
Int. J. Com. Dig. Sys. 2, No. 1, 9-19 (2013)                                                                                                                                       9 

 

 

 

 

 

IMCLA: Performance Evaluation of Integrated Multilevel 

Checkpointing Algorithms using Checkpointing Efficiency 
 
Dilbag Singh

1
, Amit chhabra

2 
and Jaswinder Singh

3
 

 

Dept. of Computer Science and Engineering, Guru Nanak Dev University Amritsar India.  

Emails:
 1
Dggill2@gmail.com, 

2
chhabra.amit78@gmail.com,  

3
jaswindersingh@yahoo.com 

 
Received 21 Sep. 2012, Revised 20 Oct. 2012, Accepted 2 Nov. 2012 
 

 

Abstract: Main objective of this research work is to improve the checkpoint efficiency for integrated multilevel checkpointing algorithms 

(IMLCA) and prevent checkpointing from becoming the bottleneck of cloud data centers. In order to find an efficient checkpoint interval, 

checkpointing overheads has also considered in this paper. Traditional checkpointing methods stores persistently snapshots of the present job 

state and use them for resuming the execution at a later time. The attention of this research is strategies for deciding when and whether a 

checkpoint should be taken and evaluating them in regard to minimizing the induced monetary costs. By varying rerun time of checkpoints 

performance comparisons are which will be used to evaluate optimal checkpoint interval.  

The purposed fail-over strategy will work on application layer and provide highly availability for Platform as a Service (PaaS) feature of cloud 

computing. 

 

Keywords: Fail-over, high availability, node-recovery, multilevel checkpointing, checkpointing ratio 

I. INTRODUCTION 

 

This research paper is an extension paper of [1], [2], [3]. 

In this paper checkpointing ratio is calculated in order to 

evaluate the performance of proposed algorithms in [1], [2], 

[3]. 

In this paper, checkpoints are integrated with load 

balancing algorithms for data centers (cloud computing 

infrastructure) has been considered, taking into account the 

several constraints such as handling infrastructure sharing, 

availability, fail-over and prominence on customer service. 

These issues are addressed by proposing a smart fail-over 

strategy which will provide high availability to the requests of 

the clients. New cloud simulation environment has been 

proposed in this paper, which has the ability to keep all the 

nodes busy for achieving load balancing and also executes 

checkpoints for achieving fail-over successfully.  

 

As checkpointing means loss of computation therefore, 

the overheads presented due to checkpointing should need to 

be reduced. Checkpointing should enable a CSP to provide 

high availability to the requests of the clients in case of failure, 

which demands frequent checkpointing and therefore 

significant overheads will be introduced. So it becomes more 

critical to set checkpointing rerun time. Multilevel checkpoints 

[9], [10], [11], [12], [13], [14], [15] are used in this research 

work for decreasing the overheads of checkpoints. In this 

research work, it is assumed that all nodes have same 

capability. To check that which node is heavy or lightly loaded 

depends upon the load on that node. The load on a particular 

node is calculated based on the total completion time taken by 

the executing and waiting threads.  

 

For implementation of proposed fail-over strategies, a 

cloud simulation environment is developed, which has the 

ability to provide high availability to clients in case of 

failure/recovery of service nodes. Also in this research work, 

comparison of proposed is made with existing methods. 

 

II. PROBLEM DEFINITION 

 

Checkpointing is a technique to reduce the loss of 

computation in the manifestation of failures. Two metrics can 

be used to illustrate a checkpointing scheme:  

 

(i) Checkpoint overhead (increase in the execution time of the 

job because of a checkpoint implementation). 

(ii) Checkpoint latency (duration of time required to save the 

checkpoint). 

 

This research work evaluates the expression for 

“checkpointing ratio (R)” of the checkpointing scheme as a 

function of checkpoint latency and overhead. Main objective 

International Journal of Computing and Digital Systems 
 
         

@ 2013 UOB 

CSP, University of Bahrain 



10                                          D. Singh, et al: IMCLA: Performance Evaluation of Integrated Multilevel ... 

 

of this paper is to determines the optimal checkpoint interval 

``checkpointing rerun time''. However to decrease 

checkpointing overheads multilevel checkpointing [9], [10], 

[11], [12], [13], [14], [15] is also used. 

 

 

III. SCOPE OF THIS RESEARCH WORK 

 
This paper deals with load distribution and high 

availability for cloud computing environment. Although the 

research is on cloud computing based, it does not deal with 

management and security issue of cloud computing 

environment. As checkpointing means loss of computation 

therefore in this paper checkpointing overheads and 

checkpointing latency is also considered. 

 

Since it is not feasible to run these algorithms (local and 

global integrated multilevel checkpointing algorithms) on 

cloud systems, a simulator is developed which will simulate 

the proposed algorithms. Different type of tests will be 

implemented using integrated multilevel load balancing 

algorithm to test various aspects of the cloud environment. 

 

This paper also visualizes the experimental results and 

draw appropriate performance analysis. Appropriate 

conclusion will be made based upon performance analysis. For 

future work suitable future directions will be drawn 

considering limitations of existing work. 

 

Throughout the dissertation work emphasis has been on 

the use of either open source tools technologies or licensed 

software. 

 

IV. RELATED WORK 

Cloud computing [4], [5], [6] combines worldwide 

distributed virtual servers and information systems for 

generating a worldwide source of computing power and 

information. A cloud computing can offer a resource balancing 

effect by scheduling jobs at cloud machines with low utilization.  

A proper scheduling and efficient load balancing on 

cloud computing can lead to improve overall system 

performance and a lower turn-around time for individual jobs. 

Load balancing is required to disperse the resource‟s load 

evenly so that maximum resource utilization and minimum task 

execution time could be possible. This is very crucial concern 

in distributed environment, to fairly assign jobs to resources. 

Checkpoint [7], [8], [9], [10], [11], [12], [13] is defined 

as a designated place in a program at which normal processing 

is interrupted specifically to preserve the status information 

necessary to allow resumption of processing at a later time. By 

periodically invoking the check pointing process, one can save 

the status of a program at regular intervals. If there is a failure 

one may restart computation from the last checkpoint thereby 

avoiding repeating the computation from the beginning. 

Failure management in high-performance computing 

systems and clouds has been widely studied in the literature 

[15], [16], [17], [18]. Different characterization methods of 

these failures have been made. For instance, Fu and Xu predict 

the failure incidences in HPC systems through the spatial and 

time correlation among past failure events [19]. Gokhale and 

Tivedi [20] forecast the software reliability representing the 

system architecture using Markov chains. Zang et al. [21] 

evaluate the performance analysis of failures in large clusters 

(data centers).  

Cloud computing and virtualization have opened a new 

window in the failure management. Pausing, resuming, and 

migration VMs [22], [23] are powerful mechanisms to manage 

failures in such situations. The checkpointing and rollback 

recovery technique [24] has been widely used in distributed 

systems. CSP can offer high availability [25] by using it, while 

adding tolerable overhead to Ta-Shma et al. [26] present a CDP 

(Continuous Data Protection) with live-migration-based 

checkpoint mechanism. They use a central repository approach 

and intercept migration data flow to create the checkpoint 

images. Although the authors say that it has good performance, 

no experimentation is presented.  

The architecture presented does not seem to be able to 

make checkpoints of the VM disk data. Parallax [27] developed 

by Warfield et al. is a storage subsystem for Xen to be used in 

cluster Xen Virtual Machines. The solution proposed by the 

authors makes coupled checkpoints of both memory and disk 

using a Copy-on-Write mechanism (CoW) to maintain the 

remote images. There is no real experimentation and no 

performance results of that prototype.  

Availability [25], [28] [29], [30] is a reoccurring and a 

growing concern in software intensive systems. Cloud systems 

services can be turned off-line due to conservation, power 

outages or possible denial of service invasions. Fundamentally, 

its role is to determine the time that the system is up and 

running correctly; the length of time between failures and the 

length of time needed to resume operation after a failure.  

Availability needs to be analyzed through the use of 

presence information, forecasting usage patterns and dynamic 

resource scaling. Current solutions to achieve high reliability in 

data centers include VM replication [29], and checkpointing 

[30]. In particular, several scheduling algorithms for balancing 

checkpoint workload and reliability have been proposed in [31], 

[32], [33], with an extension in [29] by considering dynamic 

VM prices. Nevertheless, previous work has only investigated 

how to derive optimal checkpoint policies to minimize the 

execution time of a single task.  

Although supercomputing systems use high-quality 

mechanisms, the schemes become less dependable at larger 

scales as increased component counts increase overall fault 

rates. 

Requests executing on high-performance computing 

systems can encounter mean times among failures on the order 

of hours or days due to hardware breakdowns [34] and soft 



D. Singh, et al: IMCLA: Performance Evaluation of Integrated Multilevel ...                                                                                  11 

 

errors [35]. For example, the 100,000 node BlueGene/L scheme 

at Lawrence Livermore National Laboratory (LLNL) practices 

an L1 cache bit error every 8 hours [36] and a hard failure every 

7-10 days. Exascale schemes are expected to fail every 3-26 

minutes [37], [38]. 

Usually, requests allow failures by periodically saving 

their state to checkpointing files. They write these 

checkpointing files to dependable storage, typically a parallel 

file system. When will failure occur, an request can restart from 

a prior state by reading in a checkpointing file. Checkpointing 

to a parallel file system will be expensive at large scale, where a 

single checkpointing implementation can take on the order of 

tens of minutes [39], [40].  

Further, computational abilities of large-scale services 

have increased more quickly than I/O bandwidths. As 

computing systems increase in scale, increasing failure rates 

require more frequent checkpointing, but increased system 

imbalance makes them more expensive. Checkpointing will 

become both more critical and less practical [41], [42]. Multi-

level checkpointing [43], [44] is a promising approach for 

addressing this problem, which uses multiple types of 

checkpointing that have different levels of resiliency and cost in 

a single application run. The slowest but most resilient level 

writes to the parallel file system, which can withstand a failure 

of an entire machine. 

Faster but less resilient checkpointing levels utilize node-

local storage, such as RAM, Flash or disk, and apply cross-node 

redundancy schemes. Multi-level checkpointing allows [42], 

[43], [44] applications to take frequent inexpensive 

checkpointing and less frequent, more resilient checkpointing, 

resulting in better efficiency and reduced load on the parallel 

file system. 

There exist many models to describe checkpoint systems 

implementation. Some of the models use multilevel 

checkpointing approach [45], [46], [47]. Many researchers have 

worked to lower the overheads of writing checkpoints. 

Cooperative checkpoints reduce overheads by only writing 

checkpoints that are predicted to be useful, e.g., when a failure 

in the near future is likely [48].  

Incremental checkpoints reduce the number of full 

checkpoints taken by periodically saving changes in the 

application data [49], [50], [51]. These approaches are 

orthogonal to multilevel checkpoints and can be used in 

combination with our work. The checkpoint and rollback 

technique [51] has been widely used in distributed systems. 

High availability can be offered by using it and suitable fail-

over algorithms. E. Existing methods 

The Zeus [52] Company develops software that can let 

the cloud provider easily and cost-effectively offer every 

customer a dedicated application delivery solution. The ZXTM 

[52] software is much more than a shared load balancing 

service and it offers a low-cost starting point in hardware 

development, with a smooth and cost-effective upgrade path to 

scale as your service grows.  

The Apache Hadoop [53] software library is a 

framework that allows for the distributed processing of large 

data sets across clusters of computers using a simple 

programming model. It is designed to scale up from single 

servers to thousands of machines, each offering local 

computation and storage. Rather than rely on hardware to 

deliver high availability, the library itself is designed to detect 

and handle failures at the application layer, so delivering a 

highly available service(s) on top of a cluster of computers, 

each of which may be prone to failures.  

JPPF [54] is a general-purpose grid toolkit. Federate 

computing resources working together and handle large 

computational applications. JPPF uses divide and conquer 

algorithms to achieve its work successfully. ZXTM [52], 

Apache Hadoop [53] and JPPF [54] not provide feature of 

checkpoints. 

Checkpointing overheads [55], [56], [57], [58] have been 

discussed by many researchers. An integrated checkpointing 

algorithm implements in parallel with the essential computation. 

Therefore, the overheads presented due to checkpointing should 

need to be reduced. Much of the previous work [51] present 

measurements of checkpoint latency and overhead for a few 

applications. Several models that define the optimal checkpoint 

interval have been proposed by different researchers. Young 

proposed a first-order model that describes the optimal 

checkpointing interval in terms of checkpoint overhead and 

mean time to interruption (MTTI). Young‟s model does not 

consider failures during checkpointing and recovery [54], while 

Daly‟s extension lead of Young‟s model, a higher-order 

approximation, does [55]. 

In addition to considering checkpointing overheads and 

MTTI, the model discussed in [53] includes sustainable I/O 

bandwidth as a parameter and uses Markov processes to model 

the optimal checkpoint interval. The model described in [56] 

uses useful work, i.e., computation that contributes to job  

completion, to measure system performance. 

 

V.  CHECKPOINT LATENCY AND OVERHEAD 

The checkpoint latency [32], [33] era is separated into 

two types of execution: (1) useful computation, and (2) 

execution necessary for checkpointing. The two types are 

usually enclosed in time. However, for modelling purposes, it 

can be assumed that the two types of executions are divided in 

time. As shown in the Fig. 1, the first C units of time during 

the checkpointing latency era is supposed to be used for saving 

the checkpointing. The lingering (L - C) units of time is 

supposed to be consumed for useful execution of jobs. Even 

though the C units of overhead are modelled as being acquired 

at the commencement of the checkpoint latency era, the 

checkpoint is considered to have been recognised only at the 

end of the checkpoint latency era. 



12                                          D. Singh, et al: IMCLA: Performance Evaluation of Integrated Multilevel ... 

 

 
 
Fig. 1: Modelling latency and overhead (adapted from [27]) 

 

Even though the above representation of checkpoint 

latency and overhead is abridged, now it is required to exhibit 

that it will lead to perfect exploration. Two discrete conditions 

may arise when an interval is executed. 

 

A. No failure occur during checkpoint latency 

A failure will not arise during the interval is executed. 

In this case, the accomplishment time from the beginning to 

the end of an interval is T + C. Of the T + C units, T units are 

consumed for doing useful execution, while acquiring an 

overhead of C time units. As shown in Fig. 1, (L - C) units of 

useful computation is performed during the checkpoint latency 

period. Similar to Fig. 2, L - C units of useful computation is 

performed during the latency period. Also, the execution time 

for the interval is T + C. 

 

 
 
Fig. 2: No failure occur during checkpoint latency (adapted from [27])  
 

B. Failure occur during checkpoint latency   

A failure occurs sometime during the interval. When a 

failure occurs, the task must be rolled back to the previous 

checkpoint, incurring an overhead of R time units. In Fig. 3, 

the task is rolled back to checkpoint1 (CP1). After the rollback, 

L - C units of useful computation performed during the latency 

period of checkpoint CP1 must be performed again, this is 

necessary, because the state saved during checkpoint CP1 is 

the state at the beginning of the latency period for checkpoint 

CP1. In the absence of a further failure, additional T + C units 

of execution are required before the completion of the interval. 

Thus, after a failure, 

R + (L - C) + (T + C) = R + T + L units of execution is 

required before the completion of the interval, provided 

additional failures do not occur. 

 
 
Fig. 3: If failure occurs during checkpoint latency (adapted from [27]) 
 

Now consider when the failure occurs, as shown in Fig. 

3, the system can be considered to have rolled back to the end 

of the ``shaded portion‟‟ in the latency period for checkpoint 

CP1. (Note that no state change occurs during the ``shaded 

portion".) Now it is apparent that, in the absence of further 

failure, R + T + L units of execution are required to complete 

the interval. Thus, this representation of checkpoint latency 

and overhead yields the same conclusion as the more accurate 

representation in Fig. 2. 

 

VI.  CHECKPOINTING OVERHEAD RATIO 

The main goal of this research is on understanding the 

effect of checkpoint latency on performance. The objective is 

not on offering elaborate prototypes for checkpointing 

structures, as in many previous works. Consequently, this 

paper uses a simple prototype that is adequate for purposed 

work. For instance, it is assumed that C and L are constants for 

a given scheme. A more elaborate model may undertake C and 

L to be some function of time. 

 

Let G(t)[27], [28] denote the expected (average) amount 

of execution time required to perform t units of useful 

computation. (Useful computation excludes the time spent on 

checkpointing and migration of jobs.) Then, overhead ratio (r) 

can be defined as: 

 

 
 

Note that r will always remain greater than 0 as it is well 

known some overheads always present in the computation. 

Smaller the r states that low overheads are there. As the 

objective of this research to find optimal interval time 

overhead ratio is rewrite using the following expression:-  

 

r= ( TET + t1(C) + t2(R) )/t 

 

VII.  PROBLEMS IN EXISTING TECHNIQUES 

 
A. Three-node architecture 

In Fig. 4 there is a request manager (central cloud), 

clients send their requests to it. Then request manager first 

divide the given job into threads and then allocate one of the 

sub_cloud (service manager) to the threads and global 



D. Singh, et al: IMCLA: Performance Evaluation of Integrated Multilevel ...                                                                                  13 

 

checkpoint will be updated. Each sub_cloud first selects 

threads in First Come First Serve (FCFS) fashion and allocate 

lightly loaded service node (service node) to it. The service 

node then start execution of that thread or it may add this 

thread in its waiting queue if it is already doing execution of 

any other thread. N1 to N12 are service nodes which will 

provide services to the clients. 

 

 
 

Fig 4: 3-node architecture. 

 

B. Sub_cloud failure 

 

Fig. 5 illustrates the sub_cloud failure. In it sub_cloud 2 

has been failed, that means any node that belong to failed 

sub_cloud is no longer available is to provide any service to 

the clients. In existing techniques there exist not such 

algorithm which migrate the exact load of all node to other 

nodes except redundant node [4], [5] technique. It means it is 

required to have protection (secondary) node to take load of 

primary node in case of failure. 

 

 
 

Fig. 5: Sub_cloud failure. 

 

C. Service node failure 

 

Fig. 6 illustrates the service node failure. In it service node 

(N7) has failed which belong to sub_cloud 2. N7 failed means 

it is no longer available to provide any service to the demand 

of clients. In existing techniques there exist not such 

algorithms which will migrate the load of N7 to other nodes. 

However checkpointing without load balancing can achieve 

this task but it is based on random decision means load of 

failed node may be shifted to some other heavily loaded nodes 

than lightly loaded nodes. 

 

 

 
 

Fig. 6: Service node failure. 

 
VIII. SIMULATION RESULTS 

 
Table I give the inputs that are given to the simulator. In 

Table I various Jobs are given with their serial execution time 

and also if jobs will execute in parallel then how many 

numbers of threads can be made from it or how many nodes 

are required to run given job in parallel fashion. 

 
Table I: Inputs for the simulator. 

 

Job Name Threads Serial Time 

1 2 20 

2 3 45 

3 3 30 

4 2 40 

... ... ... 

100 3 10 

 

A. Global Checkpoint 

Designed simulator first divides job into threads and 

allocate sub_clouds to them in FIFO fashion and global 

checkpoint will be updated as shown in Fig. 7. It is giving the 

detail of the global checkpoint, which is showing that which 

job is going to be run on which sub_cloud and also other 

relevant information like entered time of job, number of 

processors required, serial time, thread time etc. 

 

Fig. 7: Global Checkpoint 

 



14                                          D. Singh, et al: IMCLA: Performance Evaluation of Integrated Multilevel ... 

 

B. Local checkpoint 

Fig. 8 is showing the local checkpoint in it node has been 

allocated to threads. For all node whether it belong to 

sub_cloud1 or sub_cloud2, only one local checkpoint is used in 

this simulator. Local checkpoint contains information like 

server status (active or active), job status (executing, waiting or 

finished), server name and also remaining time of 

threads(execution time + waiting time) etc. 

 

Fig. 8: Local checkpoint 

C. Failure of Nodes 

To successfully implement failover strategy, node A and 

E set to be failed, after 5 seconds local checkpoint detect it and 

transfer load of failed nodes to other nodes. In Fig. 9 it has 

shown that node A and E has failed and also the parameters 

server status and job status has also changed. Note that if any 

node get failed and recovered before checkpoints will rerun 

then the execution at those nodes remains continue without any 

problem. 

 

Fig. 9. Local checkpoint showing Failed nodes 

D Load rebalancing after Node Failure 

GUI will work in such a way that if any node gets failed 

then CSP detect it with the help of checkpoints. Then CSP 

share the load of failed nodes among the active nodes. In Fig. 

10 it has shown that the load of node A and E has been shared 

with currently active nodes. Only the threads which are 

executing or waiting on node A and E will be shared no other 

thread need not to be restart or to be transfer from one active 

node to other active node. 

 

Fig. 10: Local checkpoint showing rebalancing of load 

E.  Node Recovery and Load Rebalancing 

If any node get recovered then sub_cloud(s) detect it by 

checking their flag bits, then CSP share the load of heavy 

loaded nodes with recovered nodes. In Fig. 11 it has been 

shown that the node A and E has recovered and they have 

taken some load from other heavy loaded nodes. 

 

Fig. 11: Rebalancing of load among recovered nodes 

VIII.VI Completed 

Each completed job transferred to history table and 

acknowledgement send to its sender, and it will be deleted 

from both local and global checkpoints, so that in future if 

failure occur then checkpoint will not make any changes with 

completed jobs. 

IX. PERFORMANCE ANALYSIS 

In order to do performance analysis, two comparisons 

table has been made in this research work. This section first 

give the performance comparison of developed simulator with 

existing methods and later on comparison of different 

approaches is made using different performance metrics. 

 

A. Comparison with existing methods 

Table II is showing the comparison of JPPF/Hadoop, 

Checkpointing and developed simulator. Table II has shown 

that developed simulator will give better results than existing 

methods. As JPPF/Hadoop do not provide feature of 

checkpointing, therefore node failure result in restartation of 

entire job, whether some threads of that job has been 

successfully completed on other. 



D. Singh, et al: IMCLA: Performance Evaluation of Integrated Multilevel ...                                                                                  15 

 
Table II. Feature‟s comparison with existing method 

Feature 

JPPF/ 

Hadoop Checkpoint Integrated 

Checkpoints No Yes Yes 

Failover No Yes Yes 

Load Balancing Yes No Yes 

Multilevel Checkpoint No No Yes 

Job Restartation Yes No No 

Architecture 2 Tier 2 Tier 3 Tier 

Resources Utilization Low Medium Maximum 

Checkpoint overheads No More Medium 

Checkpoint latency 0 > 0 > 0 

Checkpoint ratio 1 > 0 > 0 

 

B. Comparison with no checkpoint, checkpoint without 

load balancing and purposed method 

Table III is showing the performance comparison of 

different approaches. These approaches are without 

checkpoints, checkpoints without load balancing algorithms 

and integration of checkpointing with load balancing 

algorithms (Purposed technique). It has been clearly shown in 

Table III that purposed method gives better results than other 

methods. As in no checkpoint method it not possible to achieve 

failover without restartation of the jobs, and without 

integration of checkpointing with load balancing algorithms 

may cause the problem of random allocation of nodes to the 

threads, which may migrate load of failed nodes to heavy 

loaded nodes than lightly loaded nodes.  

Table III. Metric‟s comparison of different approaches 

 

Type of Metric No chp. Chp. Integrated 

Average Execution time 14.73 13.46 10.94 

Minimum Execution time 15 10 10 

Average Waiting Time 14.73 9.46 5.2 

Minimum Waiting Time 5 0 0 

THP(after 200 seconds) 61 73 102 

Fig. 12 illustrates the graph of Average Waiting (AWT). 

It has been shown that whether time increases, but failure and 

recovery of nodes do not effect too much as compared to other 

approaches. Therefore it is clearly shown that the purposed 

method gives better results than existing methods as AWT of 

integrated approach always stay lower than the other existing 

methods lines. 

 

Fig. 12: Average Waiting Time comparison with existing methods 

Fig. 13 demonstrates the diagram of Average Execution 

Time (AET) metric. In Fig. 13 it has been shown that whether 

time intensifications, but disaster and repossession of nodes do 

not influence too much as equated to other methodologies. 

Consequently it is undoubtedly revealed that the purposed 

technique contributes improved fallouts than prevailing 

approaches as AET in incorporated checkpointing 

methodologies line continuously vacation subordinate than the 

supplementary techniques lines. 

 

Fig. 13: Average Execution Time comparison with existing methods 

In Fig. 14 it has remained publicised that whether time 

augmentations, but disaster and recouping of nodes do not 

encouragement too much as associated to other approaches. 

Accordingly it is unquestionably exposed that the purposed 

technique donates better-quality fallouts than predominant 

methodologies as THP in incorporated checkpointing 

methodology‟s line continuously vacation subordinate than the 

supplementary techniques lines. 



16                                          D. Singh, et al: IMCLA: Performance Evaluation of Integrated Multilevel ... 

 

 

Fig. 14: Throughput comparison 

C. Checkpointing overheads 

 

Primary objective of this paper is to provide high 

availability and also to decrease checkpointing overheads. 

Therefore there exists trade-of while selecting appropriate 

rerun checkpointing interval. As decreasing interval time 

introduces more and more overheads and also increasing 

interval will not give effective results.  

Table IV is showing the calculation of checkpointing 

overheads considering different checkpointing intervals. It has 

been prominently shown in Table iv that the 2 seconds rerun 

time contains too many overheads than other intervals. 

 
Table IV. Checkpointing overheads. 

 

Time in seconds 2 seconds 5 seconds 10 seconds 

40 24 11 7 

80 47 21 15 

120 71 31 22 

160 93 44 27 

200 117 56 31 

 

Fig. 15 has shown the values of checkpointing overheads 

considering several checkpointing intervals graphically. It has 

been significantly shown in Fig. 15 that the 2 seconds rerun 

time contains too many overheads than other intervals as its 

line is quite increasing than other line of respective intervals. 

 

 
 

Fig. 15: Checkpointing overheads. 

 

D. Checkpointing ratio 

The main goal of this research is on understanding the 

effect of checkpoint latency on performance. The objective is 

not on offering elaborate prototypes for checkpointing 

structures, as in many previous works. Consequently, this 

dissertation deals in decreasing checkpointing ratio. If 

checkpointing ratio is 1 then it is best and close to 1 is good. 

 
Table V. Checkpointing ratio. 

 

Time in seconds 2 seconds 5 seconds 10 seconds 

40 1.12 1.12 1.21 

80 1.23 1.19 1.26 

120 1.28 1.22 1.29 

160 1.39 1.31 1.37 

200 1.55 1.43 1.47 

 

 

Table V is showing the calculation of checkpointing ratio 

considering different checkpointing intervals. It has been 

evidently shown in Table V that the 5 seconds rerun time 

contains results more close to 1 than other intervals this is 

because small interval introduces too many overheads whereas 

large interval results in too many threads restartation. Fig. 16 is 

demonstrating the checkpointing ratio considering several 

checkpointing intervals graphically. It has been significantly 

shown in Fig. 16 that that the 5 seconds rerun time contains 

results more close to 1 than other intervals. 

 

 
 

Fig. 16: Checkpointing ratio. 

 

E. Checkpointing efficiency  

The additional objective of this research is on 

understanding the effect of checkpoint latency on 

checkpointing efficiency. Therefore it required to calculate 

checkpoint efficiency (minimum effects on throughput) by 

using checkpointing ratio to systematically measure the 

checkpoint efficiency (Ef). Consequently, this paper deals in 

increasing checkpointing efficiency. If checkpointing 

efficiency is 1 then it is best and close to 1 is good but less 

than 0.5 to 0 is bad. Table VI is giving the checkpointing 

efficiency considering different intervals. Fig. 17 is 

demonstrating the checkpointing efficiency considering several 

checkpointing intervals graphically. It has been shown in Fig. 

17 that that the 5 seconds rerun time contains results more 

close to 1 than other intervals therefore it can be say that when 

interval time is 5 it give better results than others. 
 



D. Singh, et al: IMCLA: Performance Evaluation of Integrated Multilevel ...                                                                                  17 

 
Table VI. Checkpointing efficiency. 

 

Time in seconds 2 seconds 5 seconds 10 seconds 

40 0.89 0.89 0.83 

80 0.81 0.84 0.79 

120 0.82 0.81 0.77 

160 0.72 0.76 0.71 

200 0.64 0.69 0.68 
 

 
 

Fig. 17: Checkpointing efficiency. 

 

 

X. CONCLUSION AND FUTURE DIRECTIONS 
 

A. Conclusion 

This paper has proposed a novel technique to analyse the 

performance of checkpointing algorithms. The offered 

technique is based on fail-over algorithms which will provide 

high availability to cloud's clients, and estimating the required 

measures by varying the interval time of integrated checkpoint 

algorithms.  

A suitable cloud environment is made with 6 service 

nodes to analyse the execution time of the parallel jobs and 

integrated checkpointing algorithms will control the overall 

execution of the jobs and also provide high availability in case 

of node failure. Comparisons have been made in this research 

work by taking different failure time of nodes and 

checkpointing intervals. Comparisons are made using different 

well known parameters and metrics. It has been proved that 

setting of the checkpointing interval is a critical task as if 

checkpointing rerun time has been decrease too much then it 

adds too many overheads in the execution time of jobs and if 

checkpoint rerun time has been increased too much then it will 

not give good results.  

The proposed method is not limited to the scenario and 

number of nodes described in this dissertation, or to the failure 

of nodes used in this research work. It can be used to analyse 

any checkpointing high availability scheme, with various 

scenarios. The proposed technique can be also used to provide 

analytical answers to problems that haven't been dealt with 

before or were handled by a simulation study. Examples of 

such problems are deriving the number of checkpoints that 

minimizes the average completion time and computing the 

probability of meeting a given deadline. 
 

B. Future directions 

In the near future, this research will be extending to the 

multilevel checkpointing integration for the case where the 

multilevel checkpointing interval is not fixed. Developed 

technique which will allow checkpointing rerun time to vary. 

Therefore checkpointing interval will depend upon the nature 

of the executing jobs expecting that the extended technique 

will give less waste time than the proposed one (decreasing 

checkpointing overheads).  

In addition, this research will be extended for improving 

the way to save and rerun checkpointing. For example, in some 

requests, there are many communications between nodes. If 

one performs a checkpointing while there is a large amount of 

communications going on, the checkpointing overhead will 

become more expensive. Therefore, the communication or I/O 

transfer rate may be another factor to consider when 

performing a checkpoint.  

In this research work homogeneous nodes has been 

considered for simulation environment, in future work 

heterogeneous nodes will be used for better results. 
 

REFERENCES 
 

[1]. D. Singh, J. Singh, A. Chhabra, High Availability of 

Clouds: Failover Strategies for Cloud Computing Using 

Integrated Checkpointing Algorithms, csnt, pp.698-703, 

2012 International Conference on Communication Systems 

and Network Technologies, 17 May 2012, ISBN:978-1- 

4673-1538-8, Rajkot, India. [Online]. Available: 

http://ieeexplore.ieee.org and http://www.computer.org. 

[2]. D. Singh, J. Singh, A. Chhabra, Failures in cloud computing 

data centers in 3-tier cloud architecture, Accepted for 

publication in International Journal of Information 

Engineering and Electronic Business (IJIEEB), ISSN: 2074-

9023 (Print), ISSN: 2074-9031 (Online). 

[3]. D. Singh, J. Singh, A. Chhabra, Evaluating overheads of 

integrated multilevel checkpointing algorithms in cloud 

computing environment,” IJCNIS, vol.4, no.5, pp.29-38, 

2012, ISSN: 2074-9090, (Print), ISSN: 2074-9104 (Online). 

[4]. G. Wang and N. TSE, The impact of virtualization on 

network performance of amazon EC2 data center, In 

INFOCOM, 2010 Proceedings IEEE, pp. 1-9, IEEE, 2010.  

[5]. B. Wickremasinghe, R.N. Calheiros, R. Buyya, 

CloudAnalyst: A CloudSimbased visual modeller for 

analysing cloud computing environments and applications, 

In 2010 24th IEEE International Conference on Advanced 

Information Networking and Applications, pp. 446-452, 

IEEE, 2010. 

[6]. A. Kondo, D. Anderson, Exploiting Non-Dedicated 

Resources for Cloud Computing, In Proceedings of 12th 

IEEE/IFIP Network Operations & Management Symposium 

(NOMS 2010), Osaka Japan. 

[7]. R. Koo, S. Toueg, Checkpointing and rollback-recovery for 

distributed systems, IEEE Trans, Softw. Eng., vol. 13, pp. 

23-31, Jan. 1997. 

[8]. V. G. Kulkarni, V. F. Nicola, K. S. Trivedi, E ects of 

checkpointing and queueing on program performance, 

Commun. Statist.-Stochastic Models, vol. 4, no. 6, pp. 615-

648, 1999.  

[9]. P. L‟Ecuyer, J. Malenfant, Computing optimal 

checkpointing strategies for rollback and recovery systems, 

IEEE Trans. Computers, vol. 37, pp. 491-496, Apr. 1988. 

[10]. S. Bansal, S. Sharma, Identification of Critical Factors in 

Checkpointing Based Multiple Fault Tolerance for 



18                                          D. Singh, et al: IMCLA: Performance Evaluation of Integrated Multilevel ... 

 
Distributed System, Journal of Emerging Trends in 

Computing and Information Sciences, vol. 2 no. 1, 2010. 

[11]. M. Herlihy, J. Wing, Linearizability: a correctness condition 

for concurrent objects, ACM Trans. on Progr. Languages 

and Syst., pp. 463- 492, 1990. International Journal on 

Internet and Distributed Computing Systems (IJIDCS), vol. 

1, no. 1.  

[12]. H. Jung, D. Shin, H. Kim, H.Y. Lee, Design and 

Implementation of Multiple FaultTolerant MPI over 

Myrinet (M3) , SC—05 Nov 1218,2005, Seattle, 

Washington, USA Copyright 2005 ACM. 

[13]. M. Elnozahy, L. Alvisi, Y. M.Wang, D.B. Johnson, A 

survey of rollbackrecovery protocols in message passing 

systems. Technical Report CMUCS- 96-81, USA, Oct. 

1996. 

[14]. S. Bansal, S. Sharma, I. Trivedi, A Detailed Review of 

Fault-Tolerance Techniques in Distributed System, 

International Journal on Internet and Distributed Computing 

Systems. vol. 1, no. 1, 2011. 

[15]. A. Agbaria,W. H Sanders, „Distributed Snapshots for 

Mobile Computing Systems, IEEE Intl. Conf. PERCOM04, 

pp. 1-10, 2004. 

[16]. B. Schroeder, G. Gibson, A large-scale study of failures in 

highperformance computing systems, in International 

Conference on Dependable Systems and Networks (DSN 

2006), Philadelphia, PA, USA, pp. 249-258, Jun. 2006. 

[17]. R. Sahoo, et. al, Failure data analysis of a large-scale 

heterogeneous server environment, International 

Conference on Dependable Systems and Networks (DSN 

2004), Florence, Italy, pp. 772-781, 28 Jul. 2004. 

[18]. Y. Liang, Y. Zhang, A. Sivasubramaniam, R. Sahoo, J. 

Moreira, M. Gupta, Filtering failure logs for a bluegene/l 

prototype, in International Conference on Dependable 

Systems and Networks (DSN 2005), Yokohama, Japan, pp. 

476-485, Jul. 2005. 

[19]. P. Yalagandula, S. Nath, H. Yu, P. Gibbons, S. Seshan, 

Beyond availability: Towards a deeper understanding of 

machine failure characteristics in large distributed systems, 

in USENIX Workshop on Real, Large Distributed Systems 

(WORLDS‟04), San Francisco, CA, USA, Dec. 2004. 

[20]. S. Fu, C. Xu, Exploring event correlation for failure 

prediction in coalitions of clusters, in 2007 ACM/IEEE 

conference on Supercomputing, Reno, NV, USA, pp. 10-16, 

Nov. 2007.  

[21]. S. Gokhale, K. Trivedi, Analytical Models for Architecture-

Based Software Reliability Prediction: A Unification 

Framework, IEEE Trans. On Reliability, vol. 55, no. 4, pp. 

578-590, 2006. 

[22]. Y. Zhang, M. Squillante, A. Sivasubramaniam, R. Sahoo, 

Performance implications of failures in large-scale cluster 

scheduling, Lecture Notes in Computer Science, vol. 3277, 

pp. 233-252, 2005. 

[23]. M. Rosenblum, T. Garfinkel, V irtual machine monitors: 

Current technology, future trends, Computer, vol. 38, no. 5, 

pp. 39-47, 2005.  

[24]. A. Nagarajan, F. Mueller, C. Engelmann, S. Scott, Proactive 

fault tolerance for HPC with Xen virtualization, in 21st 

annual international conference on Supercomputing, Seattle, 

WA, USA, pp. 23-32, Jun. 16-20 2007. 

[25]. R. Koo, S. Toueg, Checkpointing, rollback-recovery for 

distributed systems, IEEE Transactions on Software 

Engineering, vol. 13, no. 1, pp. 23-31, 1987. 

[26]. G. Vallee, T. Naughton, H. Ong, S. Scott, 

Checkpoint/Restart of Virtual Machines Based on Xen, in 

High Availability, Performace Computing Workshop 

(HAPCW 2006), Santa Fe, NM, USA, Oct. 17 2006. 

[27]. P. Ta-Shma, G. Laden, M. Ben-Yehuda, M. Factor, Virtual 

machine time travel using continuous data protection, 

checkpointing, ACM SIGOPS Operating Systems Review, 

vol. 42, pp. 127-134, 2008. 

[28]. A. Warfield, R. Ross, K. Fraser, C. Limpach, S. Hand, 

Parallax: Managing storage for a million machines, in 10th 

Workshop on Hot Topics in Operating Systems (HotOS), 

Santa Fe, NM, USA, pp. 1-11, Jun. 12-15 2005. 

[29]. R. Badrinath, R. Krishnakumar, R. Rajan, Virtualization 

aware job schedulers for checkpoint-restart, in 13th 

International Conference on Parallel, Distributed Systems 

(ICPADS‟07), vol. 2,  pp. 1-7, Dec. 5-7 2007.  

[30]. J. D. Sloan, High Performance Linux Clusters With Oscar, 

Rocks, OpenMosix, Mpi, OReilly, ISBN 10: 0-596- 00570-

9 / ISBN 13: 9780596005702, pp. 2-3, Nov.2004. 

[31]. R. Badrinath, R. Krishnakumar, R. Rajan, Virtualization 

aware job schedulers for checkpoint-restart, in Proceedings 

of 13th International Conference on Parallel, Distributed 

Systems (ICPADS07), Dec. 2007. 

[32]. I. Goiri, F. Juli‟a, J. Guitart, J. Torres, Checkpointbased 

Fault-tolerant Infrastructure for Virtualized Service 

Providers, in Proceedings of IEEE/IFIP Network 

Operations, Management Symposium, Aug. 2010. 

[33]. M. Zhang, H. Jin, X. Shi, S. Wu, VirtCFT: A Transparent 

VMLevel Fault-Tolerant System for Virtual Clusters, in 

Proceedings of Parallel, Dec. 2010. 

[34]. Y. Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon, M. 

Paun, and S. L. Scott, An Optimal Checkpoint/Restart 

Model for a Large Scale High Performance Computing 

System, in Proceedings of Parallel and Distributed 

Processing (IPDPS), Apr. 2008. 

[35]. B. Schroeder, G. A. Gibson, A Large-Scale Study of 

Failures in High- Performance Computing Systems, in In 

Proceedings of the International Conference on Dependable 

Systems, Networks (DSN), pp. 249-258, Jun. 2006. 

[36]. S. E. Michalak, K. W. Harris, N. W. Hengartner, B. E. 

Takala, and S. A. Wender, Predicting the Number of Fatal 

Soft Errors in Los Alamos National Laboratorys ASC Q 

Supercomputer, IEEE Transactions on Device, Materials 

Reliability, vol. 5, no. 3, pp. 329-335, Sept. 2005. 

[37]. J. N. Glosli, K. J. Caspersen, J. A. Gunnels, D. F. Richards, 

R. E. Rudd, F. H. Streitz, Extending Stability Beyond CPU 

Millennium: A Micron-Scale Atomistic Simulation of 

Kelvin-Helmholtz Instability, in Proceedings of the 2007 

ACM/IEEE Conference on Supercomputing (SC), pp. 1-11, 

2007. 

[38]. B. Schroeder, G. Gibson, Understanding Failure in 

Petascale Computers, Journal of Physics Conference Series: 

SciDAC, vol. 78, p. 012022, Jun. 2007. 

[39]. K. Iskra, J. W. Romein, K. Yoshii, P. Beckman, ZOID: 

I/OForwarding Infrastructure for Petascale Architectures, in 

PPoPP ‟08: Proceedings of the 13th ACM SIGPLAN 

Symposium on Principles and Practice of Parallel 

Programming, pp. 153-162, 2008. 

[40]. R. Ross, J. Moreira, K. Cupps, W. Pfeiffer, Parallel I/O on 

the IBM Blue Gene/L System, Blue Gene/L Consortium 

Quarterly Newsletter, Tech. Rep., First Quarter, 2006. 

[41]. R. Hedges, B. Loewe, T. McLarty, C. Morrone, Parallel File 

System Testing for the Lunatic Fringe: The Care, Feeding 



D. Singh, et al: IMCLA: Performance Evaluation of Integrated Multilevel ...                                                                                  19 

 
of Restless I/O Power Users, in Proceedings of the 22nd 

IEEE / 13th NASA Goddard Conference on Mass Storage 

Systems, Technologies (MSST), pp. 3-17, 2005. 

[42]. R. E. Lyons, W. Vanderkulk, The Use of Triple-Modular 

Redundancy to Improve Computer Reliability, IBM Journal 

of Research and Development, vol. 6, no. 2, pp. 200-209, 

1962.  

[43]. E. Gelenbe, A Model of Roll-back Recovery with Multiple 

Checkpoints, in Proceedings of the 2nd International 

Conference on Software Engineering (ICSE ‟76), pp. 251-

255, 1976. 

[44]. N. H. Vaidya, A Case for Multi-Level Distributed Recovery 

Schemes, Texas A&M University, Tech. Rep. 94-043, May 

1994. 

[45]. J. W. Young, A First Order Approximation to the Optimum 

Checkpoint Interval, Communications of the ACM, vol. 17, 

no. 9, pp. 530-531, 1974. 

[46]. A. Duda, The Effects of Checkpointing on Program 

Execution Time, Information Processing Letters, vol. 16, 

no. 5, pp. 221-229, 1983. 

[47]. J. S. Plank, M. G. Thomason, Processor Allocation, 

Checkpoint Interval Selection in Cluster Computing 

Systems, Journal of Parallel Distributed Computing, vol. 61, 

no. 11, pp. 1570-1590, 2001. 

[48]. A. J. Oliner, L. Rudolph, R. K. Sahoo, Cooperative 

Checkpointing: A Robust Approach to Large-Scale Systems 

Reliability, Proceedings of the 20th Annual International 

Conference on Supercomputing, pp. 14-23, 2006. 

[49]. S. Agarwal, R. Garg, M. S. Gupta, J. E. Moreira, Adaptive 

Incremental Checkpointing for Massively Parallel Systems, 

in Proceedings of the 18th Annual International Conference 

on Supercomputing (ICS), pp. 277-286, 2004. 

[50]. S. I. Feldman, C. B. Brown, IGOR: A System for Program 

Debugging via Reversible Execution, in Proceedings of the 

1988 ACM SIGPLAN, SIGOPS Workshop on Parallel, 

Distributed Debugging (PADD), pp. 112- 123, 1988. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[51]. N. Naksinehaboon, Y. Liu, C. B. Leangsuksun, R. Nassar, 

M. Paun, S. L. Scott, Reliability-Aware Approach: An 

Incremental Checkpoint Restart Model in HPC 

Environments, in Proceedings of the 2008 Eighth IEEE 

International Symposium on Cluster Computing, the Grid 

(CCGRID), pp. 783-788, 2008. 

[52]. ZXTM for cloud Hosting Providers, Jan. 2010, [Online]. 

Available: http://www.zeus.com/cloud-computing/for-

cloud-providers.html. 

[53]. What Is Apache Hadoop?, [Last Published:] Dec. 28 2011,  

[Online]. Available: http://hadoop.apache.org.  

[54]. JPPF Work distribution, [Last Released] Jan. 31 2012, 

[Online]. Available: http://www.jppf.org 

[55]. P. Kumar, L. Kumar, R. K. Chauhan, A Nonintrusive 

Hybrid Synchronous Checkpointing Protocol for Mobile 

Systems, IETE Journal of Research, vol. 52 no. 2 &3, 2006. 

[56]. P. Kumar, A Low-Cost Hybrid Coordinated Checkpointing 

Protocol for mobile distributed systems, Mobile Information 

Systems. pp. 13-32, vol. 4, no. 1, 2007. 

[57]. L. Kumar, P. Kumar, A Synchronous Checkpointing 

Protocol for Mobile Distributed Systems: Probabilistic 

Approach, International Journal of Information, Computer 

Security, vol.1, no.3 pp. 298-314. 

[58]. S. Kumar, R. K. Chauhan, P. Kumar, A Minimum-process 

Coordinated Checkpointing Protocol for Mobile Computing 

Systems, International Journal of Foundations of Computer 

science, vol 19, no. 4, pp. 1015- 1038, 2008. 

[59]. G. Cao , M. Singhal , On coordinated checkpointing in 

Distributed Systems, IEEE Transactions on Parallel, 

Distributed Systems, vol. 9, no.12, pp. 1213-1225, Dec 

1998. 

[60]. G. Cao , M. Singhal, On the Impossibility of Minprocess 

Non-blocking Checkpointing, an Efficient Checkpointing 

Algorithm for Mobile Computing Systems, Proceedings of 

International Conference on Parallel Processing, pp. 37-44, 

Aug. 1998.  

 

 


