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Abstract: This paper presents the application of a two-stage Half-Sweep Arithmetic Mean (HSAM) iterative method to obtain the 

Harmonic functions to solve the path planning problem in a 2D indoor environment. Several path planning simulations in a known 

indoor environment were conducted to examine the effectiveness of the proposed method. It is shown that the proposed path 

planning algorithm is capable of generating smooth paths from various start and goal positions. Also, numerical results show that the 

proposed HSAM method converges much faster than the existing iterative methods, thus it drastically improves the overall 

performance of the path planning algorithm. 
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1. INTRODUCTION 

The aim of path planning algorithm is to construct a 

collision-free path from arbitrary position to a specified 

goal position within a workspace containing obstacle. In 

this study, we employ a mathematical model for the path 

planning problem that relies on the solutions of Laplace's 

equation i.e. harmonic functions, to provide virtual 

surface gradient that can be used for navigation purpose. 

Harmonic functions are known to be very useful in 

robot navigation [1]. They offer a complete path planning 

algorithm and paths derived from them are generally 

smooth. When applied to the path planning problem, they 

have the advantage over simple potential field based 

approach, as they exhibit no spurious local minima. 

Global approach to path planning problem using the 

solutions of Laplace's equation was first introduced by 

[2]. 

After that, several studies were conducted using 

similar idea to solve various robot motion and navigation 

problems. Garrido, Moreno, Blanco and Martin [3] used 

harmonic functions obtained through finite elements 

method for robot motion. Pedersen and Fossen [4] 

employed harmonic functions via potential flow for 

marine vessel path planning. Harmonic functions were 

also successfully applied in behaviour-based robot [5, 6]. 

More recently, harmonic functions were applied for path 

planning of Unmanned Aerial Vehicles in 3D space [7]. 

2. HARMONIC FUNCTIONS IN PATH PLANNING 

Global approach to path planning problem relies on 

the use of harmonic potential fields as guidance for robot 

navigation. The potential fields are computed in a global 

manner and the harmonic solutions to Laplace's equation 

are then used to find the path lines for a robot to move 

from start to the specified goal point. Obstacles are 

considered as current sources with relatively high 

potential values, and the goal is considered to be the sink 

with the lowest assigned potential value. This amounts to 

using Dirichlet boundary conditions. Then, by performing 

the standard Gradient Descent Search (GDS), it leads the 

path tracing process by following the negative gradient of 

the harmonic potentials to the lowest potential value i.e. 

goal point [2].  

In the path planning literature, the solutions of 
Laplace's equation was computed using Gauss-Seidel 
(GS) [2] and Successive Over-relaxation (SOR) [8] 
iterative methods. In these studies, it was shown that SOR 
is superior to GS method. After that, Saudi and Sulaiman 
[9] discovered faster Laplace's solver using the 
combination of red-black strategy with half-sweep 
iteration and SOR method. The half-sweep approach was 
also successfully applied in behaviour-based robot [5, 6].  

However, when the size of the environment increases, 
the computational time required for obtaining the 
harmonic potentials grows exponentially. Therefore in 
this study, we investigate the efficiency of two-stage Half-
Sweep Arithmetic Mean (HSAM) iterative method in 
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computing the harmonic potentials of the environment to solve path planning problem. 

One major advantage of HSAM method is its 
suitability for parallel implementation, since the 
computation in the two stages can be executed 
independently. HSAM is actually a variant of the 
established Arithmetic Mean (AM) method [10], which is 
also known as Full-Sweep Arithmetic Mean (FSAM) 
method. HSAM was introduced by combining the concept 
of half-sweep iteration and AM method [11]. After that, 
HSAM method was applied to solve Poisson equation 
[12] and linear Fredholm integral equation [13] and 
Composite 6-Point Closed Newton-Cotes Quadrature 
Algebraic Equation [14]. These previous studies, 
however, were focusing on one-dimensional space only. 
In the case of path planning problem that was examined in 
this study, Laplace's equation in two-dimensional space 
was considered. In addition to the proposed HSAM 
method, the standard GS (also known as Full-Sweep 
Gauss-Seidel (FSGS)) and FSAM were also considered in 
this study for performance comparison purposes.. 

3. ARITHMETIC MEAN METHODS 

Numerical solutions for Laplace's equation are 

readily obtained from finite difference method. Consider 

a 2D Laplace's equation defined as 

𝛻2𝑢 =
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 0 (1) 

The application of Eq. (1) to model the potential values 

in path planning problem often results in large linear 

system with sparse coefficient matrix. Therefore, iterative 

method is often used to efficiently solve such large and 

sparse linear system. The standard five-point finite 

difference formula to approximate Eq. (1) is given as 

𝑢𝑖−1,𝑗 + 𝑢𝑖+1,𝑗 + 𝑢𝑖,𝑗−1 + 𝑢𝑖,𝑗+1 − 4𝑢𝑖,𝑗 = 0 (2) 

Another type of finite difference approximation is 

obtained by rotating the i-j plane axis clockwise by 45
o
 

[15]. Hence, the rotated five-point approximation formula 

is defined as 

𝑢𝑖−1,𝑗−1 + 𝑢𝑖+1,𝑗−1 + 𝑢𝑖−1,𝑗+1 + 𝑢𝑖+1,𝑗+1 − 4𝑢𝑖,𝑗 = 0

 (3) 

Eq. (2) and (3) are used for the iterative scheme of full-

sweep and half-sweep iteration cases, respectively. 

Figure 1 illustrates the portion of computational grid 

about point (i, j) for full-sweep and half-sweep cases.  

The Gauss-Seidel (GS) iterative scheme for Eq. (2) 

can be written as [16] 

𝑢𝑖,𝑗
(𝑘+1)

=
1

4
(𝑢𝑖−1,𝑗

(𝑘+1)
+ 𝑢𝑖+1,𝑗

(𝑘)
+ 𝑢(𝑖,𝑗−1)

(𝑘+1)
+ 𝑢(𝑖,𝑗+1)

(𝑘)
). (4) 

By adding a weighted parameter, w the iterative schemes 

for full-sweep and half-sweep cases can be written as 

[17]  

𝑢𝑖,𝑗
(𝑘+1)

=
𝑤

4
(𝑢𝑖−1,𝑗

(𝑘+1)
+ 𝑢𝑖+1,𝑗

(𝑘)
+ 𝑢(𝑖,𝑗−1)

(𝑘+1)
+ 𝑢(𝑖,𝑗+1)

(𝑘)
) +

(1 − 𝜔)𝑢𝑖,𝑗
(𝑘)

, (5) 

𝑢𝑖,𝑗
(𝑘+1)

=
𝑤

4
(𝑢𝑖−1,𝑗−1

(𝑘+1)
+ 𝑢𝑖+1,𝑗−1

(𝑘+1)
+ 𝑢(𝑖−1,𝑗+1)

(𝑘)
+

𝑢(𝑖+1,𝑗+1)
(𝑘)

) + (1 − 𝜔)𝑢𝑖,𝑗
(𝑘)

. (6) 

Eq. (4) is used for the implementation of FSGS iterative 

method. While the implementations of FSAM and 

HSAM methods employ Eq. (5) and (6), respectively.  

 
(a) 

 
(b) 

 
Figure1. Portion of the computational grid about point (i, j) for (a) full-

sweep, and (b) half-sweep cases, respectively 

Applying these finite difference approximations to 

Eq. (1) will result in a large and sparse linear system that 

can be stated in matrix form as  

Au = b (7) 

 



 

 

 Int. J. Com. Dig. Sys. 8, No.5, 523-528 (Sep-2019)                        525 

 

 

https://journal.uob.edu.bh 

where A and b are known, and u is unknown. We can 

express the matrix A = (aij) as the matrix sum 

A = L + D + U (8) 

where D = diag{a11, a22, ..., ann} and L and U are 

respectively, strictly lower and upper triangular matrices. 

As stated in the previous section, AM is a two-stage 

iterative method and its iterative process involves of 

solving two independent systems such as 𝑢(1)  and 𝑢(2) . 

By adding an acceleration parameter, w the general 

iterative scheme for AM method can be defined as  

(𝐷 + 𝑤𝐿)𝑢(1) = ((1 − 𝑤)𝐷 − 𝑤𝑈)𝑢(𝑘) + 𝑤𝑏,

(𝐷 + 𝑤𝐿)𝑢(2) = ((1 − 𝑤)𝐷 − 𝑤𝐿)𝑢(𝑘) + 𝑤𝑏,

𝑢(𝑘+1) =
1

2
(𝑢(1) + 𝑢(2)).

} (9)    

Here 𝑢(0)is an initial vector approximation to u and 

w is a positive parameter. A proof identical to that given 

in [10] ensures that the iterative method (9) is convergent 

for 0 <w< 2. The optimal w can be obtained by 

conducting several experiments until it give the smallest 

number of iterations.  

By determining the values of matrices D, L and U as 

stated in Eq. (8), the implementations of FSAM and 

HSAM methods are described in Algorithm 1 and 2, 

respectively. To obtain the harmonic solutions of Eq. (1), 

the two-step iteration procedures at Level 1 and 2 and 

matrix sum at Level 3 are repeatedly carried out until the 

specified convergence requirement ‖𝑢(𝑘+1) − 𝑢(𝑘)‖ < 𝜖 

is satisfied, where 𝜖 is the convergence criterion. In path 

planning problem, only non-occupied nodes are 

computed in the iteration process. All other nodes that are 

occupied either by obstacles or boundary walls are 

ignored, since their values are held fixed. 

Algorithm 1: Full-Sweep Arithmetic Mean (FSAM) 

Refer Figure 2(a) 

Level 1 (Sweep forward) 

for 𝑖, 𝑗 = 0,1,2, … , 𝑁 − 1, 𝑁 do 
Compute 

𝑢𝑖,𝑗
(1)

=
𝑤

4
(𝑢𝑖−1,𝑗

(1)
+ 𝑢𝑖+1,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−1

(1)
+ 𝑢𝑖,𝑗+1

(𝑘)
)

+ (1 − 𝑤)𝑢𝑖,𝑗
(𝑘)

 

Level 2 (Sweep backward) 

for𝑖, 𝑗 = 𝑁, 𝑁 − 1, 𝑁 − 2, … ,1,0 do 

Compute 

𝑢𝑖,𝑗
(2)

=
𝑤

4
(𝑢𝑖−1,𝑗

(𝑘)
+ 𝑢𝑖+1,𝑗

(2)
+ 𝑢𝑖,𝑗−1

(𝑘)
+ 𝑢𝑖,𝑗+1

(2)
)

+ (1 − 𝑤)𝑢𝑖,𝑗
(𝑘)

 

Level 3 

for𝑖, 𝑗 = 0,1,2, … , 𝑁 − 1, 𝑁 do 

Compute 

𝑢𝑖,𝑗
(𝑘+1)

=
1

2
(𝑢𝑖,𝑗

(1)
+ 𝑢𝑖,𝑗

(2)
) 

 

 

Algorithm 2: Half-Sweep Arithmetic Mean (HSAM) 

Refer Figure 2(b) 

Level 1 (Sweep forward) 

for first node to last node do 

Compute 

𝑢𝑖,𝑗
(1)

=
𝑤

4
(𝑢𝑖−1,𝑗

(1)
+ 𝑢𝑖+1,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−1

(1)
+ 𝑢𝑖,𝑗+1

(𝑘)
)

+ (1 − 𝑤)𝑢𝑖,𝑗
(𝑘)

 

Level 2 (Sweep backward) 

for last node to first node do 

Compute 

𝑢𝑖,𝑗
(2)

=
𝑤

4
(𝑢𝑖−1,𝑗

(𝑘)
+ 𝑢𝑖+1,𝑗

(2)
+ 𝑢𝑖,𝑗−1

(𝑘)
+ 𝑢𝑖,𝑗+1

(2)
)

+ (1 − 𝑤)𝑢𝑖,𝑗
(𝑘)

 

Level 3 

for first node to last node do 

Compute 

𝑢𝑖,𝑗
(𝑘+1)

=
1

2
(𝑢𝑖,𝑗

(1)
+ 𝑢𝑖,𝑗

(2)
) 

Figure 2 illustrates the computational grid for 

FSAM and HSAM methods. For FSAM method in 

Figure 2(a), all nodes in the problem domain will be 

considered, whereas for HSAM method in Figure 2(b) 

only black nodes are considered (i.e. node 1 to 41). 

Therefore, the computational complexity for HSAM 

method is approximately 50% less than FSAM method. 

In Level 1, the computation starts from the first node 

until the last node. Meanwhile in Level 2, the 

computation sweeps in reverse-order from the last node 

down to the first node. To obtain the harmonic functions, 

the algorithm is performed explicitly until the 

convergence criterion is satisfied. For HSAM method, 

after the convergence, the remaining white nodes are 

calculated using direct method [15]. 

4. THE PATH PLANNING SIMULATION  

The simulation is designed using the proposed 

algorithm for path planning in static environment. Three 

map examples of indoor environment are used covering 

an area of 270 x 270, 290 x 290 and 414 x 120 for the 

respective Case 1, Case 2 and Case 3. The environment 

consists of various shapes of obstacles, inner walls, and 

outer boundary walls.  

In the initial setup, nodes occupied by obstacles, 

inner and outer walls are fixed with high potential values, 

whilst the lowest potential value is assigned to the goal 

point. No initial values are assigned to all other non-

occupied nodes. The computations are carried out on a 

PC equipped with an Intel i53570 CPU running at 

3.40GHz speed with 8GB RAM.  
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The path planning simulation begins by computing 

the harmonic potentials of the environment using the 

considered iterative methods. Several values are tested to 

obtain the optimal weighted parameter, w. The iteration 

process for obtaining the harmonic potentials continues 

until the convergence criterion is satisfied. The 

convergence criterion must be set to a very small error 

tolerance, 𝜖 = 1.0−15 , since lower precision is not 

sufficient to avoid flat areas in the resulting harmonic 

potential values. After the harmonic potentials of the 

environment are obtained, the required path from start to 

the specified goal point can be traced using the standard 

GDS. The GDS simply repeatedly moves to the next 

node with lower potential value until the goal point with 

the lowest potential value is found out. The 

implementation of path planning algorithm is described 

in Algorithm 3. 

 
(a) 

 
(b) 

Figure 2. The computational grid for (a) full-sweep and (b) half-sweep 

cases, respectively 

Algorithm 3: Path Planning Algorithm 

(1) Load the map of the environment 

(2) Setup matrices to store potential values of the environment 

(3) Set potential values of all boundary nodes 

(4) Set potential values of goal point 

(5) Initialize potential values for other free spaces 

(6) Compute the harmonic functions using the considered 

methods (e.g. Algorithm 1 and 2 for FSAM and HSAM 

methods, respectively). 

(7) Perform GDS on the obtained harmonic functions to 

generate path from start to goal point 

(8) Save the generated path 

5. RESULTS AND DISCUSSION 

Table 1 provides a comparison of the performance 

of the considered iterative methods to solve Laplace's 

equation 1 in terms of iteration numbers and CPU time in 

seconds. The numerical results in this table show that the 

HSAM method is clearly superior to the existing 

methods. It can be clearly observed that the iterations and 

CPU time of both half-sweep methods are approximately 

50% less than their corresponding full-sweep methods. 

FSAM performs much faster than the standard FSGS and 

the previous HSGS [5] methods. The AM variants of 

FSAM and HSAM methods are very much superior to 

their corresponding standard FSGS and HSGS methods. 

HSAM gives the best performance. Against FSAM, it 

reduces the number of iterations and CPU time 

approximately by 49% and 70%, respectively. 

 

Table 1. Iteration, k and CPU time (in seconds), t of the considered 

methods 

Methods CASE 1 

FSGS k 53697 

t 45.12 

FSAM k 6525 

t 10.67 

HSAM k 3361 

t 2.93 

HSGS [5] k 27760 

t 12.51 

Methods CASE 2 

FSGS k 19805 

t 16.51 

FSAM k 2478 

t 3.50 

HSAM k 1311 

t 1.13 

HSGS [5] k 10202 

t 4.50 

Methods CASE 3 

FSGS k 15009 

t 5.84 

FSAM k 1900 

t 0.77 

HSAM k 1039 

t 0.46 

HSGS [5] k 7752 

t 1.81 
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Figure 3. The generated paths for Case 1 covering an area of 330 x 270 

      

      

Figure 4. The generated paths for Case 2 covering an area of 290 x 290 
 

Once the solutions of Laplace's equation (1) are 

obtained, they are then used to generate path from start to 

goal position. The generated paths for Case 1 – 3 

obtained from the path planning simulation are shown in 

Figures 3 - 5, respectively. The solid square in green 

colour and circle in red colour denote start and goal 

point, respectively.  

6. CONCLUSIONS 

This study demonstrated the great potential of the 

two-stage HSAM iterative method in computing the 

harmonic functions for application in path planning 

problem. The HSAM method contributed significantly in 

improving the overall performance of the path planning 

algorithm. The path planning algorithm is very robust, 

where it capable of generating paths in the narrow space 

and difficult corners.  

 

 

 

 

Figure 5. The generated paths for Case 3 covering an area of 414 x 120 

Moreover, since AM methods possess separate and 

independent calculations at Level 1 and Level 2, parallel 

implementation is possible. In the future work, the path 

planning algorithm will be tested in more complex 

domains. Application in dynamic and unknown 

environment is an interesting idea to explore in the 

future. Furthermore, the HSAM method will be examined 

for path planning problem in space of higher dimensions. 

Faster iterative method by combining quarter-sweep 

iteration concept with AM method will also be 

considered. 
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