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Abstract: In this paper, a generalization of generalized gamma distribution(GGGD) ,which includes the three-parameter generalized
gamma distribution, two-parameter Weibull and gamma distributions, and exponential distribution as special cases, has been
suggested and studied. The hazard rate function and the stochastic ordering of the distribution have been discussed. Maximum
likelihood estimation has been discussed for estimation of parameters. Applications of the proposed distribution have been discussed
with two real lifetime datasets and the goodness of fit shows quite satisfactory over generalized gamma, gamma, Weibull, and
exponential distributions.
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1. INTRODUCTION

A two parameter gamma distribution (G.D.) having parameter € and « is defined by its probability density function
(pdf) and cumulative distribution function (cdf)

fl(y;b’,a)=%e“9yy“-l; y>0,0>0,a>0
F(y;0,2) =1——F(a’9y)

I'(a)

where @ is a scale parameter and « is a shape parameter and F(a, Z) is the upper incomplete gamma function
defined as

;y>0,>0,a>0

1“(04,2):Ie‘y y*tdy;a>0,z>0

A detailed study about properties, estimation of parameters and applications of a discrete analogue of two-parameter
gamma distribution is available in [1]. The two-parameter gamma distribution reduces to exponential distribution at

o =1 having pdf and cdf
f,(y;0)=0e";y>0,6>0
F(y;0)=1-e";y>0,0>0
A detailed study on exponential distribution and its role in life testing is available in [2]. Further, gamma
distribution is the weighted exponential distribution. A discrete exponential distribution along with its properties and
applications to meteorology has been discussed by [3]. [4] have obtained two-parameter generalized exponential
distribution and discussed its statistical properties, estimation of parameter and applications. A discrete analogue of the
generalized exponential distribution along with its properties, estimation of parameters and applications are available in
[5]. The research works done by different researchers on exponential distributions are available in [6].
The Weibull distribution (WD), proposed by [7], having parameter € and « is defined by its pdf and cdf
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f,(x0,a)=0ax e ;x>0,6>0,a>0
R(x0,a)=1-" ;x>0,6>0,a>0
The Weibull distribution reduces to exponential distribution at & =1. Further, the Weibull distribution is nothing
but the power exponential distribution. Assuming X = yj/"‘ and Y= W(X) = X“in (1.4), we get
g(x0.a)=f[w(x)]w(x)=0e " ax " =0ax e

which is the pdf of Weibull distribution defined in (1.6). [8] obtained discrete Weibull distribution. [9] introduced a new
discrete Weibull distribution. Recently, [10] have comparative study on modeling of lifetime data using two-parameter
gamma and Weibull distributions and it has been observed that in some datasets gamma gives better fit than Weibull
whereas in some datasets Weibull gives better fit than gamma and hence these two distributions are competing each
other. Most of the research works done on Weibull distributions are available in [11].

The generalized gamma distribution (GGD), suggested by [12], having parameters &, ,and £ is defined by its
pdf and the cdf

f4(X:9,a,ﬂ)=%xﬂale“”; x>0,0>0,a>0,4>0

F(a,@xﬂ)
I'(a)

where @ and [ are the shape parameters and & is the scale parameter, and F(a, Z) is the upper incomplete gamma

F(x0,a,8,)=1- ; Xx>0,0>0,a>0,8>0

function defined in (1.3) . Note that Stacy (1962)[12]obtained GGD by taking X = yl/ﬂ and thus Yy = W(X) =x"in
(1.1), and using the approach of obtaining the pdf of Weibull distribution in (1.6). Clearly the gamma distribution, the
Weibull distribution and the exponential distribution are particular cases of (1.9) for(ﬁ :1), (a =1) and

(a =0 =l), respectively. The parametric estimation for the GGD has been discussed by [13]. [14] has obtained a

new discrete distribution related to generalized gamma distribution and discussed some of its properties. Note that the
research works done on exponential distribution, Weibull distribution, gamma distribution, generalized gamma
distributions, their extensions and applications for life testing and modeling are available in [15]. Recently, [16] have
detailed critical and comparative study on modeling of lifetime data using three-parameter GGD and generalized
Lindley distribution (GLD) introduced by [17], and observed that GGD gives much closer fit than GLD in real lifetime
datasets.

Since GGD gives better fit than both Weibull and gamma distributions, it is expected and hoped that generalization
of generalized gamma distribution (GGGD) will be a better model than GGD, Weibull and gamma. An attempt has
been made to obtain GGGD which includes the three-parameter GGD, two-parameter Weibull and gamma distributions,
and exponential distribution. Some of its properties including hazard rate function and stochastic ordering have been
discussed. The estimation of its parameters has been discussed using maximum likelihood estimation. Two real lifetime
data has been considered to test the goodness of fit of GGGD over GGD, Weibull, gamma and exponential
distributions.

2. A GENERALIZATION OF GENERALIZED GAMMA DISTRIBUTION

1
Assuming X = — yi/ﬂ and y= W(X) = (}/ X)ﬂ in (1.1), and following the approach of obtaining the pdf of GGD
e

by [12], the pdf of generalization of generalized gamma distribution (GGGD) can be expressed as
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fo (X0, B,7)=

plory .

I'(a)

-0(rx) .
e ; Xx>0,>0,a>0,>0,y>0

2.1)

where (a,ﬂ,}/) are shape parameters and & is the scale parameter. Further, GGD of [12], Weibull, gamma and
1), (;/=l,a =1), (7/=1,,B=1) and

exponential distributions are particular cases of GGGD for (7/

(7 =la=1p =1) , respectively.

The cdf of GGGD can be

F(x0,a p.7)=1-

where F(a, H(yx)ﬂ) is the upper incomplete gamma function defined as

F(ao(n))= |

6(rx)

expressed as

r(a0(rx))
I'(a)

e’ y**tdy
Vi

; X>0,0>0,>0,8>0,7>0

(2.2)

2.3)

Graphs of the pdf and the cdf of GGGD are shown in figures 1 and 2 for varying values of the parameters 6, &, 3,
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Figure 2. Behavior of the cdf of GGGD for parameters &, &, [5,and y .

3. HZARD RATE FUNCTION

Let X be a continuous random variable with pdf f (X) and cdf F (X) . The hazard rate function (also known as
the failure rate function) function of X is defined as

n(x)= lim P(X <X+AX|X >x): f(x)
A0 AX 1-F(x)

Thus h (X) of GGGD can be expressed as

— fs(X;‘g’aaﬂ,}/) :ﬂ(eyﬁ)ae_a(;/x)ﬂxﬂa—l
RGG@A  r{ao()

h(x;60,a,0.7) : (3.1)
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where F(a,@(}/x)ﬂ) is the upper incomplete gamma function defined in (2.3). Graphs of h(X) of GGGD for

parameters «9,0{,ﬂ, and y are shown in figure 3.
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Figure3. Behavior of the h (X) of GGGD for parameters &, &, 5 and y .

Stochastic ordering is an important tool for judging the comparative behavior of positive continuous random
variables. Suppose X and Y are positive continuous random variables. Then Y is said to be greater than X in the

(@)
(b)
©)

(d)

stochastic order (X <, Y )if F, (X)>F, (X)for every X

—st

hazard rate order (X <, Y )if h, (x)>h, (X) for every X
Y )if my (x) <m, (x)for every x

mean residual life order (X <inl

f (X
likelihood ratio order (X <, Y )if & decreases in X .

f, (%)

The following interrelationship among various stochastic ordering of distributions given in [18]are useful

X<, Y= X<, Y= X<, Y (5.)

U

X<qY

mrl
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In the following theorem an attempt has been made to show that GGGD is ordered with respect to the strongest
‘likelihood ratio ordering’.

Theorem: Suppose X ~ GGGD(6,,¢4,7,,/8,) and Y ~ GGGD(6,,a,,7,,3,). If any one of the following

conditions satisfied
i) 6,=0,y,=y,a=a, and S < p, (i) O, =6,,=y,, =5 and o <a,
(i) 6, =6,,a,=a,, =0, and y, >y, (i)y=a,, b, =01 >y, and 6 >0,

then X <, Yandhence X <, Y, X<, Yand X <, Y.
Proof: We have

fx (x:6.2.71.8) —
fy (X:62,02,72./)

AN
ﬂ1(9171 )azr(az) e*{91(71x)ﬁ’92(7zx) } xhaha -y s
B (92 72ﬁ2) 1—‘(0{1)

Now
oo bilon™) I'(a ,
neanan | A )2 ) | (a6 (0 6,7,
182( 272 ) I (e)

Ix oo, /fo) Ao ;'82 % + {egﬁzyz (72 X)ﬁz_1 -0, (71 X)ﬂl_l} .

This gives &I fy (X:0,.22.72.2)

Thus under the given conditions in the theorem,—lnfX(X,;gl#y“g1 < 0. This means that X < _Y and hence
dx fy (%:05.02.72.52) Ir

X<, Y, X<, YandX <, Y.

—hr —mrl

ESTIMATION OF PRAMETERS USING MAXIMUM LIKELIHOOD

5.
,X,) be a random sample from GGGD (6, .7, 3). Then, the natural log likelihood

Suppose(xl, Xoy Xgy e
function can be expressed as

Ian_Zn:In fo(x:0,a,8.7)
Zlnx Hy/ﬂz

The maximum likelihood estimates (MLEs) (é ,é ) of parameters (9,0{,,8,7/) of GGGD (2.1) are the

solutions of the log likelihood equations

olnL _na BZ e
X" =0

=n[InB+a(IN6+pIny)-InT(a)]+(B

00
8|nL (In0+ﬂ|n7/) (a)+ﬁzn:|nxi=0
oa i=1
olnL :£+n a Iny+ai|n X —0y” |n7ixiﬁ_07ﬁixiﬂ In(xi):O
i=1 i=1

op B =
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olnL _ na[p’_gﬂyﬁ,lzxiﬁ _o.
oy i-1
d . . )
=—InT () is the digamma function.
a

where (o) =
d
These four log likelihood equations do not seem to be solved directly because these cannot be expressed in closed

form. However, Fisher’s scoring method can be applied to solve these equations iteratively. For, we have

*InL_ na
00>  0?
o%InL .
od> =-ny’'(a)
o%InL n 28 : o
o =07 (nr) X" =207 Iy 3k In(x)-07" 3 x" (In(x)
i=1 i=1 i=1

aZInL:_naﬂ_g )Ny
2 OR(A-Y)y 2%

oy?
o’InL _n_&InL

000a 0 0adl

o*InL P " o’ InL
=—|+"In X7+ xPIn(x)|=
060p {7 721: S 21: i ')} op oo
(’92InL__ﬁyﬁ_1 p_OInL
000 — 5,00
2 n 2
o°InL :nln7+ZInxi _ o°InL
oadf & 0p da

’InL _npg_&%InL

oady y Oyoa

’InL  na n L n o°InL
=—=0B7" 7 Inyd x" =0 y" D %" -0y xIn(x )= ,

opoy le le le () Jy op

: d : : _
where (a) = d—l// (a) is the trigamma function.
a

The MLE (é,d,,@,}?) of parameters ((9,05,,8,7/) of GGGD (2.1) are obtained by solving the following

equations
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[0InL &°InL &°InL &*InL| L]
06°  000a 0008 000y o0
o*InL &*InL &L &*InL| [0-6,| |ainL
oadf oa® Oadf Oady a-a,| | Oa
2L oL L &InL| |[p-p | |2k
0B00 0Boa  Op>  OBdy 77, op
&’InL &°InL o°InL &*InL |, olnL 1.,
(700 oyoa oydB  oF Jia L7 Joa
f:f; =70

where 6, a,, 3, and y,are the initial values of parameters &,«, f and y. These equations are solved

iteratively till sufficiently close estimates of é,d,/;’ and 7 are obtained. In this paper, to estimate the parameters
6,a, f and y for the considered datasets, R-software has been used.

6. GOODNESS OF FIT

The application of goodness of fit of GGGD has been discussed for with two real lifetime datasets. The first dataset
is relating to fatigue life of 6061 — T6 aluminum coupons cut parallel to the direction of rolling and oscillated at 18
cycles per second on 101 observations with maximum stress per cycle 31,000 psi available in [19]. The second dataset
represent the tensile strength, measured in GPa, of 69 carbon fibers tested under tension at gauge lengths of 20mm,
available in [20]. The fit has been compared with GGD, GD, Weibull and exponential distributions. The maximum
likelihood estimates of parameters for the considered distributions for the datasets 1 and 2 have been presented in table
1. The values of —2In L, AIC (Akaike information criterion), K-S Statistic ( Kolmogorov-Smirnov Statistic) and p-
value for two datasets have been presented in table 2. The AIC and K-S Statistics are computed using the following

formulae:  AIC =-2log L+ 2k, and K-S =Sup

F, (X)— K (X)‘ , where K being the number of parameters

involved in the respective distributions, N is the sample size and F, (X) is the empirical distribution function. The
distribution corresponding to the lower values of —2In L, AIC and K-S statistic is the best fit distribution.

The goodness of fit in table 2 shows that that GGGD gives much better fit than GGD, GD, Weibull and exponential.
The variance-covariance matrix of the parameters €, ¢, f and y of GGGD for datasets 1 and 2 are shown in tables
3 and 4, respectively.

TABLE 1. Summary of the ML estimates of parameters

ML Estimates
Data set Model é a ﬁ Y
GGGD 0.414869 1.531572 2.540404 0.022695
GGD 0.018820 4.829310 1307120 | -
GD 0.112483 7685828 | - e
Weibull 0.002060 1457312 | e e
1 Exponential 0014634 | @ - | e e
GGGD 0.205558 2.435249 3.348127 0.816920
GGD 0.304412 3.586110 2648310 | @ -
GD 9.538435 23381839 | - | e
Weibull 0.005589 5335228 | eeem | e
2 Exponential 0407942 | e e e
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TABLE 2. Summary of Goodness of fit by K-S Statistic

Data set Model -2 |Og L AlIC K-S p-value
GGGD 907.51 915.51 0.067 0.748
GGD 912.44 916.44 0.087 0.429
GD 915.76 919.76 0.099 0.271
1 Weibull 982.66 986.66 0.280 0.000
Exponential 1044.87 1046.87 0.366 0.000
GGGD 97.74 105.74 0.040 0.999
GGD 100.58 106.58 0.044 0.987
GD 100.07 104.07 0.058 0.973
2 Weibull 99.31 103.31 0.060 0.963
Exponential 261.73 263.73 0.448 0.000

7. CONCLUDING REMARKS

A generalization of generalized gamma distribution (GGGD) introduced by Stacy (1962)[12], which includes the
three-parameter generalized gamma distribution (GGD), two-parameter Weibull and gamma distributions, and
exponential distribution, has been suggested and investigated. The behavior of the hazard rate function and the
stochastic ordering of the distribution have been discussed. The estimation of the parameters of the distribution has been
explained using the method of maximum likelihood. The the goodness of fit of GGGD with two real lifetime datasets
have been discussed and the fit by GGGD is quite satisfactory over generalized gamma, gamma, Weibull, and
exponential distributions.

L >

> >

LD >

> D>

A

0

1.7410 0.0394
0.0394  4.8591
—0.0295 -3.6715 2.8634
-2.9667 1.3173

A

A

a B

~

0 & B

6.5169 -0.0677 0.0904
—0.0677 0.5350
0.0904 -0.4904 0.4852
—-0.0238  0.0025

—0.0295
-3.6715 1.3173

TABLE 3. Variance-covariance matrix of the parameters &, , f and ¥ of GGGD for dataset 1

A

v

—2.9667

-1.0167

-1.0166 5.4554

TABLE 4. Variance-covariance matrix of the parameters @, ¢, ,8 and ¥ of GGGD for dataset 2

A

I
—0.0238

—0.4904 0.0025

—0.0024

—-0.0024 0.0001
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