

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 4, No.1 (Jan-2015)

E-mail: Masoud.oveisgharan@ryerson.ca, gnkhan@ryerson.ca

http://journals.uob.edu.bh

Packet-based Adaptive Virtual Channel Configuration for

NoC Systems

Masoud Oveis-Gharan

1
 and Gul N. Khan

1

1Electrical and Computer Engineering, Ryerson University, 350 Victoria St, Toronto, ON M5B 2K3 Canada

Received 14 May 2014, Revised 15 Jul. 2014, Accepted 16 Aug. 2014, Published 1 Jan. 2015

Abstract: The escalating numbers of on-chip processing cores necessitate the introduction of a high performance and scalable

communication backbone. In respond to this, Network on Chip (NoC) systems are introduced to play an important role in

determining the performance and power of the entire chip. Specifically, Packet-based NoC is known as the most viable

communication solution for the multi-core SoC of the future. In NoC design, the buffering organization directs the control of data

flow as well as facilitates the use of Virtual Channels (VC). In terms of buffering, the VC mechanism is categorized into static and

dynamic models. In dynamic VC mechanism, VCs employ a variable number of buffer slots according to the on-chip traffic. This

feature of dynamic VC mechanism encourages us to introduce the Packet Based Virtual Channel (PBVC) approach. The idea is that a

VC is reserved when a packet comes in a router, and released when the packet leaves the router. This prevents a VC to hold more

than one packet that subsequently removes the Head-of-Line (HOL) blocking in NoCs. Our proposed technique is more suitable for

dynamically allocated multi-queue (DAMQ) schemes. In these schemes, an input or output port comprises a centralized buffer whose

slots are dynamically allocated to VCs in real-time and according to the traffic conditions. We introduce the architectural and

structural details of our DAMQ buffer organization as well as the hardware that our approach imposes. The simulation results

support the theoretical concepts of our proposed technique. The results of the hardware requirements for the proposed model are

compared with the conventional models. The experimental results show that PBVC can improve the network latency by 40% and the

network throughput by 23% on average as compared to the conventional designs for specific high HOL traffic.

Keywords: Congestion Avoidance, Head-of-Line Blocking, Multi-core NoC Systems, Network-on-Chip, Virtual Channel

1. INTRODUCTION

In the NoC domain, wormhole routing is mainly

employed for communication among multiple cores. In

wormhole routing, packets are divided into small and

equal sized flits (flow control digit or flow control unit).

The flits of a packet are stored in the channel buffers that

are first in first out type. The buffer size of a channel can

be less than a packet but equal or more than a flit. When

the header flit of a packet passes through a routing path,

the route path is reserved by the packet. It means no other

packets can utilize that route [1]. This kind of routing

cannot avoid traffic congestion when a packet is blocked.

The blocking of one packet leads to the blocking of other

packets for a channel. This blocking is called HOL (Head

of Line) blocking. The HOL blocking reduces the

performance in terms of latency, throughput and lower

buffer utilization. HOL problem can be alleviated by

using Virtual Channels (VCs) [2]. The VC mechanism

enables the multiplexing and buffering of several packets

for a communication channel [3]. However, VC approach

does not remove HOL problem completely [4, 5, 6, 7, 8,

9, 10, 11]. We introduce a method that entirely removes

the effect of HOL blocking in a VC based wormhole

routing NoC.

A. FIFO Buffers

Queue is the main component of a router micro-
architecture and it temporarily stores packets in the form
of first come first serve (FCFS) order until network
resources become available. Two terms, “queue” and
“FIFO” sometimes have the same meaning when the
concept of first-in-first-out is considered. However, in
terms of architecture, FIFO is mostly referred to serial or
parallel FIFOs, and the queue is referred FCFS based
buffer that also comprises FIFO buffers too. There are two
types of FIFO designs and architectural schemes: serial
and parallel [2, 12, 13, 14, 15, 16, 17, 18, 19]. The serial

http://dx.doi.org/10.12785/ijcds/040102

6 M. Oveis-Gharan and G. N. Khan: Packet-based Adaptive Virtual Channel …

http://journals.uob.edu.bh

FIFO (such as shift register) that works by fall-through
principle is the first generation FIFO. However, the
architecture of FIFO is constantly being improved.
Currently, most of the FIFOs are parallel, which provides
a considerable increase in the number of stored words,
along with faster speed [15].

B. Dynamically Allocated Multi-Queue Buffers

In industrial and academic research, many queue
architectures have been proposed and the first-in-first-out
queue (FIFO), circular queue (CQ), dynamically allocated
multi-queue (DAMQ) and variants of them are well-
known queue designs [5, 6, 9, 10, 11, 12]. DAMQ that is a
unified and dynamically-allocated buffer structure was
originally presented by Frazier and Tamir [5]. It is a single
storage array that maintains multiple FIFO queues.
DAMQ can be a general solution to the HOL blocking
problem discussed earlier [12]. In this technique, packets
are stored into the queues of a multi-queue of the output
port for routing. Therefore, in the case of blockage of the
output port, the packets destined to that output port
become blocked. According to Choi and Pinkston, this
type of blocking is not HOL [12], but we argue that it is
HOL blocking. In fact, HOL blocking can happen inside a
queue of a DAMQ buffer [2, 20]. The packets in a queue
of output port have different destinations, and they travel
to different output ports in the downstream router.
Therefore, if the head of line of these packets is blocked
due to blocking of its output port in the next downstream
router, the remaining packets will be blocked even though
their output ports are open in the next downstream router.
Figure 1 illustrates a HOL blocking case where eastward
output port of router1 is blocked due to blocking of P1.
The packets P2 and P3 are blocked despite the fact that
their output ports are open in the downstream router.

The DAMQ mechanism dynamically allocates
multiple queues over a physical channel. In other words,
the DAMQ buffers are able to efficiently adapt to network
traffic by dynamically allocating queue space among the
output ports according to the network traffic [12]. These
dynamic queues of DAMQ buffers lead to a maximum
buffer utilization. The DAMQ organization can be used in
the VC organization of NoC. This technique is able to

solve the other NoC issues such as contention, deadlock
or a fault. Jamli et al [6] has used DAMQ buffer scheme
for fault tolerance in the NoC systems.

Before moving ahead, it is better to get familiar with
Linked-List based DAMQ mechanism [4]. In Fig. 2, the
VC implementation of a physical channel is illustrated
through two conventional queue types: static and DAMQ.
In a static queue, the buffer slots are statically allocated to
incoming packets where in DAMQ queue, the buffer slots
are dynamically allocated to incoming packets. The
pointers of each queue in Fig. 2a are updated circularly
and sequentially for each read and write to the queue.
However, DAMQ technique uses linked-list to update the
contents of read and write pointers. The linked-list of
buffer slots determines the VCs order in the channel
buffer as well as the order of slots in each VC [5]. There
is a linked-list for each channel that keeps the addresses of
occupied buffer slots. Each read pointer is updated
according to the occupied list and points to the first slot in
the queue. The linked-list is also used to keep track of free
slots available for incoming packets. The write pointers
are updated according to the free list and point to the slot
where incoming flit should be stored. In each read and
write to the queues, the linked-list is updated.

Despite the performance merits of DAMQ, it suffers
from a few complications and limitations. The first
problem is its hardware complexity caused by the linked-
list dynamic queue management [12, 20]. The second
major problem is that the queue structure is tailored more
for deterministic routing algorithms than for fully adaptive
routing. In DAMQ, a routing decision for a new packet is
made in order to assign the packet to one of the output
queues. This forces the packet to be routed only through

Figure 1: Head of line blocking in DAMQ output port.

Router1
Downstream

Router

Three packets inside a queue of multi-queue

P1 P1 P1

P2

P3

P3 P2 P1

Figure 2: Input port with two queue types.

Read-Pointer VC3

Read-Pointer VC2

Write-Pointer VC3

Write-Pointer VC2

Write-Pointer VC1

(a) static queues

 P0 P0 P0

 P1 P1 P1 P1

P2 P2 P2 P2

P2 P2 P2 P2

Physical Channel

32 32

Read-Pointer VC1

Write-Pointer VC0 Read-Pointer VC0

Linked List

(b) DAMQ

Physical

channel

P0 P2 P1 P3 P3 P2 P1 P3 P3 P2 P0 P0 P2 P1 P1

Write-Pointer Read-Pointer

Occupied

List

VC state

0 3

 1 4

 .. …

15 0

Free list

VC state

0 1

 1 1

… …

 15 1

 Int. J. Com. Dig. Sys. 4, No.1, 5-18 (Jan- 2015) 7

http://journals.uob.edu.bh

that output. In this type of flow control, the routing
adaptivity cannot be established [12]. The third problem is
that there is no reserved space dedicated for each output
port. The packets destined to one specific output port may
occupy the whole buffer space, and the new packets
destined to this output port have no chance to get into the
buffer [6]. The fourth problem is that the DAMQ design
uses hardware to implement a linked-list and manage
dynamic queue buffer, resulting a larger delay for flit
arrival/departure [20]. The remainder of this paper is
organized as follows. The previous research works are
discussed in Section 2 while our PBVC approach is
presented in Section 3. The linked-list based DAMQ
buffer is described in Section 4 in terms of its structure
and organization. In Section 5, we explain and provides
the PBVC experimental results. Finally, the conclusions
are drawn in Sections 6.

2. PREVIOUS RESEARCH WORK

Different buffer architectures are proposed to
overcome various DAMQ drawbacks. Dynamically
allocated multi-queue with recruit registers (DAMQWR)
and virtual channel dynamically allocated multi-queue
(VCDAMQ) are proposed by Choi and Pinkston [12].
DAMQWR uses DAMQ architecture with recruit
registers to implement adaptive routing in NoC. The main
function of recruit registers is to allow packets of blocked
sub queues employ less congested sub queues. However,
in addition to hardware overhead, DAMQWR method
also has an additional delay due to recruit register updates
and packet recruit operations. VCDAMQ queue
organization that resembles DAMQ can efficiently adapt
to unbalanced traffic loads among virtual channels by
dynamically allocating queue space to virtual channels. In
fact, the difference between the VCDAMQ and the
traditional DAMQ is that the sub queues of VCDAMQ
are associated with router virtual channels while those of
the DAMQ are associated with router output ports.

A multi-VC dynamically shared buffer named
DAMQ-PF is presented by Zhang et al [11]. Their design
has dedicated storage for each output port and a small pre-
fetch buffer is used for each VC to store data read from
the shared buffer. The same mechanism is also used for
the idle address list. In this way, a continuous and
concurrent access of the shared buffer is created without
any delay. They also proposed a fair credit management
method to avoid a situation when a single VC occupies
the shared buffer exclusively [11]. Liu et al proposed a
DAMQ buffer organization scheme with reserved space
for all the virtual channels [7]. The main feature of this
scheme is to have a reserved space dedicated for each
virtual channel. As shown in Fig. 3, two buffer slots are
reserved for each virtual channel before the buffer accepts
any incoming flit.

A few researchers have presented the detailed design
and implementation of DAMQ buffers. All of these
techniques are either expensive in terms of hardware or
inefficient due to data dependency (specifically when
packet gets bigger). We can observe these problems in the
following architectures. A centralized shared buffer
architecture called Virtual Channel Regulator (ViChaR) is
introduced by Nicopoulos et al [2]. This design avoids
using linked list, but still incurs high cost in control logic.
ViChaR can support a maximum number of VCs as many
as the number of slots in channel buffer. This requires the
arbiter in both VC allocation (VA) and switch allocation
(SA) stages to be of s size, where s is the number of buffer
slots. Such size of arbiter can create the latency bottleneck
in the critical path of a router that may limit the frequency
of NoC [20]. In spite of the advantage of supporting a
large number of adaptive VCs, theoretically ViChaR
cannot assign a specific room to each VC. In some cases,
this will create a deadlock or high traffic contention.
ViChaR dynamically allocates VCs and grants new flit on
a First-Come-First-Served (FCFS) basis, and there is no
priority for the new packets. Therefore, in case of
blocking, a packet can occupy all the slots of a channel
buffer and prevents any new packet to pass through the
router. If the blocking of that packet continues, the
upstream routers will be occupied by the packet and no
other packets can pass through the route. This blocking
can spread in the entire NoC system and create deadlock.
Technically, this problem is due to the design of ViChaR
structure where the VC size varies from one to a
maximum size channel buffer. Another drawback of the
approach is a huge NoC hardware in some configurations.
In ViCHaR method, the information of incoming buffer is
saved in a table and two trackers as illustrated in Fig. 4.
The VC control table module that holds the slot IDs of all
the current flits becomes very large when the flit size is
small or the packet size is big. An advantage of ViChaR is
that there is no HOL blocking in its communication.

A few interesting features of ViChaR architecture has
encouraged some researchers to employ it in their designs.
The design of an intelligent buffer that logically reorders
the entries in FIFO buffer to minimize overall leakage
power consumption is presented by Nicopoulos et al [21].
They employ the ViChaR [2] concept to design their
buffer architecture, called IntelliBuffer. In this design, the
slots are classified in advance based on their leakage
characteristics. Then, the write module always tries to
direct incoming flits to the least leaky slots. Moreover, all
unused slots are supply-gated using sleep transistors to
minimize leakage power consumption. Other mechanisms

Figure 3: Reserved space for virtual channel [7].

VC0

Physical

channel P0 P1 P1 P3 P3 P3 P3

VC1 VC2 VC3 Free

8 M. Oveis-Gharan and G. N. Khan: Packet-based Adaptive Virtual Channel …

http://journals.uob.edu.bh

that employed ViChaR architecture are in the research
presented by Xu et al [20]. Their idea is that VCs are
assigned based on the designated output port of a packet
to reduce the Head-of-Line (HOL) blocking. Unlike
ViChaR designs, they only use a small number of VCs to
keep the arbitration latency low. In other words, their
buffer design is similar to ViChaR except that each VC
can store multiple packets, and its VC number is fixed.

The buffer design uses smaller arbiter, however, their VC
allocation scheme is between static and dynamic. Two
advanced approaches are introduced by Evripidou et al for
DAMQ implementation [4]. These two approaches are
named Mask-based and Link-List-based mechanisms. The
Mask-based approach is cheaper in terms of hardware but
slower in performance. In fact, the credit for each VC
fallows round robin and synchronized with clock. In other
words, a VC waits for a round robin circle and responds at
a clock to send its packet. It means that Mask-based
communication is synchronous and therefore, the Mask-
based approach is not useful for asynchronous
communication. One of the important advantages of NoC
is to provide asynchronous capability to the system. The
Link-List based approach (that mimics DAMQ
organization [5]) is expensive in terms of hardware, but it
is faster in terms of performance. All of the above DAMQ
buffer implementation suffer from HOL blocking except
ViChaR that has specific architecture that imposes high

latency to the communication and expensive in term of
hardware. Therefore, the introduction of a general solution
to remove HOL blocking for DAMQ buffers is highly
demanded for dynamic VC based NoC systems.

3. NOVEL APPROACH IN DAMQ ORGANIZATION

In this section, we present a new mechanism that revises
the function of virtual channel in wormhole flow control
communication. We name this mechanism as Packet
Based Virtual Channel (PBVC). The PBVC mechanism is

more suitable for dynamically allocated multi-queue
(DAMQ) buffers. Therefore, before presenting our PBVC
approach, we intend to explain the basis of DAMQ buffer
organization and conventional VC mechanism. DAMQ
buffers are characterized as their queues (VCs in our
proposal) are adapted with traffic condition. In other
words, the depth of VC dynamically varies from zero to
the size of channel buffer according to the traffic
situation. To better describe DAMQ buffers, two different
cases are illustrated in Fig. 5. Assume four VCs per
channel and four flits per packet. In case 1, the depth of
VC0 is thirteen, and in case 2, it is zero. These different
depths of VC0 are due to the different traffic requests.

Conventional Wormhole Virtual Channel (CWVC)
mechanism is a common approach used in most of the
NoC research projects. It is usually used as a basic
approach to be compared with the other new approaches
[4, 6, 8, 2, 9, 11]. In CWVC mechanism, when the header
flit of a packet enters a VC, the VC is reserved by the
packet. The reservation of VC is kept till the tail flit
arrives. Then the VC can accept a new packet if it has free
space. A VC can contain two parts of two packets at a
time. The flits are stored in the form of first in first out
style in a VC. Assume a VC has two parts of two packets
simultaneously. Therefore, blocking of head of line packet
blocks another packet in spite of the fact that the route of
another packet is open. This is the source of HOL
blocking. As shown in Fig. 6, packet#0 is blocked that

Figure 4: One big table and two trackers used in ViCHar method

[2].

VC availability tracker

VC ID Avail

0 0

1 1

2 1

3 1

4 1

…. …

15 1

(b) 1 denotes the related VC in

input port has flit, and
zero means it is empty.

16 1-bit registers

Slot availability tracker

Slot Avail

0 0

 1 1

 2 1

 3 1

 4 1

…. …

15 1

(a) 1 denotes the slot in input

port memory is occupied,
and zero means it is empty.

16 1-bit registers

VC Control table

VC ID Direction Header Data Data Tail

VC0 East 1 3 N N

VC 1 South 2 4 N N

VC 2 West N 9 10 N

VC 3 East N N N 15

VC 4 N N N N N

…. …. …. …. …. ….

VC 15 N N N N N

(c) N denotes slot is free. Assume input port memory has
 16 slots. When a flit arrives, its information recorded in

the table. The table has 16 19-bit registers.

Head flit

Body flit

Tail Flit

H

B

T

Figure 5: Two different cases in DAMQ buffer (four VCs per

channel and four flits per packet) e.g. the four flits of packet P0 is

illustrated by T0, B0, B0 and H0.

VC3

P3 P3 P2 P3 P2 P2 P3 P1 P1 P1 P1

VC1 VC0 VC2 Free

T3 B3 B3 H3

(b) Case 2

T1 B1 B1 H1

T2 B2 B2

VC3

P4 P4 P5 P4 P4 P3 P2 P2 P2 P2 P1 P0 P1 P0 P0 P0

VC1 VC0 VC2

B2

T1

H3

H6 T5 B5 B5 H5 T4 B4 B4 H4 T0 B0 B0 H0

(a) Case 1

Physical

Channel

Physical

Channel

 Int. J. Com. Dig. Sys. 4, No.1, 5-18 (Jan- 2015) 9

http://journals.uob.edu.bh

leads to the blocking of packets#4 and #5. In CWVC
mechanism, the HOL blocking leads to a number of
problems in NoC such as contention, deadlock,
disordering of series of packets and monopoly of whole
channel buffer space by a packet. These problems have
caused the HoL blocking to become a hot subject in the
academia, and it has drawn a lot of attentions of
researchers. HOL problem has not solved completely in
NoC [4, 5, 6, 7, 8, 2, 9, 10, 11]. Our approach presented in
this section provides a complete solution to this problem.

A. PBVC Approach

In PBVC mechanism, with the advent of header flit of a
packet to a VC, the VC is reserved by the packet. Then on
the departure of tail flit, the VC becomes free. In fact, the
VC does not accept a new packet until there is any flit
from the previous packet. This mechanism is different
than the conventional (CWVC) mechanism that more than
two packets can occupy a VC. Fig. 7 illustrates the PBVC
approach from the situation of CWVC buffer shown in
Fig. 6. PBVC mechanism has some advantages that can
be charaterized as listed below.

 PBVC completely remove the HoL blocking (which
arises when some packets occupy a VC and the head
of line packet is blocked, the other packets also
become blocked) because only one packet can
occupy a VC.

 The chance of getting a free VC for the unblocked
packets of a VC in our PBVC mechanism is much
better than that of CWVC mechanism. For the sake
of better understanding, we compare two situations
of Figures 6 and 7. Figure 6 represents CWVC
situation, where the packet#4 and #5 remain blocked
until packet#0 becomes unblocked. In the case of
PBVC (hown in Fig. 7), when one of the VC1, VC2
or VC3 becomes free, the packet #4 and #5 can
occupy the buffer.

 A little bit of hardware is needed to CWVC structure
to create the PBVC architecture. In terms of coding,
when the incoming flit of a VC is a tail flit, one “if
statement” is required to close the VC. When the
departure flit of a VC is a tail flit, one “if statement”
is also required to open the VC.

 PBVC approach removes the sequential problem of
a series of packets transferred from a source to a
destination core. For better explanation, consider a
scenario where a series of packets is to be transferred
from a source core to a destination, and their route is
available. We expect that the packets reach their
destinations in a sequential order. In CWVC
mechanism, HOL contention can happen in a VC
and if a packet of a series is faced with HOL
blocking, the remaining packets of the series can go
to a free VC and reach the destination before the
blocked packet. However, in the PBVC mechanism,
as HOL blocking cannot happen, each packet of a
series that comes to a channel will move forward and
reach the destination in order. In case that a packet is
blocked in a channel due to some other reasons, the
next packet of series will also be blocked in that
channel. Therefore, the series of packets will reach
the destination in a sequential order.

 In our PBVC approach, when a packet becomes
blocked, its VC gets minimum space in a channel
buffer. Consider a situation that a packet is blocked
in a VC. In the traditional CWVC scheme, the
upstream router continue sending new packets to this
VC, and the VC will allocate more buffers and
occupies all the free area of DAMQ buffer as
illustrated in Fig. 8a. However, in our PBVC
approach, the new packets stay in the upstream
router until a downstream VC becomes empty. In
fact, more free space for the other unblocked VCs is
provided in the downstream router as shown in Fig.
8b. Consequently, the performance and buffer
utilization of PBVC will be much better than those
of CWVC under such conditions.

Figure 6: In CWVC, packet #0 is blocked leading to the blocking of

packet #4 and #5 (HOL).

VC3

Physical

channel P4 P4 P5 P4 P4 P3 P2 P2 P2 P2 P1 P0 P1 P0 P0 P0

VC1 VC2 VC0

T2 B2 B2 H2

T1 B1

H3

H5 T4 B4 B4 H4 T0 B0 B0 H0

Figure 7: In PBVC, packet #0 is blocked, the remaining buffer

space is free to use for the other VCs.

VC3

Physical
channel

 P3 P2 P2 P2 P2 P1 P0 P1 P0 P0 P0

VC1 VC0 VC2 Free

T2 B2 B2 H2

T1 B1

H3

T0 B0 B0 H0

Figure 8: (a) three packets is blocked due to blocking of packet #0

(HOL problem). (b) packet #0 is blocked so occupies only 4 slots,

and the free slots can be used for the other VCs.

VC3

P4 P4 P5 P4 P4 P3 P2 P2 P2 P2 P1 P0 P1 P0 P0 P0

VC1 VC0 VC2

B2

T1

H3

H6 T5 B5 B5 H5 T4 B4 B4 H4 T0 B0 B0 H0

(a) CWVC

VC3

P3 P3 P2 P3 P2 P2 P3 P0 P1 P0 P0 P0

VC1 VC0 VC2 Free

T1

T3 B3 B3 H3

(b) PBVC

T0 B0 B0 H0

T2 B2 B2

10 M. Oveis-Gharan and G. N. Khan: Packet-based Adaptive Virtual Channel …

http://journals.uob.edu.bh

 There is also an insignificant drawback of our PBVC
mechanism. If there is a free VC for a packet, then
there is no advantage for it to go to a VC that still
has flits. The only negotiable situation happens when
the number of requesting packets for a physical
channel is more than the number of VCs available
for the physical channel. To better clarify the
situation, we present the following example. Assume
eight packets request for four VCs of a channel. In
the CWVC approach, four packets go to four VCs,
and four remaining packets will wait in the upstream
router. They will stay there until any downstream
VC becomes available as illustrated in step #1 of
Fig. 9a. When any tail flit of four first packets
departs from the upstream router, one of the head flit
of waiting packets moves in it. In the downstream
router, now two packets occupy a VC (step #2 of
Fig. 9a). In PBVC mechanism, the same flow will
happen i.e. four packets go for four VCs, and the
remaining packets stay in the upstream router
waiting for a free VC (step #1 of Fig. 9b). When any
tail flit of the first four packets arrives to
downstream router, its related VC becomes closed.
The VC will be closed when its tail flit departs from
the downstream router. We assume a minimum of
four tail flits remaining in the downstream router
(step #2.1 of Fig. 9b). If one of the tail flits (e.g. T0)
departs, its VC (VC0) becomes free (step #2.2 of
Fig. 9b). Then a new packet (e.g. H4) can come to
the downstream router where three flits (T1, T2 and
T3) are still in the channel buffer to be serviced. It
indicates that there are always flits in the channel
buffer, and the traffic flow of the channel is not
interrupted. Consequently, in terms of throughput
(rate of transfer), there is no delay of flow in PBVC
as compared to CWVC.

Only the buffer utilization of PBVC becomes a little
bit lower than that of CWVC, but it will be compensated
in most of the situations. In our example (where eight
packets at the same time arrive to a 4-VC channel and at
the same time depart from the channel), there is one of the
large numbers of situations of flow. Mostly packets at
different times reach a channel. Thus, due to the
adaptivity of DAMQ buffer, the buffer utilization is
compensated. As illustrated in Fig. 10, in both CWVC and
PBVC buffers VC1 has the flit, T1. In CWVC buffer,
VC1 also accepts new packet (P4). However, in PBVC
buffer, VC1 doesn’t accept the new packet, but the buffer
utilization is the same for both mechanisms. The above
explanation clarifies the fact that our PBVC mechanism is
not suitable for static buffer based virtual channels. In
other words, PBVC mechanism leads to lower buffer
utilization or performance when there is no adaptivity for
virtual channels. Moreover, in NoCs where the
communication involves a large numbers of HOL
blockings, PBVC mechanism shows better performance
as compared to CWVC.

4. DAMQ BASED VC BUFFER ORGANIZATION

PBVC mechanism is based on the DAMQ approach.
In fact, by adding a little hardware to DAMQ structure,
we can create the PBVC micro-architecture. Therefore, in
order to introduce our PBVC approach, we will first
introduce the DAMQ structure. There are different
schemes to implement DAMQ method such as Linked-
list, Self-Compacting and ViCHaR [2, 4, 8]. Among them,
the Link-List based is one of the best schemes to
implement DAMQ technique [4]. In this report, we
present our DAMQ Link-List based design and call it
DLLB. Our DLLB design is coded in Verilog, simulated
and implemented in Modelsim for FPGA platforms.

A. DLLB Communication

We employ asynchronous communication between
routers, sink and source cores. The advantage of such
communication is that the design can be easily
implemented in HDL platforms such as FPGA. The
asynchronous communication between two sender and
receiver routers is achieved through handshaking via
credit signals. Figure 11 illustrates an asynchronous
communication between two routers in a DLLB scheme,
and the following steps describe the communication for a
cycle of data transferring.

Figure 9: A special situation in CWVC and PBVC buffers

where demonstrates that both buffers have the same traffic

flow delay.

(b) Downstream port-

PBVC

(a) Downstream port-

CWVC

VC3

 P3 P2 P1 P4

VC1 VC0 VC2

T2

H4

T3

T1

Free

VC3

 P3 P2 P1 P0

VC1 VC0 VC2

T2

T0

T3

T1

Free

2.1

3

1

2

3

1

2.2

VC3

P3 P3 P1 P1 P1 P2 P2 P3 P2 P2 P3 P0 P1 P0 P0 P0

VC1 VC0 VC2

T2 B2 B2 H2

T0 B0 B0 H0

T3 B3 B3 H3

T1 B1 B1 H1

VC3

P7 P7 P7 P6 P6 P6 P4 P4 P4 P2 P3 P5 P1 P5 P5 P0

VC1 VC0 VC2

B6 B6 H6 T2

B4 B4 H4 T0

B7 B7 H7 T3

B5 B5 H5 T1

VC3

P7 P7 P5 P5 P5 P6 P6 P7 P6 P6 P7 P4 P5 P4 P4 P4

VC1 VC0 VC2

T6 B6 B6 H6

T4 B4 B4 H4

T7 B7 B7 H7

T5 B5 B5 H5

VC3

P3 P3 P1 P1 P1 P2 P2 P3 P2 P2 P3 P0 P1 P0 P0 P0

VC1 VC0 VC2

T2 B2 B2 H2

T0 B0 B0 H0

T3 B3 B3 H3

T1 B1 B1 H1

VC3

P7 P7 P5 P5 P5 P6 P6 P7 P6 P6 P7 P4 P5 P4 P4 P4

VC1 VC0 VC2

T6 B6 B6 H6

T4 B4 B4 H4

T7 B7 B7 H7

T5 B5 B5 H5

 Int. J. Com. Dig. Sys. 4, No.1, 5-18 (Jan- 2015) 11

http://journals.uob.edu.bh

#1: In the sender router, a grant signal causes the data
flit to go out of the sender.

#2: At the negative edge of sender’s grant, the credit
signal for the data is set. The sender’s credit-out causes
two tasks: the data is stored in the receiver’s memory, and
the receiver’s credit-out is set.

#3: At the positive edge of sender’s clk, the high level
of credit-in is detected and the sender’s, credit-out is
reset.

In short, first data and then credit are sent by the
sender. In the receiver router, the credit signal causes the
data to be stored in the channel buffer and an
acknowledgement i.e. credit out is sent back to the sender.

The following steps describe the movement of data
inside a DLLB router’s input port where Figure 12 shows
the timing diagram of this movement.

Figure 10: Adaptivity of DAMQ buffers compensates buffer

utilization in PBVC, resulting the same buffer utilization for both

mechanisms.

VC3

P3 P3 P0 P0 P2 P0 P0 P3 P2 P2 P3 P0 P1 P0 P0 P0

VC1 VC0 VC2

T1

T3 B3 B3 H3

(b) PBVC

T0 B0 B0 B0 B0 B0 B0 H0

T2 B2 B2

VC3

P4 P4 P4 P4 P4 P0 P0 P0 P0 P2 P0 P0 P1 P0 P0 P0

VC1 VC0 VC2

B4 B4 B4 B4 H4 T1

H3

T0 B0 B0 B0 B0 B0 B0 H0

(a) CWVC

Figure 11: Asynchronous Communication in DLLB approach

between two channels of two routers.

S-grant

S-clk

S-data-out

S-credit-out

R-credit-in

R-Stored data

R-credit-out

S-credit-in

R-clk

Credit-In

Receiver

Credi-Out

Data-In

Sender

Data-Out

VC-ID

Credi-In

Credit-out

00 0A 0B

 1 2 3

00 0A

00

00

00

Figure 12: DLLB Asynchronous Communication.

Clk

Data in

Credit-in

Stored data

request

grant

data out

credit-out

1 2 3 4 5 6 7 8 9 10
11

Update

Tables

Update

Tables
Update

Tables

Update

Tables

Update

Tables

0C 0B

0A 0B 0C

0A 0B

0A

Figure 13: The architecture of DLLB input port.

Arrival & Departure

Tables

Grant

RD-pointer

WR-pointer

Credit-in

VC-ID

VC-ID-out

VC State

VC state

0 1

 1 1

 2 1

 3 0

Header List

VC state

0 2

 1 1

 2 7

 3 -

Tail List

VC state

0 6

 1 5

 2 7

 3 -

Linked List

VC state

0 3

 1 4

 .. …

 Read-Address

SRAM

Write-Address

 Data Out
 Data In

Credit

out

 Out

Reg.

 In
Data- in

Flit-id

Data-out

Grant

Credit-in

Slot State

VC state

0 0

 1 1

.. ..

15 1

Grant

RD-pointer

WR-pointer

Credit-in

De
coder

SLOT-ST

VC0-block
VC-ava

VC State

VC state

0 1

 1 1

 2 1

 3 0

VC-ID-

local

RD-pointer Header List

VC state

0 2

 1 1

 2 7

 3 -

RD-pointer

Req
Grant

Request

Pb-vc-blk

Full

Credit

WR-pointer

Slot State

VC state

0 1

 1 1

… …

 15 1

12 M. Oveis-Gharan and G. N. Khan: Packet-based Adaptive Virtual Channel …

http://journals.uob.edu.bh

#1: Data appears at the input-port of the router.

#3: Credit-in becomes high that leads the storage of
data in the channel buffer.

#4: All lookup tables of the input-port are updated and
the request signal is set. The request signal causes the
arbiter to read the data.

#5: After arbitration and at the positive edge of clock,
a grant signal is issued that lead the data to move out of
the input port.

#6: All tables are updated and the request signal is
reset.

#7: High level of grant at the positive edge of clock
causes the credit-out and the grant to be set and reset
respectively.

#9: High level of credit-out at the positive edge of
clock will reset the credit-out.

The pipeline communication in Figure 12 shows that a
data flit is stored at two clock cycles, and is transferred in
two clock cycles for a DLLB input-port. One important
feature of the above pipeline is that it can be implemented
using any HDL in an FPGA platform. This is because all
the tables are updated at negative edge of clock, and the
signals are detected and issued at the positive edge of
clock.

B. DLLB Router Architecture

The architecture of DLLB input port (i.e. router input
port) is illustrated in Figure 13. It contains an SRAM, five
tables and some other logic circuits and ports. The SRAM
module is the buffer of the channel. The slot size of
SRAM is equal to the flit size. Moreover, the data pointed
by the Read-Address is appeared at the SRAM output.
When credit-in is active, the data is stored in the SRAM
slot pointed by the Write-Address. Five tables are used in
the DLLB architecture as illustrated in Fig. 14. They are
used to implement the Link-List based mechanism. Their
functions are briefly described here. The VC State table
keeps the records of occupied VCs. The Header List table
has the addresses of channel buffer (SRAM) that point to
the header flits of VCs. The Tail List table keeps the
addresses of SRAM buffers that point to the tail flits of
VCs. The Linked List table tracks the address of next slot
of each buffer slot in the SRAM. In fact, it links the
address of flits of each VC in a FIFO manner. The Slot
State table has the record of occupied slots in the SRAM.

C. Slot State Process

When a flit occupies a slot of SRAM, the
corresponding bit of that slot is set in Slot State table.
When a flit leaves the slot, the corresponding bit of that
slot is reset in the Slot State table. The content of the Slot
State table is decoded by the Decoder module as
illustrated in the pseudo-code of Figure 15d and block-
diagram of Figure 15b. The output of Decoder is denoted
as write-pointer and connected to the Address-Write port
of SRAM. The Decoder points to the first unoccupied
slot. The flowchart, block-diagram and pseudo-code of
Slot State and Decoder are presented in Figure 15.

Figure 14: Five tables are used in DLLB Router.

Slot State

Slot state

0 0

 1 1

 2 0

 3 1

 4 1

…. …

15 1

(e) 0== slot empty.
1== slot occupied.

Sixteen 1-bit registers

Header List

VC address

0 2

 1 1

 2 7

 3 -

(b) address of first

flit of each VC.

Linked List

Slot Linked List

0 3

 1 4

 2 7

 3 6

 4 5

…. ….

15 N

(d) This vector links the

addresses of each VC.
Sixteen 4-bit registers

Tail List

VC address

0 6

 1 5

 2 7

 3 -

(c) address of last

stored flit of each VC.

VC State

VC state

0 1

 1 1

 2 1

 3 0

(a) 0 == VC empty

1== VC occupied

 Int. J. Com. Dig. Sys. 4, No.1, 5-18 (Jan- 2015) 13

http://journals.uob.edu.bh

D. Data Arrival and Departure Process

In this section, we briefly describe the arrival and
departure of packet flit in a DLLB input port. We discuss
the functions of various tables such as Header List, Tail
List, VC State and Linked List. Assume a VC (e.g. VC#) is
empty and ready to accept a packet flit. On the arrival of a
flit to the VC#, the following three tasks occur
simultaneously. First of all, the corresponding bit of VC#
becomes high in the VC State table indicating the VC# is
not empty. Then the content of write-pointer is stored in
the Tail List and Header List tables. Finally in the SLOT
State table, the corresponding bit becomes high. The
write-pointer is updated and points to the next free slot for
the incoming flit. Now, assume another incoming flit also
tries to occupy the same VC#. As the VC# is not empty,
two tasks take place simultaneously. First, the content of
write-pointer is stored into a location of the Linked-List
table where the Tail List table points. Secondly, the write-
pointer content is stored in the Tail List table. This kind of
storage in various tables links the flits of a VC in a FIFO
manner. When a flit exits from a VC, e.g. VC#, two
conditions may happen. First, if the Header and Tail

addresses are the same i.e. this is the last flit, the
corresponding bit is reset in the VC State. It means that
the VC# is empty. Second, if the Header and Tail
addresses are not the same, the location of Linked List
table pointed by the Header List table is stored in the
Header List table. Figure 16 shows the flowchart and
pseudo-code of flit arrival and departure module.

E. VC-Selector Module

In the router input-port, the VC-Selector module
selects the VC to be arbitrated. It issues the request signal
and the read-pointer address as illustrated in Figures 17
and 18. The VC-Selector module contains a combinational
logic circuit that operates on the contents of VC State and
Header list. The combinational logic of the content of VC

SLOT-STATE

Grant

RD-pointer

WR-pointer

Credit-in

Decoder

write- pointer

SLOT-ST[15..0]

(b) SLOT State and Decoder Block-digram.

Slot State

VC state

0 0

 1 1

.. ..

15 1

always @ (negedge clk or posedge rst)

begin : SLOT-ST

 if (rst) begin

 SLOT-ST <=0;

 end else if (credit-in)begin // data arrival

 SLOT-ST[write- pointer]<=1;

 end if (grant)begin // data departure

 SLOT-ST[read- pointer]<=0;

 end

end

(c) SLOT-ST process pseudo-code.

if (!SLOT-ST[0]) begin

 write-pointer =0;

end else if (!SLOT-ST[1]) begin

 write-pointer =1;

 ……

 …....

end else (!SLOT-ST[15]) begin

 write-pointer =15;

 (d) Decoder logic pseudo-code.

Reset

Negedge

CLK

Reset SLOT State list

Y

N

Credit-in

(Arrival)

Y

N

Set related entry
SLOT-ST[i]=1;

 i= write-pointer

(a) Slot State Process Flowchart.

Grant

(Departure)

Y

N

Reset related

entry
SLOT -ST[i]=0;

i= read-pointer

 Figure 15: Slot State and Decoder Structure Detail.

always @ (negedge clk or posedge rst)

begin : Arrival Departure

 if (rst) begin

 VC-ST <= 0;

 Header-list <= 0;

 Tail-list <= 0;

 Link-list <= 0;

 end else if (credit-in) begin

 if (!VC-ST[VC-ID])begin

 VC-ST[VC-ID]=1;

 Header-list [VC-ID]= WR- PTR;

 Tail-list [VC-ID]= WR- PTR;

 end else begin

 link-list[Tail-list [VC-ID]]= WR- PTR;

 Tail-list [VC-ID]= WR- PTR;

 end

 end if (grant)begin

 if(Header-list [VC-ID-out]== Tail-list

[VC-ID-out])

 begin

 VC-ST[VC-ID-out]=0;

 end else begin

 Header-list [VC-ID]=

 link-list[Header-list [VC-ID]];

 end

 end

end

Figure 16: Arrival Departure Structure Detail.

Arrival &

Departure

Grant

RD-pointer

WR-pointer

Credit-in

VC-ID

VC-ID-out

 VC State

VC state

0 1

 1 1

 2 1

 3 0

Header

List

VC state

0 2

 1 1

 2 7

 3 -

Tail List

VC state

0 6

 1 5

 2 7

 3 -

Linked List

VC state

0 3

 1 4

 .. …

Reset

Negedge

CLK

Reset Linked List, VC

State, Header List and

Tail List.

Y

N

Incomin
g data

Y

N

Update Header

list, Tail list,
and VC State

list

Departin

g Data

Y

N

Update VC

State list

Empty

VC

Update Tail

list and
Linked List

Update

Header
List

N

N

Y

Y

Tail==Header

(b) Block-Diagram

(c) Arrival Departure Pseudo-Code. (a) Process Flowchart.

14 M. Oveis-Gharan and G. N. Khan: Packet-based Adaptive Virtual Channel …

http://journals.uob.edu.bh

State table and VC-block signals (active when VC is
blocked) creates the VC availability signal (VC-ava). In
fact, VC-block signal is reversed and ANDed with its
corresponding bit in the VC State as shown in Figure 17.
For example, if VC0 is blocked, then the VC-block[0]
signal is high to prevent the selection of VC0. The
Request module selects a VC depending on the VC-ava
signals. The Request module contains the logic elements
based on the following codes.

if (VC-ST[0]&& !VC-block[0]) begin

 Req=1; // VC0 request

end else if (VC-ST[1] && !VC-block[1]) begin

 Req =2; // VC1 request

end else if (VC- ST[2] && !VC-block[2]) begin

 Req =4;

end else if (VC- ST[3] && !VC-block[3]) begin

Req =8;

end else begin

 Req =0; // no request

The above code illustrates a deterministic scheduling
policy that gives first priority to VC0, 2nd priority to VC1
and so on. VC-ID-local signals select a free or available
VC for arbitration. In fact, the header address of a VC is
selected and the read-pointer is generated as illustrated in
Figure 18.

F. VC-block Signal

As shown in Figures 15 and 16, all the tables are
updated at the negative edge of router clock. Therefore,
the request signal and read-pointer address is stable for
arbitration at the positive edge of router clock and when
the arbiter module checks the request signals. If at least

one request signal is high, the arbiter reads the
information of requested flit for arbitration. If the
requested output of a flit is free, the arbiter issues a grant
signal. The grant signal causes the flit to exit the router at
the positive edge of clock. If the requested output is
blocked then the arbiter issues a block signal (VC-block).
The VC-block causes the VC-Selector to select another
available VC to be serviced as illustrated in Figure 17.

G. Credit Module

A credit signal is sent to the upstream routers to let
them know about the open VC in the downstream router.
When the capacity of a VC is full, the credit signal will
change to close the VC. The capacity of each VC is
dynamic. In our implementation, it varies from one to M
slots dynamically, where:

M = # of SRAM slots - # of VCs -1.

For example, assuming sixteen SRAM slots and four
VCs, the dynamic capacity of each VC varies from 1 slot
to 13 slots. In the DLLB implementation, the credits are
regulated only by two conditions as given below.

If {(Current VC == Empty) OR
(# of free Slots < # of free VC)} then credit = ON

In short, a VC is open if it is empty or at least one slot
is reserved for each free VC. These two conditions
guarantee that at least one slot is dedicated to each VC.
Subsequently, the rest of slots are dynamically utilized for
all the VCs. This check will remove any starvation and
protocol-level deadlocks in the NoC communication.

H. Extra Hardware for PBVC Implementation

As mentioned before, a little bit of extra hardware is
required to implement the PBVC approach in DLLB
structure. In fact, the coding of two Verilog “if”

VC State

VC state

0 1

 1 1

 2 1

 3 0

Figure 17: VC-Selector (Reguest logics).

Req[3..0]

Request

VC-block[0]
VC-ava

VC-ID-local

Header List

VC address

0 2

 1 1

 2 7

 3 -

VC-ID-local

read-pointer

Figure 18: VC-Selector (Read-pointer logics).

credit-out = && !pb-vc-blk;

always @ (negedge clk or posedge rst)

begin : Arrival Departure

 if (rst) begin

 …..

 Pb-vc-blk=0;

 end else begin

 if (credit-in) begin

 …….

 If(tail) pb- vc-blk=1; // close VC

 end if (grant)begin

 ….

 If(tail) pb-vc-blk=0; // open VC

 end

 end

end

Pb-vc-blk

Credit-out
........

(b) Pseudo cods and logics of credit out.

(a) pseudo-code and logics of “if” statements.

 In Out

Pb-vc-blk

One bit
Register

>

Credit-in

tail

grant

tail

“0”

“1”

Pb-vc-blk

Figure 19: Extra hardware per VC for PBVC

Implementation.

 Int. J. Com. Dig. Sys. 4, No.1, 5-18 (Jan- 2015) 15

http://journals.uob.edu.bh

statements is required to open and close each VC as
shown in Figure 19a. The first “if” statement is used to
close each VC when the arriving flit is a tail flit. The
second “if” statement is used to open the VC when the
exit flit is a tail flit. To open and close VC, we use a
single bit register, pb-vc-blk. It will be set in the case of
open and reset otherwise. The output of pb-vc-blk is
reversed and ANDed with the credit out signal of the
related VC. Therefore, when pb-vc-blk is set, the VC will
be closed as shown in Fig. 19b. We also experiment and
evaluate the efficiency of PBVC mechanism as compared
to CWVC mechanism in DLLB structure and presented in
the following section.

5. SIMULATION AND EXPERIMENTAL RESULTS

This section evaluates the efficiency of our PBVC
approach as compared to the conventional DAMQ
technique. The conventional DAMQ mechanism follows
the CWVC approach, and we have used CWVC term for
conventional DAMQ. In this experiment, we did
experiment for three different traffic patterns including
Random Traffic, Fixed Traffic and Special Traffic [22].
Random Traffic is defined where all the destinations are
chosen randomly. In the Fixed Traffic, the destination
selection is fix and far from the source cores. Special
Traffic is a pattern that we have chosen to create a
situation with higher Head-of-Line (HOL). By evaluating
the results of these three traffic patterns, we will
demonstrate the efficiency of our PBVC approach.

A. Experiment Setup

We setup our simulator for PBVC and CWVC modes
for DAMQ Link-List based (DLLB) architecture. Then
we change the number of traffic packets or virtual
channels to measure a couple of important performance
metrics such as throughput and latency. We did not
compare the hardware requirements of these two models
as the PBVC model can be created by adding a small
hardware to the CWVC model (as discussed earlier in
Section 5). The NoC topology selected is a 4×4 mesh, and
the communication of packets follows XY routing
mechanism as shown in Figure 20.

The communication of packets is in form of parallel

wormhole routing where the channel width is equal to the
flit size of 32 bits and each packet is made of 16 flits. The
depth of SRAM buffer for each input-port is fixed to 16
slots, where each slot stores a flit. A flit is sent or received
by a source core or a router in two clock cycles (Fig. 12).
We assume that the time delays of links between routers
are negligible as compared to the router delay. Therefore,
the time delays of links are ignored in our experiment.
The performance of PBVC is compared with the CWVC
during these two experiments. In the first experiment, two
traffic patterns, Random and Fixed Traffics are applied
[23]. In this case, all the sources, destinations and routers
are clocked at the same rate (e.g. 1 nsec). In the second
experiment, the Special Traffic pattern is applied, where
all the source modules send their first packet to a
destination (e.g. destination #9 in Fig. 20). The destination
#9 is set to be two times slower than the other
destinations. After sending the first packet, the rest of the
packets of all the sources are sent randomly to all the
destinations. We expect that the input-port buffers of
router #9 are occupied and will deliver packets slowly at
the start. This condition increases the HOL blocking
especially when the second packets are being transferred.
Our simulator is coded in Verilog and simulation is done
by using the ModelSim for an Altera FPGA Platform.

Figure 20: 4×4 Mesh NoC.

8 9 10 11

0 1 2 3

4 5 6 7

12 13 14 15

16 M. Oveis-Gharan and G. N. Khan: Packet-based Adaptive Virtual Channel …

http://journals.uob.edu.bh

B. Performance Results

In these experiments, the throughput is measured by
the rate of receiving packets to the maximum number of
packets being sent at a specific time. In other words, at a
specific time the NoC that receives more packets is faster
in terms of throughput. The latency is measured through
the time that a specific number of packets are sent and
received by the NoC. Figures 21 and 22 show the
throughput and latency results in the case of Random
Traffic. In the beginning of simulation (for 132 nsec), the
performance of PBVC is much higher than that of
CWVC, and as the time passes this advantage diminishes.
This is due to the fact that in the beginning of simulation,
the traffic is not crowded, and when the HOL blocking
occurs in a channel, the incoming packet can move out of
the channel. This situation will improve the performance
of PBVC mode. On average, the performance of PBVC is
better than that of CWVC. For example, in the case of
four virtual channels (VC4), the PBVC throughput is2.6%
higher and latency is 8.2% lower than those of CWVC.

Figures 23 and 24 provide the throughput and latency
results of Fixed Traffic pattern (a source core sends the
packets to a farther-away destination). The performance
of PBVC is the same as that of CWVC for all the VCs.
For this traffic pattern, each source sends packet to a
destination, and each destination receives packet from a
source. Therefore, there will be very low contention, and
PBVC technique will not show any improvement in the
performance. In Figures 23 and 24, the results show the
fact that when the contention is low, the PBVC approach
does not have any drawback as compared to CWVC
approach.

In the second part of the experiment, both models are
evaluated in a high contention environment. Figures 25
and 26 show the throughput and latency results for the
Special Traffic pattern where two conditions are applied.
In the first condition, the first packets of all the sources
are intended for destination #9, and afterward the packets
travel to all the destinations randomly. In the second
condition, the destination #9 is two times slower than the
other destinations. In this traffic pattern, the PBVC
performance improvement is much better than that for the
previous two traffic patterns. In fact, by sending 1024
packet, the average latency is 40% less than CWVC, and
the average throughput is 23% higher than CWVC for
2048 nsec. This is due to higher HOL blockings occurring
in the beginning of simulation. Therefore, in the
beginning, the throughput of PBVC is higher than that of
CWVC. As the time passes the occurrence of HOL
blockings will reduce, and the throughputs of two
methods are going to be close to each other. It is obvious
that if such traffic pattern is repeated every 164 ns, then

Figure 21: Throughput in Random Traffic.

%

10%

20%

30%

40%

50%

60%

70%

132 256 512 1024 1536 2048

Th
ro

gh
p

u
t

(r
at

e
o

f
re

ce
iv

in
g

to
 s

en
d

in
g)

Time (ns)

CWVC VC4 PBVC VC4
CWVC VC3 PBVC VC3
CWVC VC2 PBVC VC2

Figure 22: Average Latency in Random Traffic.

0

200

400

600

800

1000

64 128 256 512 1024

A
ve

ra
ge

 L
at

en
cy

 (
 n

s
)

Sending Packets

CWVC VC4 PBVC VC4

CWVC VC3 PBVC VC3

CWVC VC2 PBVC VC2

Figure 23: Throughput in Fixed Traffic.

%

10%

20%

30%

40%

50%

60%

132 256 512 1024 1536 2048

Th
ro

gh
p

u
t

(r
at

e
o

f
re

ce
iv

in
g

to
 s

en
d

in
g)

Time (ns)

CWVC VC4 PBVC VC4

CWVC VC3 PBVC VC3

CWVC VC2 PBVC VC2

 Int. J. Com. Dig. Sys. 4, No.1, 5-18 (Jan- 2015) 17

http://journals.uob.edu.bh

the average throughput in PBVC is around 200% higher
than the CWVC. Another important point is that as the
number of VCs is reduced, the advantages of PBVC will
diminish. This is due the fact that when an HOL blocking
occurs in PBVC and there are free VCs, the new packet
passes through and improves the performance. Free VCs
will be mostly available when we have higher number of
VCs.

6. CONCLUSION

The architecture for a packet-based virtual channel
(PBVC) approach is presented in detail. It is argued that
PBVC buffer belongs to the family of dynamically
allocated multi-queue (DAMQ) buffers and it is able to
completely remove HOL blockings in NoC. For this
reason, the PBVC and the conventional wormhole VC
mechanism (CWVC) are implemented using DAMQ
buffers. In the experiments, three traffic patterns i.e.
Random Traffic, Fixed Traffic and Special Traffic are
applied to PBVC and CWVC based NoCs. Two important
NoC metrics i.e. throughput and latency for PBVC
approach is compared with those of CWVC. The PBVC
performance results are different for three traffic patterns,
but the PBVC results are better on average as compared to
the CWVC. For Special Traffic pattern, the average
latency (40%) and the average throughput (23%) are
improved in PBVC as compared to CWVC.

ACKNOWLEDGMENT

This research is partly supported by a grant from
NSERC Canada and equipment from CMC. Financial
support from the Electrical and Computer Engineering
Department at Ryerson University is also acknowledged.

REFERENCES

[1] W.J. Dally and B. Towles. (2004). Bufferd Flow Control. In:

Principles and Practices of Interconnection Networks, CA:

Morgan Kaufmann Publishers, pp. 233-256.
[2] C.A. Nicopoulos, P. Dongkook, K. Jongman, N. Vijaykrishnan,

M.S. Yousif, C.R. Das, "ViChaR: A Dynamic Virtual Channel

Regulator for Network-on-Chip Routers," 39th Annual
IEEE/ACM International Symposium on Microarchitecture,

MICRO-39, pp. 333 - 346, Orlando, Florida, Dec. 2006.

[3] W. J. Dally,”Virtual-channel flow control,” IEEE Transactions on
Parallel and Distributed Systems, pp.194–205, Mar 1992.

[4] M. Evripidou, C. Nicopoulos, V. Soteriou, J. Kim, "Virtualizing

Virtual Channels for Increased Network-on-Chip Robustness and
Upgradeability," IEEE Computer Society Annual Symposium on

VLSI (ISVLSI), pp. 21-26, 2012

[5] G.L. Frazier and Y. Tamir, "The design and implementation of a
multiqueue buffer for VLSI communication switches," IEEE

International Conference on Computer Design: VLSI in

Computers and Processors, pp. 466-471, Cambridge,

Massachusetts, 1989.

Figure 24: Average Latency in Fixed Traffic.

-100

100

300

500

700

900

1100

64 128 256 512 1024

A
ve

ra
ge

 L
at

en
cy

 (
 n

s
)

Sending Packets, Virtul Channel Number

CWVC VC4 PBVC VC4

CWVC VC3 PBVC VC3

CWVC VC2 PBVC VC2

Figure 25: Throughput in Special Traffic.

%

5%

10%

15%

20%

25%

30%

35%

40%

45%

132 256 512 1024 1536 2048

Th
ro

gh
p

u
t

(r
at

e
o

f
re

ce
iv

in
g

to
 s

en
d

in
g)

Time (ns)

CWVC VC4 PBVC VC4

CWVC VC3 PBVC VC3

CWVC VC2 PBVC VC2

Figure 26: Average Latency in Special Traffic.

0

500

1000

1500

2000

2500

64 128 256 512 1024

A
ve

ra
ge

 L
at

en
cy

 (
 n

s
)

Sending Packets, Virtul Channel Number

CWVC VC4 PBVC VC4

CWVC VC3 PBVC VC3

CWVC VC2 PBVC VC2

18 M. Oveis-Gharan and G. N. Khan: Packet-based Adaptive Virtual Channel …

http://journals.uob.edu.bh

[6] M.A.J. Jamali, and A. Khademzadeh, "A new method for
improving the performance of network on chip using DAMQ

buffer schemes," International Conference on Application of

Information and Communication Technologies, pp. 1- 6, Baku,
Azerbaijan, Oct. 2009.

[7] J. Liu and J. G. Delgado-Frias, "DAMQ Self-Compacting Buffer

Schemes for Systems with Network-On-Chip," In proceeding of
the 2005 International Conference on Computer Design, pp. 97-

103, Las Vegas, June 2005.

[8] J. Liu and J. G. Delgado-Frias, “A Shared Self-Compacting Buffer
for Network-On-Chip Systems,” 49th IEEE Int. Midwest

Symposium on Circuits and Systems, pp. 26 – 30, San Juan,

Puerto Rico, August 2006.
[9] J. Park, B.W. O"Krafka, S. Vassiliadis and J. Delgado-Frias,

"Design and evaluation of a DAMQ multiprocessor network with

self-compacting buffers," Proceedings Supercomputing '94, pp.
713 - 722, Nov. 1994.

[10] Y. Tamir and G.L. Frazier, "Dynamically-Allocated Multi-Queue

Buffers for VLSI Communication Switches," IEEE Transactions
on Computers, Volume: 41 , Issue: 6 , pp. 725 - 737, June 1992.

[11] H. Zhang, K. Wang, Y. Dai, and L. Liu, "A Multi-VC

Dynamically Shared Buffer with Prefetch for Network on Chip,"
IEEE 7th International Conference on Networking, Architecture

and Storage (NAS), pp. 320 - 327, Fujian, China, June 2012.

[12] Y. Choi and T. M. Pinkston, “Evaluation of queue designs for true
fully adaptive routers,” In Journal of Parallel and Distributed

Computing, Volume 64, Issue 5, pp. 606–616, Orlando, FL, May

2004.
[13] L. Benini, G.D. Micheli . (2006). Register designs for queuing

buffer. In: Networks on Chips: Technology And Tools. San

fransisco: Morgan Kaufmann Publishers . p65 -66.
[14] K. Donghyun, K. Kwanho, K. Joo-Young, L. Seung-Jin, Y. Hoi-

Jim, "Solutions for Real Chip Implementation Issues of NoC and

Their Application to Memory-Centric NoC," First International
Symposium on Networks-on-Chip (NOCS), PP. 30 - 39,

Princeton, New Jersey, May 2007.

[15] P. Forstner. (1999). FIFO Architecture, Functions, and
Applications. Available:

http://www.ti.com/lit/an/scaa042a/scaa042a.pdf. Last accessed
21th Aug 2012.

[16] J. Kathuria, A. Chhabra, G. Kaur, R. Chadha, "Low power

synchronous buffer based Queue for 3D MPSoC," World
Congress on Information and Communication Technologies

(WICT), pp. 778 - 782, Mumbai, India, Dec. 2011.

[17] H. Wang, L. Peh, and S. Malik, "A technology-aware and energy-
oriented topology exploration for on-chip networks," Proceedings

Design, Automation and Test in Europe, pp. 1238 - 1243, Munich,

Germany, March 2005.
[18] J.H. Woo, J.H. Sohn, H.J. Yoo. (2010). Application Platform. In:

Mobile 3D Graphics SoC: From Algorithm to Chip. Singapore:

John Wiley & Sons (Asia). p 36-37.
[19] By H.J. Yoo, K. Lee, J.K. Kim. (2008). Network on Chip based

SoC. In: Low-Power NoC for High-Performance SoC Design.

Boca Raton: CRC Press. p 142-145.
[20] Y. Xu, B. Zhao, Y. zhang, and J. Yang, "Simple virtual channel

allocation for high throughput and high frequency on-chip

routers," International Symposium on High Performance
Computer Architecture (HPCA), pp.1-11, Bangalore, India,

January 2010.

[21] C. Nicopoulos, A. Yanamandra, S. Srinivasan, N. Vijaykrishnan
and M. J. Irwin, "Variation-Aware Low-Power Buffer Design,"

Conference Record of the Forty-First Asilomar Conference on

Signals, Systems and Computers, pp. 1402 - 1406, Pacific Grove,
California, November, 2007.

[22] M. Oveis-Gharan and Gul N. Khan, “A Novel Virtual Channel

Implementation Technique for Multi-core On-chip
Communication,” IEEE 24th Int. Symp Computer Architecture

and High Performance Computing (WAMCA 12), Columbia

Univ. NY, pp. 36-41 October 24-26, 2012.
[23] M. Oveis-Gharan and Gul N. Khan,”Flexible simulation and

modeling for 2D topology NoC system design,” IEEE CCECE

2011: Symposium on Computers, Software and Applications,
Niagara Falls, Canada, May 2011.

 Mr. Masoud Oveis-Gharan received
his Bachelors of Engineering in the

field of Electrical Engineering

(Electronics) from Isfahan University of
Technology, Esfahan, Iran in 1991. He

completed his Masters of Sciences in

the field of embedded system design
from Ryerson University, Toronto in

2011. He is currently a PhD student at
Ryerson University. His research

interests include embedded system

design and modeling, computer architectures, logic circuit design and
power and performance optimization in Network-on-Chip architectures.

 Dr. Gul N. Khan graduated in
Electrical Engineering from University

of Engineering and Technology, Lahore

in 1979. He received his M.Sc. in
Computer Engineering from Syracuse

University in 1982. After working as

research associate at Arizona State
Univ. Tempe Arizona, he joined

Imperial College London and

completed his Ph.D. in 1989. He joined
RMIT University, Melbourne in

1993.In 1997, he joined the computer

engineering faculty at Nanyang Tech.
University, Singapore. He moved to Canada in 2000 and worked as

Associate Professor of computer engineering at University of

Saskatchewan before joining Ryerson University. Currently, he is a

Professor and program director of computer engineering at Ryerson

University. His research interests include embedded systems,

hardware/software codesign, MPSoC, NoC, fault-tolerant systems, high
performance computing, machine vision and multimedia systems.

