
Int. J. Com. Dig. Sys. 2, No. 2, 95-101(2013)                                                                                                                  95 

 

 

© 2013 UOB SPC, University of Bahrain 

 

 

 

 

 

A Low Power Parallel Sequential Decoder for Convolutional 

Codes 

 
Adil EL Bourichi 
 

National School of Applied Sciences, Ibn Tofail University, Kenitra, Morocco 

 

e-mail: adilelbourichi@gmail.com 

 
Received 8 Apr. 2012, Revised 31 Oct. 2012, Accepted 15 Dec. 2012 

                                   

 

Abstract: A novel decoding algorithm having a simple hardware realization is proposed for convolutional codes. The proposed 

decoder accepts a simple implementation in hardware in terms of area occupancy and power consumption compared to other 

decoders for convolutional codes such as those based on the Viterbi algorithm (VA). Furthermore, the processing delays due to 

looking back and forward in a trellis as in sequential decoding algorithms are avoided, which makes the proposed decoder suitable 

for fast high data rates wireless communication systems. Simulation results show a comparable bit error rate (BER) performance to 

optimal decoders with a reduction of power consumption of 60% compared to Viterbi decoders. 

 

Keywords: Convolutional codes, low power decoders, sequential decoding, wireless communication. 

 

I. INTRODUCTION 

Error control coding (ECC) is a classic approach to 

increase link reliability and lower the required 

transmitted power. However, lowered power at the 

transmitter comes at the cost of increasing power 

consumption of the receiver because strong and efficient 

codes require complex decoders with high power 

consumption. Convolutional codes are one of the most 

important ECC techniques.  

Decoding of convolutional codes (CC) is generally 

classified in two categories: Maximum Likelihood (ML) 

decoding of which the Viterbi Algorithm (VA) [1] is a 

well known example and sub-optimal algorithms such as 

sequential algorithms. The Viterbi decoder has been 

proved to be a maximum-likelihood decoder [2]. 

However, it has been reported that more than 30% of 

power consumption in a wireless system is due to the 

Viterbi decoder [3][4][5][9]; moreover Viterbi decoding 

is impractical for constraint lengths >=7 required for high 

data rate applications [6][7][8][10].  

Sequential decoding algorithms, on the other hand, try 

heuristically to find the most probable path in a tree or 

trellis structure. While these algorithms have lower 

complexity than VA, they are sub-optimal and suffer 

from variable decoding time which makes them non 

suitable for fast high data rate wireless applications.  

In this paper, we propose a parallel sequential 

decoding algorithm where all probable paths in a tree are 

built in parallel and the best path is decided for at the end 

of the algorithm. Low power consumption of this 

algorithm, its fixed processing time and its suitability for 

hardware implementation make it a strong candidate for 

fast and high data rate decoding in next generation 

wireless networks. 

II. RELATED WORK 

A.  Convolutional Codes 

A convolutional code is an error correcting code in 

which each k bit information symbol to be encoded is 

transformed into an n  bit symbol, where 
n

k
 is the code 

rate ( kn  ), and the transformation is a function of the 

last l information symbols, where l is the constraint 

International Journal of Computing and Digital Systems 
 
   

http://dx.doi.org/10.12785/ijcds/020206 

 

http://dx.doi.org/10.12785/ijcds/020206


96                                             A.EL Bourichi: A Low Power Parallel Sequential … 

 

length or memory of the code. Such code is denoted by 

the three-tuple ),,( lkn . 

A convolutional encoder is described as a mechanism 

of shift registers and modulo-2 adders, where the output 

bits are modular-2 additions of selective shift register 

contents and present input bits. Figure 1 shows the 

encoder of binary (2,1,2) code as a one shift register 

consisting of two delay elements and two outputs: 

)2()()(

)2()1()()(

2

1





tutut

tututut




 

   During the encoding process, the contents of shift 

registers in the encoder are initially set to zero. The 

k input bits are then fed into the encoder in parallel 

forming the input message u  consisting of k  bits, to 

generate n  output bits according to the shift-register 

framework, these n  outputs are interleaved to obtain the 

final codeword. 

D D

+

+

u

1v

2v

v

 

Figure 1.  Encoder for the (2,1,2) convolutional code with generators 

g1=(111) and g2=(101) 

The state diagram of this system is depicted in Figure 2. 

The states are defined as )2(),1(  tutu pairs and the 

state transitions’ outputs are defined as )(),( 21 tt  . A 

transition shown as dotted arrow in the figure 

corresponds to a bit input of 1 and a bold transition 

corresponds to a bit input of 0. The output bits of the 

encoder are shown for each transition. The state diagram 

can also be represented as a state transition table, shown 

in figure 3. 

a=00

d=11

b c

00

11

01

10

11

01

Input 0

Input 1

10

00

 

Figure 2.  FSM for the encoder of figure 1 

State Transition Table

Codeword State Transition Message bit

00

10

01

11

a  a

c  b

c  a
a  b

b  c

d  d

d  c

b  d

0
1

1

1

1

0

0

0

 

Figure 3.  State transition table for the encoder of figure 1 

 

The state diagram offers a complete description of the 

system. However, it shows only the instantaneous 

transitions. It does not illustrate how the states change in 

time. To include time in state transitions, a trellis diagram 

is used (Figure 4). Each node in the trellis diagram 

denotes a state at a point in time. The branches 

connecting the nodes denote the state transitions. 

 

 

Figure 4.  Trellis for the code of figure 1 



 A.EL Bourichi: A Low Power Parallel Sequential …                                                                                                      97 

 

In theory, code sequences of convolutional codes are of 

half infinite length. But for practical applications, usually 

finite sequences are used. There are three different 

methods to obtain finite code sequences:  

Truncation: We stop encoding after a certain number of 

bits without any additional efforts. This leads to high 

error probabilities for the last bits in a sequence. 

Termination: We add some tail bits to the code sequence 

in order to ensure a predefined end state, which leads to 

low error probabilities for the last bits in a sequence. 

Tail biting: We choose a starting state which ensures that 

starting and end state are the same. This leads to equal 

error protection.  

In general we prefer termination or tail biting, where 

tail biting increases the decoding complexity and for 

termination additional redundancy is required. In this 

paper, we consider only terminated code sequences, where 

we start encoding in the all-zero encoder state and we 

ensure that after the encoding process all memory 

elements contains zeros again; this can be done by adding 

kl zero bits to the information sequence of length N . 

 

B. The Viterbi decoding algorithm 

The Viterbi decoder [1] examines an entire received 

sequence of a given length. The decoder computes a 

metric for each path and makes a decision based on this 

metric. All paths are followed until two paths converge 

on one node. Then the path with the higher metric is kept 

and the one with lower metric is discarded. The paths 

selected are called the survivors.  

    The most common metric used is the Hamming 

distance metric. This is just the dot product between the 

received codeword and the allowable codeword. Other 

metrics are also used. These metrics are cumulative so 

that the path with the largest total metric is the final 

winner. Given a code vector Z, the Viterbi algorithm’s 

objective is to find a path through the trellis starting at the 

all-zero state and ending at the all-zero state so that the 

distance measure between Z and a sequence U 

corresponding to the desired path is minimized. 

The Viterbi algorithm relies on the observation that of 

two paths entering a certain state in a trellis in a given 

time instant, only one of them is good. Therefore, the 

basic idea of the algorithm is to identify which path 

should be erased. This is done using the follwing 

procedure: 

If a certain state s(t+1) at time t+1 can be reached from 

two states s’(t) and s’’(t) via branches v’(t) and v’’(t) 

respectively, then:    

A best path to s(t+1)  = a best of  

(best path to s’(t) extended by v’(t), 

                            best path to s’’(t) extended by v’’(t)). 

 

Figure 5.  Path elimination in VA 

C. Sequential decoding algorithms 

A convolutional code with an arbitrarily long 

constraint length may be decoded by a recursive tree-

search technique called sequential decoding. There exist 

various sequential decoding algorithms, of which the 

fastest is probably the Fano algorithm [9]. In general, 

sequential algorithms follow the best code path through 

the code trellis (which becomes a tree for long constraint 

lengths) as long as the path metric exceeds its expected 

value for the correct path. When a wrong branch is taken, 

the path begins to look bad and the algorithm then 

backtracks and tries alternative paths until it again finds a 

good one. 

Sequential decoding achieves asymptotically the same 

error probability as maximum likelihood decoding but 

without searching all possible states. In fact, with 

sequential de coding the number of states searched is 

essentially independent of constraint length, thus making 

it possible to use very large (K = 41) constraint lengths. 

This is an important factor in providing such low error 

probabilities. The major drawback of sequential decoding 

is that the number of state metrics searched is a random 

variable. For sequential decoding, the expected number of 

poor hypotheses and backward searches is a function of 

the channel SNR. With a low SNR, more hypotheses must 

be tried than with a high SNR. Because of this variability 

in computational load, buffers must be provided to store 

the arriving sequences. The large variations in the 

required decoding effort of conventional sequential 

decoders have made them considered to be unsuitable for 

applications that include periodic, hard deadlines such as 

real-time applications. 



98                                             A.EL Bourichi: A Low Power Parallel Sequential … 

 

III. PROPOSED DECODER 

Supposing that messages were encoded using the 

termination technique, i.e. zeros are added at the end of 

the message to flush the encoder’s contents, a 

convolutional decoder decides that a given codeword is 

valid when the parsing in a trellis or tree corresponding to 

that codeword starts and finishes at the all zero state. 

When such path is unique, the decoder is a hard decision 

decoder.  

The proposed decoder in this paper is a hard decision 

decoder that aims at reducing the hardware complexity 

related to metric calculations and comparisons in VA 

while avoiding the delays in decoding time due to looking 

back and forward in a trellis or tree as in sequential 

decoders. 

A. Decoding algorithm 

The proposed algorithm builds a tree of states having 

as root the all-zero state. At the start of the algorithm, the 

tree consists of a single node that is the root node equal to 

the all-zero state. Upon reading the first codeword, the 

decoder looks at the transition table to find a transition 

that has the state at the root as starting state and that 

outputs the current codeword; if such transition exists, the 

decoder extracts the final state from it and adds it as a 

child to the root node. The corresponding message bit is 

also extracted and stored appropriately. Now, the tree 

consists of the root node and one leaf node that represents 

the next state of a transition that has the all-zero state as 

originating state and the first codeword of the received 

code vector as output; the leaf node will be used as the 

starting state of a possible transition that outputs the next 

codeword; if such transition exists, then its final state is 

added to the tree as a child state of the previous leaf state. 

If all the next codewords are correct, the algorithm 

outputs a tree that consists of a single path that is the 

correct path that would have been output by a classic 

sequential algorithm. 

Now, let’s suppose that an error had occurred and that 

the first codeword has been erroneous; that means there is 

no transition starting at the root state that outputs that 

codeword. The decoder then looks at all n-bit codewords 

and finds those that are output by a transition starting at 

the root state. For binary codes, there should be two of 

these codewords and for each one the final state is 

extracted from the corresponding transition and added as 

a child to the root state. Now, the tree consists of a root 

node and two leave nodes. On reading the next codeword, 

the decoder looks at transitions starting at each of the two 

new leaves that output that codeword and for each leave 

appropriate children are created. After all codewords 

have been read, the decoder output is tree consisting of 

multiple path, each path corresponding to a sequence of 

state transitions that define a possible codeword sequence. 

The path whose corresponding final state is the all zero 

state is decided to be the correct one and the correct 

message bit is decoded appropriately.  

The next example illustrates the working of the 

proposed decoder for the (2,1,2) code discussed earlier. 

Let’s suppose the message 101100m  is encoded into 

code vector U=111000010111which is transmitted 

through the channel that induces an error into its 4
th

 bit 

and the code vector received at the decoder is 

Z=1111000101111.The decoder builds a tree having as 

root the all zero state 00a . The decoder reads the first 

codeword 11 and, according to the transition table in 

figure 3, finds that it is output to 

transition ba  corresponding to a message bit of 1 ; 

therefore the first branch of the tree is created having as 

root state a and as single child state b ; the decoded 

message bit of 1 is equally stored appropriately. It is 

important to note here that the decoder does not store the 

tree entirely but stores only the leaves (the new final 

states) and their corresponding decoded messages. For 

this purpose, a set of 2-bit registers are created (in 

implementation, the set of 2-bit registers can be replaced 

by a long register consisting of 2-bit blocks) and updated 

each time a 2-bit codeword is read. That is, in the 

example above, on reading the first 2-bit codeword 11 

and determining its corresponding transition ( ba  ), 

the new state b  is stored in the same place where state a  

was stored before, and a decoded bit of 1 is stored in an 

appropriate register to store decoded messages. At the 

next clock cycle, the 2-bit codeword 11 is read. Looking 

at the transition table, there is no transition that outputs 

11 and has b  as a starting state meaning that an error has 

occurred and correction is necessary. The decoder looks 

at all possible codewords that could have been originally 

sent: two words with Hamming distance of 1 to erroneous 

word 11, these are 10 and 01, and one word with 

Hamming distance of 2 to erroneous 11 that is 00. This 

latter does not correspond to any transition starting at 

state b  but 01 and 10 do correspond respectively to 

transitions db  with message bit 1 and cb  with 

message bit 0. The new final states are therefore d  

and c  , and they correspond respectively to decoded 

message 11 and 10. One of these states (say, state d ) will 

be stored in the same block where original state b  used 

to be stored before (in implementation, the first two bits 



 A.EL Bourichi: A Low Power Parallel Sequential …                                                                                                      99 

 

from the left of the final states’ register) while the other 

final state (here, state c ) will be stored in the subsequent 

block (the 3
rd

 and 4
th

 bit of the final states register). This 

same procedure is repeated for every 2-bit codeword. 

After all codewords have been read, i.e. after 6 clock 

cycles in this example, it is time for the decoder to make 

the hard decision on the sent message, this is done simply 

by taking the message corresponding to the final state 

equal to the all zero state. In this particular example, the 

correct message is the 9
th

 message since the 9
th

 state is 

the only one that is equal to the all-zero state. More 

specifically, the decoder outputs a number of final states, 

9 states in the example: adccdbcdb  and ,,,,,,, and a 

number of message bits (9) corresponding to these final 

states: 101001, 101011… and 101100. These outputs are 

the two registers final_states_register and 

decoded_messages whose contents after the 6
th

 clock 

cycle are: 

921 .......1011100......111010011010_

010111001011011011__

mmmmessagesdecoded

bdcbdccdaregisterstatesfinal





 

where, 

101100

.........

101011

101001

9

2

1







m

m

m

 

The 9
th
 final state is equal to the all zero state, and 

therefore the 9
th
 message is the correct one. The correct 

path and correct message are shown in bold in the tree in 

figure 6 showing the execution trace of the algorithm for 

the studied example.  

clock

cycle a Final States
# of

final 

states
1

2

3

4

5

6

Decoded bits

b

d c

d c b

c a b d

a

b

b

d c

dba c

b d c ac d

b1

2

3

4

6

9

1

d
c
d
c
b
c
a
b
d
a

c

11
10

101

101
100

1010
1000
1001
1011

10110
b

d

a

10100…
.

…
.

…
.

101001
101011

101100

 

Figure 6.  Execution trace for the example 

The main working of the algorithm is shown in figure 7. 

}

}

]1:[_  then 

0...0]1:[__ if

 ___  to1Ifor 

  then{onelast   theis cycleclock   thisif

}

}

content) old preserve  toshifting eappropriat(with      

 __in  place eappropriatan   to add  then 

 )),(if(

{ each for  else

 then )),(if(

{__in   state finaleach for 

___

{ cyleclock each at 

in  codewords bitsn  ofnumber  :         

 ,codevector :Input  

















NIImessagesdecodedgeoded_messa final_dec

lIIregisterstatesfinal

statesfinalofnumber

registerstatesfinalS

wSSTransition

wwbitk

SSwSSTransition

registerstatesfinalS

codewordnbitnextreadw

VN

V

i

 

Figure 7.  Proposed decoding algorithm 

B. Circuit for the proposed decoder 

The notion of maintaining a list of all possible final states 

at each point of time is essential to the proposed 

algorithm, since at the end of the processing when all 

codewords have been read, only one final state in this list 

will equal the all-zero state and therefore give the final 

decoded message. This list of final states can be 

represented by a single register consisting of blocks of l  

bits ( l  being the memory or constraint length of the 

code), each block of l  bits representing a particular state. 

Likewise, the decoder should maintain a list of decoded 

messages, each message corresponding to one particular 

final state. Therefore, it is essential to use an appropriate 

indexing mechanism to match each final state with its 

corresponding decoded message. For reasons of brevity, 

the mechanism of updating the decoded messages and the 

indexing mechanism are not shown in the functional 

description of the circuit in figure 8 below because the 

understanding of their existence and functionality is 

intuitive. The circuit shown in figure 8 represents the 

main part of the proposed decoder that is the mechanism 

of building the tree of states as in the example of figure 5. 



100                                             A.EL Bourichi: A Low Power Parallel Sequential … 

 

Current

Codeword

w
Check in the transition table

if there is a transition 

starting at state Si and 

that outputs w
Final State 

Si

No

Yes

Update Si with the final state

of the corresponding transition 

Compute w1, w2,…,

having Hamming 

distances of 1 to k

from codeword w

for each codeword wj :

wj

Si

Check in the transition table

if there is a transition 

starting at state Si and 

that outputs wj

No do nothing

Yes Has Si already

been updated?
Yes

Update Si+1 with the final state

of the corresponding transition 
NoUpdate Si with the final state

of the corresponding transition 

for each state Si in the final states register:

 

Figure 8.  Functional description of the decoder’s circuitry 

 

The circuitry shown in figure 8 consists of two parts 

that are shown together because they happen in the same 

clock cycle, i.e. for one n -bit codeword. Every time a 

codeword is read, for all final states being presently 

maintained by the decoder, the latter needs to look at the 

transition table to find if there is a transition that outputs 

this codeword and has as starting state that particular final 

state. If there is one then no correction needs to be done 

and the new final state simply replaces the old one. If 

there is no transition starting from that particular state and 

outputting the present codeword, then the functionality 

shown in the lower part of figure 8 is performed: the 

codeword is assumed to be erroneous and corrections are 

necessary; first, all possible codewords having Hamming 

distances from 1 to n  are stored (that is all n -bit words 

except the erroneous codeword) and then for each of these 

codewords the existence of a valid transition is checked 

and appropriate determination of the next final state and 

its storage as well as updating the decoded message are 

done appropriately. 

IV. SIMULATION AND RESULTS 

The proposed decoding algorithm has been simulated 

using C language and compared to VA in terms of bit 

error rate (BER) performance and average power 

consumption. Constraint lengths were chosen between 7 

and 10 and an additive white Gaussian noise (AWGN) 

channel was assumed with BPSK (Binary Phase Shift 

Keying) modulation. Results were averaged over 200 

simulation runs to obtain the BER performance shown in 

figure 9. 

Eb/N0 (dB)

1 7 8 9 10 114 5 632

10e-1

10e-7

VA

Proposed Algorithm

B
E

R

10e-2

10e-3

10e-4

10e-5

10e-6

10e-8

+ Uncoded
+ +

+
+

+

+
+

+
+

+

+

+

 

Figure 9.  BER versus Eb/N0 

Results specific to power consumption were obtained 

for the (2,1,2) code presented earlier in the paper . Design 

Compiler from Synopsis was used to obtain a gate level 

circuit from a RT level description in Verilog. The 

technology used in our experiments is CMOS 90nm with 

supply voltage 1.0V. The proposed decoder dissipates 421 

micro-Watts compared to 1023 micro-Watts dissipated by 

a register exchange (RE) implementation of the Viterbi 

decoder, resulting in about 60% improvement in power 

efficiency. 

V. CONCLUSION 

Decoding of convolutional codes using parallel 

sequential algorithms is a promising alternative to 

computationally expensive Viterbi algorithm and to sub-

optimal delay incurring classic sequential algorithms 

especially because next generation wireless networks are 

expected to have strong low power and processing speed 

requirements. To the best of our knowledge, there hasn’t 

been enough work on efficient implementations of parallel 

sequential decoders for convolutional codes and we 

believe that improvements of the proposed decoder in this 

paper are possible to allow more speed and lower power 

consumption. 

REFERENCES 

[1] A. Viterbi, “Error bounds for convolutional codes and an 

asymptotically optimum decoding algorithm,” IEEE 

Transactions on Information Processing, 13:260-269, 

1967.  

[2] D. Forney, “The Viterbi algorithm”, Proceedings of the 

IEEE, vol. 61, pp. 268-278, March 1973. 

[3] I. Kang and A. N. Wilson, “Low power Viterbi decoder for 

CDMA mobile terminals,” IEEE Journal of Solid State 

Circuits, vol. 33, No. 3, pp. 473-482, March 1998. 



 A.EL Bourichi: A Low Power Parallel Sequential …                                                                                                      101 

 
[4] S.J. Li, T. L. Brandon, D. G. Elliott, and V. C. Gaudet, 

"Power Characterization of a Gbit/s FPGA Convolutional 

LDPC Decoder," in Signal Processing Systems (SiPS), 

2012 IEEE Workshop on, 2012, pp. 294-299. 

[5] H. Shen-Rei and C. Sau-Gee, "A novel pipelined CCK 

decoder for IEEE 802.11b system," in Solid-State and 

Integrated-Circuit Technology, 2008. ICSICT 2008. 9th 

International Conference on, 2008, pp. 1621-1624. 

[6] Sun, Yang, and Joseph R. Cavallaro. "A low-power 1-

Gbps reconfigurable LDPC decoder design for multiple 4G 

wireless standards."SOC Conference, 2008 IEEE 

International. IEEE, 2008. 

[7] S. Yang, J. R. Cavallaro, and L. Tai, "Scalable and low 

power LDPC decoder design using high level algorithmic 

synthesis," in SOC Conference, 2009. SOCC 2009. IEEE 

International, 2009, pp. 267-270 

[8] H. L. Lou, “Implementing the Viterbi algorithm, 

fundamental and real time issues for processor designers,”  

IEEE Signal Processing Magazine, pp. 42-52,  September 

1975. 

[9] R. Henning and C. Chakbarati, “Low power approach for 

decoding convolutional codes with adaptive Viterbi 

algorithm approximations” , ISPLED’02, August 12-14, 

2002, Monterey, California, USA. 

[10] X. Wang, Y. Zhang and H. Chen, “Design of Viterbi 

Decoder based on FPGA”, 2012 International Conference 

on Applied Physics and Industrial Engineering, published 

by Elsevier in Physics Procedia  24, pp. 1243-1247. 

 


