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Abstract: In wireless sensor networks (WSN), data aggregation algorithms are used to extend the network lifetime. The size of data
packet transmitted from the cluster head (CH) to the base station (BS) seriously affected energy consumption in a &pen this
three types of data aggregation algorithms are evaluated. These techniques are coding schemes based relative diff®gnce (CS
adaptive data aggregation method (ADAM); coding schemes bas#tke dactor of precision (GBF). The performances of the
algorithms are compared based on 15 different scenarios. The algorithms are applied separately with the following pdjameters:
Mean; (2) Median; (3) Mode; (4) Geometric mean; (5) Harmonic mean. Experimental efforts are taken on each scenaridfeeparately
the multiple sensors recording the temperature, humatiiy light. The performance metrics studied are energy consumption, average
of absolute error and data compression ratio. The simulation results showed that the best performance is show&RY the C
algorithm. The ADAM produces an intermediate performance for all sensors. Overall, it can be said that the accurdtly isf CD
better in comparison with other algorithms. Nevertheless, it displays worst performance in energy consumption andrdsaséocomp
ratio for all scenarios. From the resuitsvasnoted that the selection mechanism suitable to determine the central point effect is based
on the performance of the three aggregation algorithms. For tempdiBtared humidity(H) sensors the lsé performance in tersn

of energy consumption is the &8, which is less than 800 uJ and compression ratio of more than 90%. ADAM aRBE @i§orithm

with Mean /Gmean /Hmean methods showed better performance with energy consumption of less than @Gféinpiession ratio

of 91%. Mode methodiegatively &ected the performanceof all algorithms, with CSRD energy consumption rednl 2500 uJ.

Finally, for light sensarthe CSRD shows best performance with all central point methods, where the energsnptina goes below

1400 uJ. The G®F and ADAM with mode showed the highest energy consumbigirerthan 4200 uJ and 2400, udspectively.

Keywords: WSN, DataAggregation Performance Measure, Cluste’$N, Energy Consumption, Reduction Algorithm

1. INTRODUCTION the cloud, where the radata is accessed by the end user

In alarge-scaleWSN, data collected from multiple sensor [21.
nodes is generally aggregated at an intermediate node
before transmittingto a collection point,known as
gateway, base station or fusioenter The data collection

mechanisnis done to avoid repeated flows of information
in the network reducingunnecessary use of network
resources, such as energy and bandwidth of the network CH

[1In general, when using clusters, the three main elements

in the WSN can be identifieglssensor nodes (SN base /

stations (BS), and cluster heads (&GHas shown in &n2 /

Figurel The SN is a set afodes with sensors that exist in

the network to detect then@ironment and collect data.

The main task of the SN in the sensor field is to detect

events, perform fast local data processing, and then Figurel. Structure ofCH basedVSN

transmit dataThe BS is a data processing point for the In hierarchically structured WSN networks, data
data received from the sensor nsdbefore uploading to  collection mechanisms ardifferent types of networks,
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such as tredased, clustebbased or hybrid structure based TABLE 1. COMPARISON BETWEEN DIFFERENT DATA
data aggregation. In an environment where sensor nodes AGCREGATION ALGORITHMS IN WSNBASED CLUSTER
have large spatial links, the mechanisms of data collection

based on groups have been shown to be more efficient [3]. £ Determine the difference Numb

In the clustetbased d& collection mechanism, the CH £ & | petween member nodesand | of g
receives data from its cluster members. The CH then | 5 | £ | . . point bitsfor | &
received the collected data ira single packetbefore < 3 sign
sendingthem to theBS. The amount of data collected Medi | RelativeDifference Tois 778
depends on the number of nodes in the cluster, which in 1

turn depads on the clusteringrotocol used [4]. CH node a an H Wﬂi”fg

packet size of the sensed datggregation through o T T

clustering is the most common isstiée number of nodes 3]

that transmit sensed data to the @il normally affect the Medi | Absolute change  with| 1bits | T/H
size of data payload of tHeH. Furthemore the cluster

e R ! isionfact
packet size is limitedyhere the aggregation data from the & an prec'smﬂac OrJJ
nodes must be equal or less than plagload data size. 3) 0 & & 00
Reducmg_ the packet size W|II_ also deqrea_lse energy Medi | Absuotr change 555 7R
consumption by the CH, hence will prolong its lifet{Ble s |
This paper investigates the performance of different data | X an 0. qo0- W T
<

aggregation algorithms for different types of sensors. In
addition, the outcome of the performance evatumti
different data aggregation algorithms for different types of
sensors in a wireless sensor network based cluster heas

nodes will help in selecting whids the better algorithm CS-FP/ CS-RD/ ' Mean ‘
for each sensor as well as show the limitations of those ADAM :
algorithms Median

2. DATA AGGREGATION ALGORITHM ]:‘ Mode ‘
A. Related Works ‘ Geometric mean ‘

In [4], the authors developed a novel and adaptive method
of data aggregation that exploits the spatial correlation _.{ Harmonic mean ‘
between the sensor nodes (ADAM). The main feature of
the proposed aggregation method is that in additoon
reducing the cost of redundant data transfer in the network,
it also optimally utilizes the available space in a packet at
eachCH. The proposed methodvhich encodes all the
collected data within the space available in the packet by ! ! !
taking differentals of the correlated datas based on the
correlation factorthat reflects the degree of correlation
between the two sensor nodaBAM algorithm used two Voltage Light Humidity Temperature
bits for coding the data packet. — | [

In [5], the authors presented a novel approach to
minimize the CHpacket size by considering the accuracy
of prediction of sensed data at the base station. The [ | |
proposed coding schenig basedon relative difference Performnace Matrices
andalso onthe factor of precisioms CSRD and CSFP, . Energy consumption,
respectively [4][5].Table 1 illustrates the chanaristics

of different data aggregation algorithms in WSN based
cluster. +  compression ratio.

Apply

Scenario 4 Scenario 3 Scenario 2 Scenario 1

+ Average of absolute error

B. Methodology Figure 2. The steps taken to realize the algorithm implementation
The methodology idivided into four steps; théirst

step focuses on analysisof the original aggregation

algorithms CSFP, CSRD and ADAM with different

central point methods (or averages) as shiowigure 2.
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/I The proposediow//

1. Stagel: Cluster Headreceivesthe cluster members

sensors for all central point methods. The comparison
shows that the GR®D compression algorithm shows

sensed value for Temperature / Humidity /Light /Minimum energy consumption for temperature sensors for

Voltage

2. Stage2: CalculateheCentral Point (CP) for received
data from all cluster members. These methads
explained in detail in Chapter 2 in this project report.

3. Stage 3: Codingthe data based dbS-FP/ CS-RD/
ADAM algorithms. // These algorithnase described
in detail in Chapter 2 in this project report.

4. Stage 4: Calculatethe size of transmitted datnd
performance matrices

5. End

3. EVALUATION OF THE AGGREGATION ALGORITHM

A. Performance oCSRD, ADAM and CFP
algorithms with a temperature sensor

In this scenario, th€H aggregated the ssor data
from six (6) nodes in4 epochsin which all nodes sensed
the temperature value to ti#H. The CHsendghe sensor
node values aftecollecing the temperature values from
all cluster members. In order to evaluate-RIS, ADAM
and CSFP algorithms redime datasehave been useds
the temperature sensor. The algorithrase applied
separately with (1) Mean(2) Median (3) Mode (4)
Geometric mean (5) Harmonic mean.

Figure 4 shows theAverageabsolute error between

all central point methods. This ratio indicates that the CS
FP with Mode algorithm shows a maximum dissipation of
6800 uJ, while the G®D algorithm shows a minimum
energy consumption of 750 uJ.

The outcome of various aggregation algorithms used
to reduce th size of collectetemperature datdat issent
is shown in Figure 6Theresultsshowthe comparison of
how the aggregation algorithmsducethe transmissions
from the from CH to the base station. The data
compression rati for the algorithms CG®D, ADAM and
CS-PFare 90%, 85% and [30%5%], respectivelyFrom
the resultsit is clear that the data compression ratffects
theenergyconsumption as discussed previously.

Figure 3showsthe average absolute error between the
actualtemperature sensollies and approximated data
for all algorithms. The results illustrate theffect of
different central point methods for different algorithms.
For CSRD algorithm the minimum errooccursin the
caseof applied CSRD with Mode which is 0.0750. The
CS-RD with Mode also showed a better performance in
ternms of energy consumption and data compression. For
CS-FP algorithmthe minimum errooccursin the caseof
applied CSFP with Mode which is 0.018507143. The
CSFP with Mean als showed a better performance in
terms of energy consumption and data compression. For

the actualtemperature sensor values and approximate\DAM algorithm, the minimum errooccursin the case
data by appling 15 different scenarios for the aggregation of applied ADAM with Mode which is 0.177902381. The

algorithms. The resudtrepresenthat the minimum error
occus in the case of CSPF with all scenarios whichre
located between 0.01 and 0.031. The algorithmRCS

ADAM with Mean also showed a better performance in
terms of enegy consumption and data compression

and ADAM showan intermediate error rate. The Average
absolute error for G®D is located between 0.02 and 0.2.
The highes Average absolute error occurred by
application ofADAM algorithm, which is located between
0.1 and 0.32. For GBD, the maximum erropccursin
case of CSRD with Harmonic mean oveall others.
Similarly, for ADAM algorithm the maximum error
occussin case ofADAM with Harmonic overall others.

The bar graph in Figureghows the energy dissipation
comparison for CRD, ADAM and CSFP algorithms. It
can be seen that the &% algorithm shows maximum
energy compression for temperature sensor wiferent
methods fordeterminingthe central pointvhen applied
separately with Mean, Median, Mode, Geometric mean
and Harmonic mean. In addition, &¥ with Modeshows
the worst performance in tesaof energy dissipation. This
is because the nature of the Mode metisdd determine
the central point as well as the methodology ofRFS
compression algorithm to processd then compresses
the aggregated data with a larger number of bits. The
compari®n shows that the ADAM compression type
shows intermediate energy consumption for temperature

verage Absolut Error

e Mean_CSRD
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Mode_RD
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Figure 3 The average absolute error for each algorithm with different

type of central point for temperature sensor
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D e o €50 e (550 B. Performance o€SRD, ADAM and C$P
Mean_ADAM Median ADAM Harmmean_ADAW algorithms Withhumiditysensor
Mean_C5-FP Median_C5-FP Jarmmean, . H
. . P In this scenario, the cluster head aggregated the sensor
5 o £ o g o data from six (6) nodes in 14 epochs, in which all nodes
= 025 = 025 T -
§ s E sensed the humidity and transmit to the CH. Thes€htls
. < o < the data aftecombining values from all cluster members.
g 01 % o1 g 01
t o IVVA L S o A In order to evaluate GBD, ADAM and CSFP
S t3sienn  1asiausm algorithms reattime dataset has been used as the humidity
@ Epoch ) tpech “ fouth sensor values. The algorithms are applied separately with
v (1) mean (2) median (3) mode (4) geometric mean (

Mode_ADAM
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Figure4. Theaverageabsolute error between thetualtemperature
sensor values and approximated datagplyingthe algorithms
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Figure6. Data compression ratio applyingthe algorithms for the
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Mode
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harmonic mean.

Figure 7showsthe average absolute error between the
actualhumidity sensor values and approximated data for
all algorithms. It illustrated the effect of different central
point methods for different algorithms. For ®&B
algorithm the minimum error occur with median value of
0.067. The C&RD with median also shows better
performance in termof energy consumption and data
compression. For GEP algorithm the minimum error
occursin caseof applied CSFP with modeof 0.012. For
ADAM algorithm, the minimum errooccursin the case
of applied ADAM with Mediarof 0.19. The ADAM with
Median also showed a better performance in $eofn
energy consumption and data compression

Figure 8 illustrates the Average absolute erro
between the actual humidity sensor values and
approximated data by applying 15 different scenarios for
the aggregation algorithms. The results show that
minimum error occuss in the case of CSPF with all
scenarios which are located between 0.026 andb0T0&:
Average absolute error for €D is located between
0.067 and 0.2452. The highest Average absolute error
occurred by applied ADAM algorithm, which is located
between 0.128 and 0.269. For 8D and ADAM, the
maximum erroloccursin the caseof CSRD/ADAM with
Geometric meahigher tharall others.

The bar graph in Figure® shows the energy
dissipation comparison for G8D, ADAM and CSFP
algorithms. It can be seen that the-EfS algorithm shows
maximum energy compression for humidity sensor with
different methods fodeterminingthe central point with
Mean, Median, Mode, Geometric mean and Harmonic
meanapplied separatelyin addition, CSFP with Mode
shows the worst performance in tesmof energy
dissipation. This islue tothe nature of the Mode red
to determine the central point as well as the methodology
of CSFP compression algorithm to process and then
compress the aggregated data with a larger number of bits.
The comparison shows that the ADAM compression type
shows intermediate energy consution (1300 uJ) for
humidity sensors for all central point methods except
Mode methodwhich was 5300 uJ. The comparison shows
that the CSRD algorithm shows minimum energy
consumption (650 uJ) for humidity sensors for all central
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point methods. This ratiindicates that the GBP with

ity Sensor
6000 T

Mode algorithm shows a maximum dissipation of 5800 uJ,
while theenergy consumptioof CS-FP with other central 5000 - m—cero |
. . . ADAM
point methods ispproximately3300 uJ. = CJos*r
The results of various aggregation algorithms used to ?woo-
reduce the size of the collected data (humidity) are shown g
in Figure 10. The result is provided as a comparison of g s0of
how the aggregation algorithm reduces transmissions from ‘gmr
the CH to the base station. dHata compression ratios of &
the algorithms C&RD, ADMA and CSPF are 92%, [87% w00l
- 90%] and [40%65%)], respectivelyThe effect of data
compression on energy consumptican be clearly seen o 8 . e . .
as described below. For both €& and ADMA
algorithms the lowesteduction ratimccursin the caseof Figure9. Energy consumption (1J) Bpplyingthe algorithms for
applying CSPF / ADMA with Mode method humidity sensor
. Humidity Sensor
e o0 g
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Figure10. Data compression ratio applyingthe algorithms for
humidity sensor

C. Performance 0€SRD, ADAM and CSP algorithm
ot c5 70 T SR— with a light sensor
- . ' In this scenario, the cluster head aggregated the sensor data

03 =*=Mean_CSFP === Median_CS-FP

Figure 7 The Average absolute for each algorithm with different type
of central point for humidity sensor

N i A i from six (6) nodes ini4 epochsin which all nodes sensed

3o g o 2 the light value to the cluster head. CIl_Jster hesndshe

F s 5 oS i , sensor nodes values aftwllecing the Ilghtlues from

R — 1 " g e ) all cluster members. In order to evaluate-RI3, ADAM

o e e 0 e and CSFP algorithmsreattime dataset has been used as
the light sensor. The algorithms applied separately with

- IME"”"” S SR Q) Mea_n (2) Median (3Mode (4) Geometric mean (5)

; g gy OO Harmonicmean.

i 502 Figure 11showsthe average absolute error between

gu SN\ e theactuallight sensor values and approximated data for all

£ : = fe SymremeTetrs algorithms. The results illustratete effect of different

S I TR T PR PP central point methods for diffeme algorithms. For CS

Epoch

RD algorithm the minimum errooccursin the caseof
Figure8. The Average absolute error betweenahtualhumidity apphed CSRD with Mode of 1.083 The. CSRD with
sensor values and approximated datafylyingthe algorithms Mode alsc_) showed a gOOd perfor.mance in mrﬁen.ergy
consumption and data compression. ForFPSalgorithm
the minimum erroroccursin the caseof applied CSFP
with Modeof 0.019. The CS-P with Mean also showed a
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better performance in tesyof energy consumption and that the CSFP algorithm Bows maximum energy
data compression. For ADAM algorithrthe minimum
error occursin the caseof applied ADAM with Modeof
0.211 The ADAM with Mean also showed a better Mean, Median, Mode, Geometric mean and Harmonic
performance in tersiof energy consumption and data mean. In addition, G&EP with Modeshowsthe worst

compression

compression for #ght sensor with different methods for
determiningthe central point by separapplicationwith

performance in tersof energy dissipation. This @ue to

Figure 12 shows the Average absolute error betweerthe nature of the Mode method to determine the central
the actuallight sensor values and approximated data bypoint as well as the methodology of €8 compression
applying 15 different scenarios for the aggation
algorithms. The resuthowsthat minimum error occsiin
the case ofCSFP with all scenariosthat are located
between 0.0 and 0.2. The algorithm-89 and ADAM
show an intermediate error rate. The Average absolutall central point methods. The comparison shows that the
error for CSRD and ADAM is locéed between 0.1 and CSRD compression algorithm shows minimum energy
3.6. The maximum errarccursin thecase ofADAM with

Geometric mean.
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Figure 11 The Average absolute for each algorithm with different type
of central point fotight sensor
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Figure 12 The Average absolute error between the actual light sensor
values and approximated data by applying the algorithms

Figure 13 shows the energy dissipation comparison
for CSRD, ADAM and CSFP algorithms. It can be seen

algorithm to process and then compress the aggregated
data with a larger number of bits. The comparison show
that the ADAM compression type shows acceptable
performance in energy consumption for light sensors for

consumption for light sensors for all cemtrpoint
methods. This ratio indicates that the-EB with Mode
algorithm shows a maximum dissipation of 4700 uJ, while
the CSRD algorithm shows a minimum energy
consumption of 1450 uJ. The A shows energy
consumption 02200uJ. The CSRD /ADAM with Mode
show the highest energy consumption over all other
methods. The outcome of various aggregation algorithms
used to reduce the size of collected light data transfer is
shown in Figurel4, which indicates thaesults as a
comparison of how the aggregati@gorithms reduce
transmissions from CH to the base station. The data
compression ratio for the algorithms - &®, ADMA and

CR are 88%, 78% and 55%&spectivelyFrom the results,

it is clear that the data compression raffectstheenergy
consumptioras discussed previously.

Light Sensor
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Figure 13. Energy consumption (u1J) by applying the algorithms for
light sensorSome Common Mistakes
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D. Performance o€SRD, ADAM and C&P algorithm
with a voltage sensor

algorithm the minimum errooccurs in the case applied
CSFP with Medianof 0.018216071. The GBP with

In this scenario, the cluster head aggregated the seng¥ean also showed a et performance in tersof energy
data from six(6) nodes inl4 epochsin which all nodes consumption and data compression. For ADAM
sensed the Voltage value to the cluster head. Cluster hegt@orithm the minimum errooccurs in the case applied
sendsthe sensor nodes values aftailecing the light ~ADAM with Median of 0.056514524. The ADAM with
values from all cluster members. In order to evaluate cgViedian also showed a better performance in seofn
RD, ADAM and CSFP algorihms reattime dataset has ©€nergy consumptiomal data compression.
been usedas theVoltage sensor. The algorithnae
applied separately with (1) Mean (2) Median (3) Mode (4)
Geometric mean (5) Harmonic mean.
Light Sensor

Figure6 Ishows the Average absolute error between

apphiing 15 different scenarios for the aggregation
algorithms. The results show that minimum eoocusin
the case ofCS-PF with all scenarios whiclare located
between 0.0 and 0.026. The algorithmRB and ADAM
show an intermediate error rate. The Average absolute
error for CSRD and ADAM is located between 0.1 and 3.
The ADAM with Mode shows the highest error above 0.3
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Figurel15. The Average absolute for each algorithm with different type
of central point forvoltage sensor

Energy Consumption (uJ)

Figure 15 showsthe average absolute error between xer

theactualvoltage sensor values and approximated data for

all algorithms. The results illustrat#ue effectof different 0
central point métods for different algorithm&or CSRD
algorithm the minimum errooccurs in the case applied
CSRD with Medianof 0.00098714. The C&RD with
Median al® showed a better performanae terns of
energy consumption and data compression. FOIFES

Mean Madian Mode GMean

HMean

Figurel7. Energy consumption (uJ) @pplyingthe algorithms for the
Voltagesensor

the actual Voltage sensor values and approximated data by
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The bar graph in Figure 1Bhows the energy The result of various aggregation algorithms used to

dissipation comparison for GBD, ADAM and CSFP  reduce the size of collected data (Voltagending is
algorithms. It can be seen that the-RB algorithm shows shown in Figure 18Resultsare showras a comparison of
maximum energy compression for Voltage sensor witthow the aggregation algorithmeducethe number of
different methods fordeterminingthe central point by transmissions fromCH to the base station. The data
separate applicationwith Mean, Median, Mode, compression ratio for the algorithms ADMA, &% and
Geometric mean and Harmonic mean. In additionRES8  CS-RD are 91%, 89% and 78%espectively
with Mode shows the worst performance in tesrof For more comprehensive reviewgtsummary of the
energy dissipation. The comparison shows that th&ES analytical performance resultior the four sensorhave
compression type shows intermediate energy consumptidreen arranged critically througtable2.
for Voltage sensorsof all central point methods. The
comparison shows that the ADAM compression algorithnf  CONCLUSIONS
shows minimum energy consumption for Voltage sensors  First, from the simulation results, it can be concluded
for all central point methods. This ratio indicates that thehat the best performances ishown by the G&D
CSRD with Mode algorithm shows a maximum algorithm followed bythe ADAM algorithm which has
dissipation 2400 uJ, while the ADAM algorithm shows showedintermediate performander all sensorsAlso, as
a minimum energy consumption of 820 uJ. anaverage resulthe CSPF had the lower performance.
However,while it can be said that the accuracyGH-PF
voltage Sensor is better than other algorithmst shows the worst
- - N N - performance in termof energy consumption and data
oo ] M — ] ] compression ratio foall scenarios. From thesults,it is
1 observed that in order ttetermine the central point effect
csro in the performance othree aggregation algorithmthe
pogulll appropriate mechanism should be selected~or
temperature and humidity sensdbe best performance is
in ternms of energy consumptiowith application ofCS
RD with all methodsthat were below 800 uJ and
compression ratio above 90%shich wasadjudgedto be
an acceptableerror. On average CS-PF show the worst
performance especildy with Mode method. For the
voltagesensor in this studyghe ADAM and CSFP with
Mean Madian Mode GMean HMean Mean /Gmean /Hhean methods showed better
performance in energy consumption below 1000 uJ,
Figure18. Data compression ratio lapplyingthe algorithms for the compression ratio about 91% and acceptable error.
Voltagesensor Furthermore the CS-RD performare result was above
NOTE: change voltage to Voltage 85% which can be consided acceptable in terms of
compression ratiothat will also dfect the energy
consumptionAlso, it has been strongly concluded that the

I |

<)
o

Data Comperstion ratio (%)
o o o o
N w = (4,1

o

S}

TABLE 2. SUMMARY OF THEPERFORMANCEOF ALL

ALGORITHMS . .
performance of all algorithms was negativaffectedby
Algorithm | Performance Temperature | Humidity | Light Voltage . .
Pt the mode method.Finally, in terms of energy
CSRD [ Average  Absomt | Made = D e consumption the CSRD with Mode is considered the
Error worst performancayith aresultclose to 2500 uJ. Finally,
Energy Allcentral | Median | Mode | Median for thelight sensorthe best performandeas been reached
Consumption Foint : by applying CS-RD algorithm with all central point
ADAM Average Absolut | Mode Median Mode | Median methOG’ Where the energy Consumptwas beIOW 1400
T uJ, andhte CSPF/ADAM with Mode showed the highest
. - SRS S - energy consumption above 4200 uJ forRFSand above
Consmmpion ‘ VN L 2400 uJ for ADAM
Point
CS_FP Average  Absolut | Mode Mode Mode | Median ACKNOWLEDGMENT
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