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Abstract: Balanced sampling plans excluding adjacent units are used for selecting samples from naturally ordered populations where 

nearer units provide similar measurements. In this article, we present several new balanced sampling plans excluding adjacent units 

for one dimensional populations with circular and linear ordering of units. The plans are obtained through a new algorithm based on 

linear integer programming. 
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1. INTRODUCTION 

In finite population sampling, we are concerned with the estimation of population parameters by selecting a sample 
of size n from a population containing N distinct identifiable units. Often the units in the population may be arranged in 
space or time and as a result, nearby population units may provide similar measurements and hence, it would be 
desirable to draw a sample which avoids the selection of adjacent units. Under one dimensional circular ordering of 
population units, [1] introduced a sampling plan under which the second order inclusion probability for any non-
contiguous pair of units is constant and zero for any contiguous pair of units. 

[2] extended these plans to balanced sampling plans excluding adjacent units under which the second order 
inclusion probability for any non-adjacent pair of units is constant and zero for any adjacent pair of units. Here, two 
units are adjacent whenever they are within a distance of α units from each other. Under one dimensional circular 
ordering, the distance between two units i and j is given by δ(i, j) = Min{|i − j|, v − |i − j|} and for linear ordering, the 
distance is δ(i, j) = Max{i − j, j − i}, i ≠ j = 1, 2, ..., N. We shall denote a balanced sampling plan excluding adjacent 
units for population size N, sample size n and distance α in general as BSA(N, n, α). A BSA(N, n, α) under circular and 
linear ordering of population units is denoted as cBSA(N, n, α) and lBSA(N, n, α), respectively. 

There is a lot of interest in the existence and construction of BSA for given parameters N, n and α. Existence and 
construction of cBSA for n = 2 is completely solved by [1] for α = 1 and by [2] for α > 1. For n = 3, existence and 
construction results of cBSA are available in [3]; [4]; [5]; [6];[7];[8] and [9]. [10] and [11] provided solution of cBSA 
for n = 4 and α = 1. [12]; [13] and [14] presented interesting existence results for cBSA for n ≥ 4 and α ≥ 1. The 
following theorem gives an existence result. 

Theorem 1. A necessary condition for existence of a cBSA(N, n, α) is N ≥ (2α + 1)n for n ≥ 3 and α ≥ 1 and N ≥ (2α + 
1)n + 1 for the following combinations of (n, α) : {(n ≥ 5, 1), (6 ≤ n ≤ 12, 2), (5 ≤ n ≤ 9, 3), (6 ≤ n ≤ 8, 4) and (6 ≤ n ≤ 7, 
5)}. 

Proofs of the results in Theorem 1 can be found in [2], [12] and [13]. For certain parametric combinations, the 
necessary conditions are also sufficient. 

Another result due to [2] is stated below. 
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Theorem 2. The existence of a cBSA(N, n, α) implies the existence of a cBSA(N + 2α + 1, n, α). 

 [15]; [13]; [16] and [9] presented algorithms to construct cBSA(N, n, α) for small values of N. Theorem 2 then can 
be utilized to get bigger cBSA for bigger values of N. However, application of Theorem 2 on a cBSA(N, n, α) with 
support size b gives a cBSA(N + 2α + 1, n, α) with support size (N +2α+1)b, see [2] for details.  

But there may exist a cBSA(N +2α+1, n, α) with support size less than (N + 2α + 1)b, which we shall see in Section 3. 

 

 [13] provided the following result to obtain lBSAs  from cBSAs and vice versa. 

Theorem 3. The existence of a cBSA(N, n, α) implies the existence of a lBSA(N − α, n − 1, α) and a lBSA(N − (α + 1), 
n − 1, α). Further, the existence of a lBSA(N, n, α) implies the existence of a cBSA(N + α, n, α) and a cBSA(N + α + 1, 
n, α). 

 [13] and [16] presented linear programming approaches to obtain smaller cBSA which then can be utilized to obtain 
more cBSA and lBSAs. However, again application of Theorem 3 results in BSAs with bigger support sizes. Therefore, 
effort is required to identify BSAs with smaller support sizes. Moreover, most of the methods produce cBSAs which are 
cyclic in nature, i.e., the support of the plan can be obtained by cyclically developing initial generator samples modulo 
N. However, there may exist non-cyclic cBSAs with smaller support sizes for a given N, n and α and such BSAs need to 
be identified. 

In this article, we present several new cBSA and lBSAs with smaller support sizes. We obtain these BSAs by 
developing an algorithm following [17] and [18]. An important feature of the proposed algorithm is that it can construct 
cyclic or non-cyclic cBSA and lBSAs. In Section 2, we present the algorithm in detail. Section 3 presents the cBSA and 
lBSAs obtained using the algorithm. We conclude the article in Section 4. 

2. ALGORITHM FOR OBTAINING BSAs 

The algorithm obtains the support of a BSA by constructing a polygonal design which has one to one 
correspondence with a BSA. A polygonal design is an arrangement of N symbols belonging to the set {1, 2, ..., N} in b 
blocks such that each block has n distinct symbols, i

th
 (i = 1, 2, ..., N) symbol appears in ri blocks and each pair of 

symbols which are at a distance more than α appear together in λ blocks and all other pairs do not appear together in any 

block. The entities N, b, ri, n, λ and α are the parameters of the design. Under circular ordering of the symbols, ri = r ∀i 

and they satisfy the following necessary conditions: 

Nr = bn 

                                                                 λ(N − 2α − 1) = r(n − 1).                                                                                   (1) 

Under linear ordering of the symbols, [13] have shown that 
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λ (N − α) (N − α − 1) = bn (n − 1). 

If we consider the N symbols as sampling units, the blocks as samples, the symbols in a block as the units in the 
sample and then if every block of a polygonal design is given probability of selection as 1/b, then the polygonal design 
is equivalent to a BSA(N, n, α). Thus, obtaining a polygonal design is equivalent to obtaining a BSA. 

Since a polygonal design is an incomplete block design, it can be represented by a N × b incidence matrix N = (nis) 

where nis denotes number of times i
th

 (i = 1, 2, ..., N) symbol appears in s
th

 (s = 1, 2, ..., b) block. Clearly, nis ∈ {0, 1} i, 

s for a polygonal design. Given the parameters of a polygonal design, the proposed algorithm attempts to construct its 
incidence matrix by obtaining its rows one by one. In the first step, we obtain the first row by randomly filling r1 
positions with 1 and rest positions with 0. We obtain the i

th
 (i = 2, 3, . . . , N) row such that this row has 1 in ri positions, 

the concurrence of this row with a row within a distance of α is zero and with a row with a distance of more than α is λ 
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and the s
th

 block size do not exceed n. We implement this i
th

 step through a linear integer programming (LIP) 
formulation. If we are able to get all the N rows, then our construction is complete. To make the exposition clearer, we 
detail the procedure of obtaining the i

th
 row. 

Let the s
th

 (s = 1, 2, ..., b) block size after (i − 1) steps is ks. Then we compute weights 

s

s
n

w
1

   whenever ns > 0, 

otherwise we set ws = 1. Let the elements of the i
th

 row of the N matrix be (x1, x2, . . . , xb)
′
 and they are unknown. Then 

we solve the LIP problem with respect to binary decision variables x1, x2, . . . , xb: 
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If an optimal solution to the LIP problem (3) exists, then the solution gives the i
th

 row of the incidence matrix. Then 
we proceed to obtain the next row of the incidence matrix. However, sometimes the LIP problem (3) may not have a 
feasible solution and in that scenario, we delete one row at random from the rows 1 to (i − 1) and store the deleted row 
in a matrix T and update ns. Let the m

th
 row be deleted where 1 ≤ m ≤ (i − 1). We then try to obtain an alternative 

solution for the m
th

 row of the incidence matrix. For this, we solve the following LIP formulation: 
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In the formulation (4), tqs denote the element in the q
th

 row and s
th

 column of T matrix. The last constraint in the 
formulation (4) ensures that the deleted rows stored in T do not appear again as solution. An optimal solution to the 
formulation (4) gives an alternate solution for the m

th
 row of the incidence matrix. If the formulation (4) does not have a 

feasible solution, we try deleting another row. Once a solution for the m
th

 row is obtained, we proceed to obtain the i
th

 
row as before using formulation (3). We stop when all the N rows of the incidence matrix are obtained. 

Remark 1. When we do not get a feasible solution for (3), there might be two reasons for this: (i) some wrong 
candidate rows might have been selected in the previous steps, however, it is not known which row is a wrong 

candidate row or (ii) no designs exists for the parametric setting. In this algorithm, we are not able to conform situation 
of type (ii). Hence, we can try to eliminate one of the bad rows which are selected up to (i-1) rows so that we can get a 
feasible solution for the i

th
 row. So we suggest deleting one row at random from the 1 to (i-1) rows and try to get an 

alternative row for the deleted row by formulation (4). 
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Remark 2. Sometimes we are not able to get solution beyond a particular row even after solving formulation (4). In that 
case, we restart the algorithm and call it another ‘trial’. 

We give a brief sketch of the algorithm below. 

The algorithm for obtaining BSA 

 Input: Input parameters. 
Step 1 Obtain first row of N at random with r1 elements as 1 and rest as 0. Calculate ns and ws, s = 1, 2, ..., b . 

Step i For obtaining i
th

 row (i = 2, 3, ..., N), solve the formulation (3). 

 If solution of (3) exists, compute ns and ws, s = 1, 2, ..., b and go to next i. 

 If solution of (3) does not exist, repeat the following step 

-- delete a random m
th

 row where 1 ≤ m ≤ i − 1, compute ns and ws, s = 1, 2, ..., b and solve the formulation (4) 
until a solution for m

th
 row is found. 

Output: Output N. 

Remark 3. Note that the algorithm does not guarantee that a BSA will be obtained even if a BSA exists for a given 
parametric combination. However, from our experience, we noted that the algorithm is able to obtain most of the 
existent BSAs with smaller population size. The performance of the algorithm goes down for BSAs with population 
size greater than 40. This is due to the fact that the chances of entering wrong candidate rows in the incidence matrix go 
up with the increase in the number of rows of the incidence matrix. With respect to computation time, the algorithm 
takes very less time to generate a BSA, for example, to construct a cBSA(20,5,1), it took 2.5 elapsed seconds on a Intel 
Core i5 3.20 GHz CPU with 8GB RAM and 64 bit machine with Windows 7 operating system. 

3. CONSTRUCTION OF BSAs USING THE PROPOSED ALGORITHM 

We have used the algorithm 2 to construct cBSA and lBSA in the parametric range N ≤ 30, n ≤ 5, λ ≤ 5, α ≤ 5. In the 
above parametric range, a total of 1037 parametric combinations satisfy the necessary conditions (1). Distribution of 
these 1037 parametric combinations for α = 1, 2, 3, 4 and 5 along with the number of designs obtained through the 
algorithm, the number of non-existent designs, the number of designs for which either the solution is unknown or non-
existence is not proved and the number of new designs obtained is given in Table 1. 

Table 1: Distribution of parametric combinations in the range N ≤ 30, n ≤ 5, λ ≤ 5, α ≤ 5 for circular ordering of units 

    α = 1 α = 2 α = 3 α = 4 α = 5 Total 

Number of parametric combinations 233 231 214 182 177 1037 

Number of designs obtained 216 191 143 112 94 756 

Number of non-existing designs 17 40 70 70 83 280 

Number of designs for which solution is unknown 0 0 1 0 0 1 

Number of new designs  1 0 4 0 0 5 
 

 

Table 2: New cBSAs in the range N ≤ 30, n ≤ 5, α ≤ 5 

 Sl. No. N b r n λ α Remarks 

 1 20 68 17 5 4 1  

 2 21 49 7 3 1 3  

 3 21 98 14 3 2 3 2 copies of design at Sr. No. 2 

 4 21 196 28 3 4 3 4 copies of design at Sr. No. 2 

 5 21 245 35 3 5 3 5 copies of design at Sr. No. 2 
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From Table 1, we see that out of 1037 parametric combinations, designs are non-existent for 280 combinations due 

to Theorems of [13] and Result 2.1 of [19]. In the parametric range considered, we could not obtain a solution for 

cBSA(28,4,3) with a support size 49. Out of 756 designs obtained, 5 designs are new in the sense that their solution was 

not available in the literature earlier. The parameters of 5 new designs are given in Table 2. 

As mentioned earlier, the proposed algorithm can generate BSAs which may be cyclic or non-cyclic. Most of the 

cBSAs in the literature are cyclic in nature and the support sizes of the existent cyclic cBSAs are bigger. In Table 2, all 

the new cBSAs are non-cyclic in nature, and the support sizes of these plans are smaller than corresponding existing 

cyclic BSAs in literature. For example, for N = 20, n = 5, α = 1, a cyclic cBSA of [16] has a support size of 280, 

whereas here we have a support size of 68 in Sl. No. 1 of Table 2 and for N = 21, n = 3, α = 3, cBSA of [2] has a 

support size of 147 whereas the plan in Sl. No. 2 of Table 2 has a support size of only 49. 

To obtain lBSAs, we found that a total of 817 parametric combinations satisfy necessary conditions (2) in the 

parametric range N ≤ 30, n ≤ 5, λ ≤ 5, α ≤ 5. Distribution of these 817 parametric combinations for α = 1, 2, 3, 4 and 5 

along with the number of designs obtained through the algorithm, the number of non-existent designs, the number of 

designs for which either the solution is unknown or non-existence is not proved and the number of new designs 

obtained is given in Table 3. 
 

Table 3: Distribution of parametric combinations in the range N ≤ 30, n ≤ 5, λ ≤ 5, α ≤ 5 for linear ordering of units 

 α = 1 α = 2 α = 3 α = 4 α = 5 Total 

Number of parametric combinations 188 177 163 151 138 817 

Number of designs obtained 178 152 125 107 95 657 

Number of non-existing designs 10 25 38 44 43 160 

Number of new designs 7 7 0 2 0 16 
 

From Table 3, we see that out of 817 designs, 160 designs are non-existent due to Theorems 6.1 and 6.2 and Table 7 

of [13]. Out of 657 designs obtained, 16 designs are new in the sense that their solution was not available in the 

literature earlier. 

The parameters of 16 new designs are given in Table 4. 
 

Table 4: New lBSAs in the range N ≤ 30, n ≤ 5, λ ≤ 5, α ≤ 5 

Sl. No. N b r1 r2 n λ α    

1 21 76 19 18 5 4 1    

2 22 84 20 19 5 4 1    

3 25 138 23 22 4 3 1    

4 26 120 24 23 5 4 1    

5 27 130 25 24 5 4 1    

6 29 189 27 26 4 3 1    

7 30 203 28 27 4 3 1    

Sl. No. N b r1 r2 r3 n λ α   

8 22 95 19 18 17 4 3 2   

9 23 105 20 19 18 4 3 2   

10 26 138 23 22 21 4 3 2   

11 27 120 24 23 22 5 4 2   

12 27 150 24 23 22 4 3 2   

13 28 130 25 24 23 5 4 2   

14 30 189 27 26 25 4 3 2   

Sl. No. N b r1 r2 r3 r4 r5 n λ α        Remark 

15 29 200 24 23 22 21 20 3 2 4 

16 29 400 48 46 44 42 40 3 4 4      2 copies of design at Sr. No. 15 
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Though we have used the proposed algorithm to obtain BSAs in the restricted parametric range N ≤ 30, n ≤ 5, λ ≤ 5, 

α ≤ 5, the algorithm is general in nature and can be used for obtaining BSAs outside this parametric range.  However, 
we have seen that bigger value of N and n increases the chance of getting inappropriate candidate rows for the incidence 

matrix and hence, lower the performance of the algorithm to get the desired designs.  

4. CONCLUDING REMARKS 

In this article, we have proposed an algorithm to obtain balanced sampling plans excluding adjacent units for 

circular and linear ordering of population units. We have obtained a number of circular and linear BSAs using the 

proposed algorithm in the parametric range N ≤ 30, n ≤ 5, λ ≤ 5, α ≤ 5. We found several new circular and linear BSAs 

in the above parametric range. The number of plans for which solution is unknown is 1 in case of circular ordering of 

population units. Further research efforts are required to either obtain the plan or to prove its non-existence. For large 

population and/or sample sizes, the algorithm may not be very effective. Therefore, developing methodology to obtain 

BSAs for large population and sample sizes would be an interesting area of research. 
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