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Abstract: GMM estimators properties for panel data have been very well known in the econometric literature and it has been 

observed that for small sample cases, they perform well. The OLS (Ordinary Least Squares) is not applicable when lagged 

endogenous and exogenous variables are correlated with the error term. Hence, here an attempt is made to estimate AR(1) time series 

model with one additional regressor by considering First-difference GMM and Level GMM estimation methods proposed by 

Arellano and Bond (1991) and Arellano and Bover (1995) respectively. In order study the performances of the above mentioned 

estimators in comparison with the OLS estimator Monte Carlo simulation study is carried out. Further, a comparison among these 

estimators has been done in terms of bias and RMSE. Study disclose that for an autoregressive parameter, Level GMM estimator 

performs better than First-difference GMM and OLS estimators when T, the sample size is small and 𝜌, the autoregressive parameter 

is close to unity. Whereas for the parameter of additional regressor 𝛽, Level GMM estimator performs better than the other two 

mentioned estimators for all the values of 𝜌 and 𝑇.  

 

Keywords: AR(1) with additional regressor, First-difference GMM, Level GMM, Bias, RMSE, OLS, Monte-Carlo simulation. 

1. INTRODUCTION  

  An enormous amount of research has been done on estimation of the first order autoregressive (AR(1)) time series 

model (see [3], [6], [2], [9], [11], [5] and [12]). In our previous work [1], we have applied two GMM estimation methods 

for AR(1) time series model to examine the performance of the mentioned estimators in comparison with the OLS 

estimator. In this study, the first order autoregressive time series model with additional regressor is considered. To 

estimate the interested model, three different estimators are considered namely, Ordinary Least Squares (OLS) used for 

the estimation of AR(1) model [4], one-step first-difference GMM estimator is proposed by Arellano and Bond [7] and 

level GMM estimator proposed by Arellano and Bover [8]. 

 For the above two GMM estimators, two distinct cases are taken into account. In the first case, the additional 

regressor is correlated with the white noise error term. This paper analyzes through Monte-Carlo simulation results, 

where the simulation design is analogous to that of Soto [10] and the results are appropriate only for the estimators are 

considered in the first case, where the additional regressor is correlated with the white noise error term. The bias and 

RMSE of the aforementioned two estimators are compared together with OLS estimator. 

 The article is arranged as follows. Section 2 contains an Autoregressive model with additional regressor, 

assumptions and two GMM estimators. Section 3 encompasses Monte-Carlo simulation to investigate the performances 

of the stated estimators. Section 4 presents discussion and results. The last section concludes the paper. 

2. THE MODEL AND ESTIMATORS 

The first-order autoregressive model with additional regressor is given by, 

 

                                            𝑦𝑡 = 𝛼 + 𝜌 𝑦𝑡−1 + 𝛽𝑥𝑡 + 𝑢𝑡 ,           𝑡 = 2, 3, … , 𝑇.                                                 (1) 

  

                                            𝑥𝑡 =  𝛼 + 𝛿𝑥𝑡−1 + 𝜃𝑢𝑡 + 𝑒𝑡 ,           𝑡 = 2, 3, … , 𝑇.                                                 (2) 

http://dx.doi.org/10.12785/ijcts/060203 
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where 𝛼  is a constant, 𝜌  and 𝛿  are autoregressive parameters with |𝜌| < 1  and |𝛿| < 1 , 𝛽  is the coefficient of 

additional regressor 𝑥𝑡, 𝑇 is the time period, 𝑢𝑡 and 𝑒𝑡 are the disturbances with the following assumptions. 

Assumption 1: {𝑢𝑡}: 𝑖𝑖𝑑(0, 𝜎𝑢
2) 

Assumption 1: {𝑒𝑡}: 𝑖𝑖𝑑(0, 𝜎𝑒
2) 

Assumption 1: {𝑢𝑡} and {𝑒𝑡} are independent of each other. 

On the basis of the above three assumptions, we take into consideration two types of estimation methods first one, 

First-difference GMM estimation method and the second one, Level GMM estimation method. 

 

A. First-Difference GMM Estimation 

In the model (1), the constant 𝛼 leads to a correlation between the lagged endogenous variable 𝑦𝑡−1 and error term 

𝑢𝑡 with the additional assumption of no correlation between 𝑥𝑡 and 𝑢𝑡. The first differences of the model (1) is performed 

to eliminate the constant to meet out the orthogonality condition. 

By, first-differencing model (1), we obtain 

                                      

                                           Δ𝑦𝑡 = 𝜌 Δ𝑦𝑡−1 + 𝛽 Δ𝑥𝑡 + Δ𝑢𝑡 ,          𝑡 = 3, … , 𝑇.                                                  (3) 

 

Case 1: If 𝐸(𝑥𝑡𝑢𝑡) ≠ 0, the case when the additional regressor 𝑥𝑡 is correlated with the white noise error term 𝑢𝑡, 

the one-step first-difference GMM estimator is based on the below 2(𝑇 − 2) moment conditions,  

                                                            𝐸(𝑍𝑑1
′  Δ𝑢𝑡) = 0                                                                                           (4) 

where, 𝑍𝑑1 is a (𝑇 − 2) × 2(𝑇 − 2) instrumental matrix and Δ𝑢𝑡 is a (𝑇 − 2) × 1 vector. 

 

𝑍𝑑1 =  [

𝑦1 𝑥2 0
0 0 𝑦2

⋮
0

⋮
0

⋮
0

    

0 … 0
𝑥3 … 0

⋮
0

⋱
…

⋮
𝑦𝑇−2

    

0
0
⋮

𝑥𝑇−1

] ,     Δ𝑢𝑡 = [

Δ𝑢3

Δ𝑢4

⋮
Δ𝑢𝑇

] 

 

With reference to the moment condition (4), the criterion function for the one-step first-difference GMM estimator is 

given by, 

                                                        𝑄𝑑𝑖𝑓1 = Δ𝑢𝑡
′ 𝑍𝑑1𝑊𝑑1

−1𝑍𝑑1
′ Δ𝑢𝑡                                                                            (5) 

By minimizing the criterion function (5) w.r.t [𝜌𝑑𝑖𝑓1  𝛽𝑑𝑖𝑓1]′ , the one-step first-difference GMM estimator is 

obtained and is as follows, 

                        (
𝜌̂

𝛽̂
)

𝑑𝑖𝑓1

= {(
Δ𝑦𝑡−1

Δ𝑥𝑡
) 𝑍𝑑1𝑊𝑑1

−1𝑍𝑑1
′ (

Δ𝑦𝑡−1

Δ𝑥𝑡
)

′

}
−1

{(
Δ𝑦𝑡−1

Δ𝑥𝑡
) 𝑍𝑑1𝑊𝑑1

−1𝑍𝑑1
′ Δ𝑦𝑡}                             (6) 

where, (
Δ𝑦𝑡−1

Δ𝑥𝑡
)  is 2(𝑇 − 2)  matrix (Δ𝑦2 , Δ𝑥3, Δ𝑦3, Δ𝑥4, … , Δ𝑦𝑇−1, Δ𝑥𝑇) , 𝑊𝑑1 = 𝑍𝑑1

′ 𝐺𝑑𝑍𝑑1  is a 2(𝑇 − 2) ×

2(𝑇 − 2) weight matrix with 𝐺𝑑is same as 𝐻 in the estimator proposed by Arellano and Bond [7]. 

Case 2: If 𝐸(𝑥𝑡𝑢𝑡) = 0, the additional regressor 𝑥𝑡 is not correlated with the white noise error term 𝑢𝑡, the one-step 

first-difference GMM estimator is based on the below (𝑇 − 1) moment conditions,  

                                                            𝐸(𝑍𝑑2
′  Δ𝑢𝑡) = 0                                                                                           (7) 

where, 𝑍𝑑2 is a (𝑇 − 2) × (𝑇 − 1) instrumental matrix and Δ𝑢𝑡 is a (𝑇 − 2) × 1 vector. 

 

𝑍𝑑2 =  [

𝑦1 0 …
0 𝑦2 …
⋮
0

⋮
0

⋱
…

    

0 Δ𝑥3

0 Δ𝑥4

⋮
𝑦𝑇−2

⋮
Δ𝑥𝑇

] ,     Δ𝑢𝑡 = [

Δ𝑢3

Δ𝑢4

⋮
Δ𝑢𝑇

] 
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In accordance with the moment condition (7), the criterion function for the one-step first-difference GMM estimator 

is given by, 

                                                        𝑄𝑑𝑖𝑓2 = Δ𝑢𝑡
′ 𝑍𝑑2𝑊𝑑2

−1𝑍𝑑2
′ Δ𝑢𝑡                                                                            (8) 

By minimizing the criterion function (8) w.r.t [𝜌𝑑𝑖𝑓2  𝛽𝑑𝑖𝑓2]′, the obtained one-step first-difference GMM estimator 

is presented below, 

                        (
𝜌̂

𝛽̂
)

𝑑𝑖𝑓2

= {(
Δ𝑦𝑡−1

Δ𝑥𝑡
) 𝑍𝑑2𝑊𝑑2

−1𝑍𝑑2
′ (

Δ𝑦𝑡−1

Δ𝑥𝑡
)

′

}
−1

{(
Δ𝑦𝑡−1

Δ𝑥𝑡
) 𝑍𝑑2𝑊𝑑2

−1𝑍𝑑2
′ Δ𝑦𝑡}                             (9) 

where, 𝑊𝑑2 = 𝑍𝑑2
′ 𝐺𝑑𝑍𝑑2 is a (𝑇 − 1) × (𝑇 − 1) weight matrix. 

B. Level GMM Estimation 

In the manner of Arellano and Bover [8], to comply with the orthogonality condition, the constant 𝛼 is wiped 

out from the instrumental variable. 

 Case 1: If 𝐸(𝑥𝑡𝑢𝑡) ≠ 0, the additional regressor 𝑥𝑡 is correlated with the white noise error term 𝑢𝑡, based on 

the following 2(𝑇 − 2) moment conditions the one-step level GMM estimator is written as,  

                                                            𝐸(𝑍𝑙1
′ 𝑢𝑡) = 0                                                                                                (10) 

where, 𝑍𝑙1 is a (𝑇 − 2) × 2(𝑇 − 2) instrumental matrix and 𝑢𝑡 is a (𝑇 − 2) × 1 vector. 

 

𝑍𝑙1 =  [

Δ𝑦2 Δ𝑥3 0
0 0 Δ𝑦3

⋮
0

⋮
0

⋮
0

    

0 … 0
Δ𝑥4 … 0

⋮
0

⋱
…

⋮
Δ𝑦𝑇−1

    

0
0
⋮

Δ𝑥𝑇

],     𝑢𝑡 = [

𝑢3

𝑢4

⋮
𝑢𝑇

] 

 

The criterion function for the one-step level GMM estimator is based on the moment conditions (10) becomes, 

                                                        𝑄𝑙𝑒𝑣1 = 𝑢𝑡
′ 𝑍𝑙1𝑊𝑙1

−1𝑍𝑙1
′ 𝑢𝑡                                                                                  (11) 

By minimizing the criterion function (11) w.r.t [𝜌𝑙𝑒𝑣1  𝛽𝑙𝑒𝑣1]′, the one-step level GMM estimator is obtained and is 

as follows, 

                        (
𝜌̂

𝛽̂
)

𝑙𝑒𝑣1

= {(
𝑦𝑡−1

𝑥𝑡
) 𝑍𝑙1𝑊𝑙1

−1𝑍𝑙1
′ (

𝑦𝑡−1

𝑥𝑡
)

′

}
−1

{(
𝑦𝑡−1

𝑥𝑡
) 𝑍𝑙1𝑊𝑙1

−1𝑍𝑙1
′ 𝑦𝑡}                                         (12) 

where, (
𝑦𝑡−1

𝑥𝑡
)  is 2(𝑇 − 2)  matrix (𝑦2 , 𝑥3, 𝑦3 , 𝑥4, … , 𝑦𝑇−1, 𝑥𝑇) , 𝑊𝑙1 = 𝑍𝑙1

′ 𝐺𝑙𝑍𝑙1  is a 2(𝑇 − 2) × 2(𝑇 − 2)  weight 

matrix with 𝐺𝑙is a (𝑇 − 2) × (𝑇 − 2) identity matrix. 

Case 2: If 𝐸(𝑥𝑡𝑢𝑡) = 0, the case when the additional regressor 𝑥𝑡 is not correlated with the white noise error term 

𝑢𝑡, the one-step level GMM estimator is based on the below (𝑇 − 1) moment conditions,  

                                                            𝐸(𝑍𝑙2
′ 𝑢𝑡) = 0                                                                                                (13) 

where, 𝑍𝑙2 is a (𝑇 − 2) × (𝑇 − 1) instrumental matrix and 𝑢𝑡 is a (𝑇 − 2) × 1 vector. 

 

𝑍𝑙2 =  [

𝑦2 0 …
0 𝑦3 …
⋮
0

⋮
0

⋱
…

    

0 𝑥3

0 𝑥4

⋮
𝑦𝑇−1

⋮
𝑥𝑇

],     𝑢𝑡 = [

𝑢3

𝑢4

⋮
𝑢𝑇

] 

 

Based on the moment conditions (13), the criterion function for the one-step level GMM estimator is given by, 

                                                         𝑄𝑑𝑖𝑓2 = 𝑢𝑡
′ 𝑍𝑙2𝑊𝑙2

−1𝑍𝑙2
′ 𝑢𝑡                                                                                (14) 

By minimizing the criterion function (14) w.r.t [𝜌𝑙𝑒𝑣2  𝛽𝑙𝑒𝑣2]′, the obtained one-step level GMM estimator is given 

by, 
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                           (
𝜌̂

𝛽̂
)

𝑙𝑒𝑣2

= {(
𝑦𝑡−1

𝑥𝑡
) 𝑍𝑙2𝑊𝑙2

−1𝑍𝑙2
′ (

𝑦𝑡−1

𝑥𝑡
)

′

}
−1

{(
𝑦𝑡−1

𝑥𝑡
) 𝑍𝑙2𝑊𝑙2

−1𝑍𝑙2
′ 𝑦𝑡}                                      (15) 

where, 𝑊𝑙2 = 𝑍𝑙2
′ 𝐺𝑙𝑍𝑙2 is a (𝑇 − 1) × (𝑇 − 1) weight matrix. 

3. MONTE CARLO SIMULATION DESIGN 

In this simulation design, the data generating process has been done from the following AR(1) model with one 

additional regressor to explore the finite sample performance of the above stated two estimators. 

𝑦𝑡 = 𝛼 + 𝜌 𝑦𝑡−1 + 𝛽𝑥𝑡 + 𝑢𝑡 ,           𝑡 = 2, 3, … , 𝑇. 

𝑥𝑡 =  𝛼 + 𝛿𝑥𝑡−1 + 𝜃𝑢𝑡 + 𝑒𝑡 ,           𝑡 = 2, 3, … , 𝑇. 

The initial observations of 𝑦𝑡and 𝑥𝑡 are given by,  

𝑦1 =
(1 − 𝛿 + 𝛽)

(1 − 𝜌)(1 − 𝛿)
+ 𝛽𝜃𝑟1 + 𝛽𝑠1 + 𝑣1 

and 

𝑥1 =
𝛼

1 − 𝛿
+ 𝜃𝑝1 + 𝑞1 

where, 

           𝑢𝑡~𝑁(0, 𝜎𝑢
2);  𝑒𝑡~𝑁(0, 𝜎𝑒

2);  𝑞1~𝑁(0, 𝜎𝑝
2); 𝑞1~𝑁(0, 𝜎𝑞

2) and 𝑣1~𝑁(0, 𝜎𝑣
2).   

The variance of white noise error term 𝜎𝑢
2 = 1, we set 𝜌 = 𝛿 ∈ (0, 1), 𝛼 = 𝛽 = 1, 𝜃 = −0.1, 𝜎𝑒

2 = 0.16 , 𝜎𝑣
2 =

𝜎𝑢
2

1−𝜌2 , 𝜎𝑝
2 =

𝜎𝑢
2

1−𝛿2 , 𝜎𝑞
2 =

𝜎𝑒
2

1−𝛿2 , 𝜎𝑟
2 = 𝜎𝑢

2(1 − 𝜙2)/[(1 + 𝜙2)((1 − 𝜙2)2 − 𝜙1
2)]  and  𝜎𝑠

2 = 𝜎𝑒
2(1 − 𝜙2)/[(1 +

𝜙2)((1 − 𝜙2)2 − 𝜙1
2)] with 𝜙1 = 𝜌 + 𝛿,  𝜙2 = −𝜌𝛿 and for the sample size, we choose 𝑇 = 5, 10, 20, 50 and 75. The 

number of replication is 10000 for all cases. 

4. DISCUSSION OF THE RESULTS 

The results obtained from the simulation study are explained through the tables and graphs. Table 1 gives the values 

of bias, RMSE and estimated values of an autoregressive parameter (𝜌) through first-difference GMM (dif), level GMM 

(lev) and OLS estimators (ols). When  𝜌̂ (dif), 𝜌̂ (lev) and 𝜌̂ (ols) are compared, it is observed that, 𝜌̂ (dif) and 𝜌̂ (ols) 

have an identical bias for all the values of  𝜌 over the range 𝑇 = 5 to 75. In the case of 𝑇 = 5, the bias of 𝜌̂ (lev) is the 

smallest among three estimators. When 𝑇 = 10 and 20, 𝜌̂ (lev) has less bias than 𝜌̂ (dif) and 𝜌̂ (ols) for the values of 

𝜌 > 0.3and 𝜌 > 0.6 respectively. When the sample sizes are 50 and 75, 𝜌̂ (lev) has more bias than 𝜌̂ (dif) and 𝜌̂ (ols) for 

all the values of 𝜌. In other words, when the sample size is too small and 𝜌 is very close to unity, 𝜌̂ (lev) is more 

preferable to the other  two with respect to the bias. 

Pertaining to the RMSE, when 𝑇 = 5, 𝜌̂ (lev) has the smallest RMSE among the above stated estimators excluding at 

the values of 𝜌 = 0.3 and 0.5. For 𝑇 = 10, 𝜌̂  (lev) has less RMSE except at the values of 𝜌 = 0.1 . For the cases 

𝑇 = 20, 50 and 75, the RMSE of 𝜌̂ (lev) is smaller than the RMSE of 𝜌̂ (dif) and 𝜌̂ (ols) except at the values of 𝜌 <
0.5, 𝜌 < 0.8 and 𝜌 < 0.9 respectively. 

Table 2 shows the values of bias, RMSE and the estimated values of parameter of an additional refressor (𝛽) 

through first-difference GMM, level GMM and OLS estimators. Upon comparison of three estimated values namely 𝛽̂ 

(dif), 𝛽̂ (lev) and 𝛽̂ (ols), it is found that 𝛽̂ (dif) and 𝛽̂ (ols) have equal bias for all the considered 𝜌 values over the entire 

range of 𝑇. When 𝑇 = 5, bias of 𝛽̂ (lev) is the smallest among mentioned three estimators except at the values of 𝜌 = 0.1 

and 0.3. when the sample sizes are 20, 50 and 75, bias of 𝛽̂ (lev) is smallest for all the values of 𝜌. More understandably, 

for all the values of 𝑇 and 𝜌, 𝛽̂ (lev) has the least bias compared to the remaining estimators. 

The simulation results are summarized in figure 1 − 4. From all the graphs it is noticed that, in the matter of bias and 

RMSE, 𝜌̂ (dif), 𝜌̂ (ols) and 𝛽̂ (dif), 𝛽̂ (ols) perform equally for all the considered range of  𝑇 and 𝜌. Figure 1   
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TABLE1.  SIMULATION RESULTS OF COMPARISON  OF THE BIAS AND RMSE OF  𝝆̂ (DIF), 𝝆̂ (LEV) AND             𝝆̂ 

(OLS) (T= 5, 10, 20 50 AND 75) 

T  
  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

5 

̂  (dif) -0.248 -0.045 -0.104 -0.232 -0.03 0.099 0.126 0.184 0.391 

̂  (lev) 0.168 0.28 0.324 0.383 0.455 0.622 0.691 0.783 0.914 

̂  (ols) -0.248 -0.045 -0.104 -0.232 -0.03 0.099 0.126 0.184 0.391 

Bias(dif) -0.348 -0.245 -0.404 -0.632 -0.53 -0.501 -0.574 -0.616 -0.509 

BIas(lev) 0.068 0.08 0.024 -0.017 -0.045 0.022 -0.009 -0.017 0.014 

Bias(ols) -0.348 -0.245 -0.404 -0.632 -0.53 -0.501 -0.574 -0.616 -0.509 

RMSE(dif) 1.73 1.526 1.903 3.688 1.267 2.42 1.464 2.787 1.368 

RMSE(lev) 1.401 1.227 2.07 1.374 1.31 1.036 0.929 0.948 0.453 

RMSE(ols) 1.73 1.526 1.903 3.688 1.267 2.42 1.464 2.787 1.368 

10 

̂ (dif) -0.052 0.016 0.103 0.155 0.233 0.334 0.436 0.522 0.679 

̂  (lev) 0.326 0.385 0.451 0.539 0.609 0.678 0.757 0.839 0.925 

̂  (ols) -0.052 0.016 0.103 0.155 0.233 0.334 0.436 0.522 0.679 

Bias(dif) -0.152 -0.184 -0.197 -0.245 -0.267 -0.266 -0.264 -0.278 -0.221 

BIas(lev) 0.226 0.185 0.151 0.139 0.109 0.078 0.057 0.039 0.025 

Bias(ols) -0.152 0.184 -0.197 -0.245 -0.267 -0.266 -0.264 -0.278 -0.221 

RMSE(dif) 0.38 0.395 0.408 0.43 0.457 0.458 0.444 0.469 0.392 

RMSE(lev) 0.426 0.378 0.363 0.323 0.303 0.255 0.195 0.16 0.096 

RMSE(ols) 0.38 0.395 0.408 0.43 0.457 0.458 0.444 0.469 0.392 

20 

̂ (dif) 0.032 0.125 0.218 0.3 0.38 0.476 0.579 0.687 0.821 

̂  (lev) 0.359 0.426 0.515 0.579 0.649 0.717 0.784 0.852 0.917 

̂  (ols) 0.032 0.125 0.218 0.3 0.38 0.476 0.579 0.687 0.821 

Bias(dif) -0.068 -0.075 -0.082 -0.1 -0.12 -0.124 -0.121 -0.113 -0.079 

BIas(lev) 0.259 0.226 0.215 0.179 0.149 0.117 0.084 0.052 0.017 

Bias(ols) -0.068 -0.075 -0.082 -0.1 -0.12 -0.124 -0.121 -0.113 -0.079 

RMSE(dif) 0.238 0.232 0.236 0.238 0.247 0.246 0.227 0.209 0.161 

RMSE(lev) 0.332 0.294 0.283 0.241 0.206 0.171 0.132 0.092 0.042 

RMSE(ols) 0.238 0.232 0.236 0.238 0.247 0.246 0.227 0.209 0.161 

50 

̂ (dif) 0.079 0.173 0.268 0.371 0.474 0.569 0.679 0.787 0.892 

̂  (lev) 0.383 0.455 0.533 0.607 0.68 0.744 0.805 0.861 0.921 

̂  (ols) 0.079 0.173 0.268 0.371 0.474 0.569 0.679 0.787 0.892 

Bias(dif) -0.021 -0.027 -0.032 -0.029 -0.026 -0.031 -0.021 -0.013 -0.008 

BIas(lev) 0.283 0.255 0.233 0.207 0.18 0.144 0.105 0.061 0.021 

Bias(ols) -0.021 -0.027 -0.032 -0.029 -0.026 -0.031 -0.021 -0.013 -0.008 

RMSE(dif) 0.144 0.143 0.135 0.133 0.127 0.117 0.1 0.077 0.046 

RMSE(lev) 0.308 0.282 0.255 0.227 0.199 0.16 0.117 0.071 0.028 

RMSE(ols) 0.144 0.143 0.135 0.133 0.127 0.117 0.1 0.077 0.046 
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T  
  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

75 

̂ (dif) 0.084 0.185 0.279 0.384 0.489 0.592 0.698 0.801 0.903 

̂  (lev) 0.381 0.461 0.537 0.612 0.685 0.746 0.807 0.865 0.922 

̂  (ols) 0.084 0.185 0.279 0.384 0.489 0.592 0.698 0.801 0.903 

Bias(dif) -0.016 -0.015 -0.021 -0.016 -0.011 -0.008 -0.002 0.001 0.003 

BIas(lev) 0.281 0.261 0.237 0.212 0.185 0.146 0.107 0.065 0.022 

Bias(ols) -0.016 -0.015 -0.021 -0.016 -0.011 -0.008 -0.002 0.001 0.003 

RMSE(dif) 0.115 0.108 0.109 0.106 0.097 0.086 0.069 0.053 0.028 

RMSE(lev) 0.299 0.277 0.252 0.225 0.195 0.155 0.115 0.071 0.026 

RMSE(ols) 0.115 0.108 0.109 0.106 0.097 0.086 0.069 0.053 0.028 
 

𝜌̂ (dif) = First-difference GMM estimator, 𝜌̂ (lev) = Level GMM estimator, and 𝜌̂ (ols) = Ordinary Least Square estimator, Bias(dif) = Bias of First-

difference GMM estimator, Bias(lev) =  Bias of Level GMM estimator, Bias(ols) = Bias of OLS estimator, RMSE = Root Mean Square Error, 
RMSE(dif) = RMSE of First-difference GMM estimator, RMSE(lev) = RMSE of Level GMM estimator, RMSE(ols) = RMSE of OLS estimator  

TABLE2.  SIMULATION RESULTS OF COMPARISON  OF THE BIAS AND RMSE OF  𝜷̂ (DIF), 𝜷̂ (LEV) AND 𝜷̂ (OLS) (T= 5, 

10, 20 50 AND 75) 
 

 

 

T 

 

 

1=  

  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

       5 

̂ (dif) 0.649 0.349 0.488 0.374 0.345 0.596 0.506 0.275 0.393 

̂  (lev) 1.651 1.546 1.581 1.618 1.538 1.283 1.334 1.268 0.955 

̂  (ols) 0.649 0.349 0.488 0.374 0.345 0.596 0.506 0.275 0.393 

Bias(dif) -0.351 -0.651 -0.512 -0.626 -0.655 -0.404 -0.494 -0.725 -0.607 

BIas(lev) 0.651 0.546 0.581 0.618 0.538 0.283 0.334 0.268 -0.045 

Bias(ols) -0.351 -0.651 -0.512 -0.626 -0.655 -0.404 -0.494 -0.725 -0.607 

RMSE(dif) 5.929 5.546 5.906 6.861 4.596 4.299 6.67 6.735 4.72 

RMSE(lev) 3.157 2.801 5.281 3.705 3.714 3.515 4.113 5.347 5.104 

RMSE(ols) 5.929 5.546 5.906 6.861 4.596 4.299 6.67 6.735 4.72 

     10 

̂ (dif) 0.424 0.434 0.426 0.423 0.497 0.581 0.555 0.605 0.504 

̂  (lev) 1.321 1.297 1.273 1.174 1.145 1.118 1.047 0.96 0.824 

̂  (ols) 0.424 0.434 0.426 0.423 0.497 0.581 0.555 0.605 0.504 

Bias(dif) -0.576 -0.566 -0.574 -0.577 -0.503 -0.419 -0.445 -0.395 -0.496 

BIas(lev) 0.321 0.297 0.273 0.174 0.145 0.118 0.047 -0.04 -0.176 

Bias(ols) -0.576 -0.566 -0.574 -0.577 -0.503 -0.857 -0.445 -0.395 -0.496 

RMSE(dif) 1.251 1.188 1.281 1.23 1.224 1.19 1.2 1.231 1.305 

RMSE(lev) 0.817 0.8 0.838 0.78 0.853 0.857 0.807 0.922 1.021 

RMSE(ols) 1.251 1.188 1.281 1.23 1.224 1.19 1.2 1.231 1.305 

 

 

 

 

 

 

 

      20 

 

̂ (dif) 0.417 0.448 0.479 0.508 0.572 0.609 0.653 0.737 0.791 

̂  (lev) 1.243 1.2 1.121 1.083 1.027 0.977 0.929 0.887 0.914 

̂  (ols) 0.417 0.448 0.479 0.508 0.572 0.609 0.653 0.737 0.791 

Bias(dif) -0.583 -0.552 -0.521 -0.492 -0.428 -0.391 -0.347 -0.263 -0.209 

BIas(lev) 0.243 0.2 0.121 0.083 0.027 -0.023 -0.071 -0.113 -0.086 

Bias(ols) -0.583 -0.552 -0.521 -0.492 -0.428 -0.391 -0.347 -0.263 -0.209 
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RMSE(dif) 0.833 0.836 0.779 0.791 0.745 0.719 0.687 0.627 0.576 

RMSE(lev) 0.498 0.461 0.457 0.439 0.425 0.433 0.443 0.472 0.429 

RMSE(ols) 0.833 0.836 0.779 0.791 0.745 0.719 0.687 0.627 0.576 

50 

̂ (dif) 0.396 0.433 0.458 0.507 0.549 0.602 0.673 0.772 0.853 

̂  (lev) 1.196 1.143 1.075 1.008 0.937 0.881 0.837 0.83 0.867 

̂  (ols) 0.396 0.433 0.458 0.507 0.549 0.602 0.673 0.772 0.853 

Bias(dif) -0.604 -0.567 -0.542 -0.493 -0.451 -0.398 -0.327 -0.228 -0.147 

BIas(lev) 0.196 0.143 0.075 0.008 -0.063 -0.119 -0.163 -0.17 -0.133 

Bias(ols) -0.604 -0.567 -0.542 -0.493 -0.451 -0.398 -0.327 -0.228 -0.147 

RMSE(dif) 0.698 0.667 0.639 0.592 0.555 0.5 0.421 0.339 0.273 

RMSE(lev) 0.322 0.302 0.262 0.247 0.26 0.267 0.275 0.275 0.245 

RMSE(ols) 0.698 0.667 0.639 0.592 0.555 0.5 0.421 0.339 0.273 

 

     75 

 

̂ (dif) 0.402 0.438 0.461 0.509 0.543 0.611 0.685 0.757 0.852 

̂  (lev) 0.402 0.438 0.461 0.509 0.543 0.611 0.685 0.757 0.852 

̂  (ols) 0.402 0.438 0.461 0.509 0.543 0.611 0.685 0.757 0.852 

Bias(dif) -0.598 -0.562 -0.539 -0.491 -0.457 -0.389 -0.315 -0.243 -0.148 

BIas(lev) 0.196 0.134 0.066 -0.003 -0.078 -0.126 -0.167 -0.189 -0.145 

Bias(ols) -0.598 -0.562 -0.539 -0.491 -0.457 -0.389 -0.315 -0.243 -0.148 

RMSE(dif) 0.658 0.625 0.603 0.56 0.52 0.452 0.384 0.314 0.219 

RMSE(lev) 0.289 0.242 0.216 0.201 0.203 0.223 0.248 0.258 0.212 

RMSE(ols) 0.658 0.625 0.603 0.56 0.52 0.452 0.384 0.314 0.219 
 

𝛽̂(dif) = First-difference GMM estimator, 𝛽̂ (dif) (lev) = Level GMM estimator, and 𝛽̂ (dif) (ols) = Ordinary Least Square estimator, Bias(dif) = Bias of 
First-difference GMM estimator, Bias(lev) =  Bias of Level GMM estimator, Bias(ols) = Bias of OLS estimator, RMSE = Root Mean Square Error, 

RMSE(dif) = RMSE of First-difference GMM estimator, RMSE(lev) = RMSE of Level GMM estimator, RMSE(ols) = RMSE of OLS estimator  

illustrates the comparison of the performance of  𝜌̂ (dif), 𝜌̂ (lev) and 𝜌̂ (ols) with reference to the true line over the 

positive range of 𝜌. From figure 1, it is evident that. When 𝑇 is not considerably large, 𝜌̂ (lev) has lesser bias than the 

other two estimators, but as 𝑇 increases bias of 𝜌̂ (lev) also increases. Referring to figure 2, it is apparent that 𝛽̂ (lev) has 

a smaller bias than other two in all the cases of 𝑇 and 𝜌. Figure 3 depicts the distinction of RMSE of  𝜌̂ (dif), 𝜌̂ (lev) and 

𝜌̂ (ols) for the positive range of 𝜌. From figure 3, it is noticed that. 𝜌̂ (lev) has less RMSE, especially when 𝑇 is too small. 

As 𝑇 setsup 𝜌̂ (dif) and 𝜌̂ (ols) perform better than 𝜌̂ (lev) but as 𝜌 approaches unity, 𝜌̂ (lev) performs extremely better 

than other two estimators. The RMSE of  𝛽̂ for above considered estimators is plotted in figure 4 and it is observed that, 

in all the cases of 𝑇 and 𝜌, 𝛽̂ (lev) has least RMSE as compared to the remaining two estimators. 
 

5. CONCLUSION 

In this paper, an estimation of AR(1) time series model with one additional regressor is done by using First-

difference GMM and Level GMM estimation methods. Monte-Carlo simulation is conducted to examine the 

performances of the considered estimators. Based on the simulation results, it is noticed that, in the case of an 

autoregressive parameter (𝜌), when the sample size is too small the bias and RMSE of level GMM estimator is better 

compared to remaining estimators. As sample size increases first-difference GMM and OLS estimators perform better 

than level GMM estimator. But when 𝜌 is very close to unity the level GMM estimator is more efficient than remaining 

two estimators. The additional regressor parameter (𝛽) has the smallest bias and is more efficient than first-difference 

GMM and OLS estimators. 
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Figure  1.  Means of First-difference GMM, Level GMM and OLS estimators for autoregressive parameter. 
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Figure  2. Means of First-difference GMM, Level GMM and OLS estimators for additinal regressor parameter. 
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Figure  3.  RMSEs of Difference GMM, Level GMM and OLS estimators for autoregressive parameter. 
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Figure  4.  RMSEs of Difference GMM, Level GMM and OLS estimators for additinal regressor parameter. 
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