer belongs to the family of dynamically 
allocated multi-queue (DAMQ) buffers and it is able to 
completely remove HOL blockings in NoC. For this 
reason, the PBVC and the conventional wormhole VC 
mechanism (CWVC) are implemented using DAMQ 
buffers. In the experiments, three traffic patterns i.e. 
Random Traffic, Fixed Traffic and Special Traffic are 
applied to PBVC and CWVC based NoCs. Two important 
NoC metrics i.e. throughput and latency for PBVC 
approach is compared with those of CWVC. The PBVC 
performance results are different for three traffic patterns, 
but the PBVC results are better on average as compared to 
the CWVC. For Special Traffic pattern, the average 
latency (40%) and the average throughput (23%) are 
improved in PBVC as compared to CWVC. 
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