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Abstract: In this paper, we find integral presentations of incomplete gamma functions. Using these results we construct bivariate 

gamma distributions and prove some properties of such distributions. 
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1. INTRODUCTION  

Definition 1.1: For Re(s)>0, the lower incomplete gamma function is defined as: 

 (   )   ∫     
 

 

         

and the upper incomplete gamma function is defined as 

 (   )   ∫     
 

 

         

Clearly,  

                                                          (   )   ( )   (   )                                                                 (1.1) 

Moreover,  (   )   ( ) as    ∞ and   (   )   ( ). 

 

Definition 1.2: The beta function is defined as follows: for 0≤ x≤1,Re(s)>0 and Re(t)>0 

 (   )  ∫     (   )   
 

 

      

     The properties of these functions are listed in many references (for example see[5], [7], and [12]).  

In particular, the following properties are needed: 
 

Proposition 1.3: ( see [3] ) For Re(s)>0 

 )  (   )          

 )  (
 

 
  )  √       (√ )     

 )  (   )            

 )  (
 

 
  )  √      (√ )    

 

The incomplete gamma functions are used in the discussions of power-law relaxation times in complex physical 

systems (Sornette ([11]); logarithmic oscillations in relaxation times for proteins (Metzler et al. ([6])); Gaussian orbitals 

and exponential (Slater) orbitals in quantum chemistry (Shavitt ([9]), Shavitt and Karplus ([10])). 

Recently, products of Incomplete gamma function are presented as integrals in [1] and [2]. 

 

Proposition 1.4: For k≠0 

 ∫   
 

 

        
 

    
 (      )  
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PROOF: The substitution u=kr  gives  

∫   
 

 

        
 

    
∫   

  

 

       
 

    
 (      )  

As a remark the equation is valid  for the case when k=0, in this case L'Hȍpital's rule is needed. 

 

Remark 1.5: The transforms u=zw and v=z(1-w) maps the region  

 

    (   )               
into 

    (   )            
 

 
 . 

 

2.      BIVARIATE GAMMA DISTRIBUTIONS 

A bivariate gamma distribution constructed from specified gamma marginals may be useful for representing joint 

probabilistic properties of multivariate hydrological events such as floods and storms ( see [14]). 
 

In this section, we construct bivariate gamma distributions and prove some properties of such distributions.  

The basis for their construction is the following characterization of gamma and beta distributions due to Yeo and Milne 

[13]. Recent bivariate gamma is constructed in [8]. 

 

 

Definition 2.1: A random variable X  is beta distributed with shape parameters s and t if its probability density function 

is 

 ( )  
    (   )   

 (   )
                

 

Definition 2.2: A random variable X  is gamma distributed with shape parameters s and scale parameter t if its 

probability density function is 

 ( )  
          (   )

 ( )
              

 Assume that W is beta distributed with shape parameters    and    . Assume further that U and V are gamma 

distributed with shape parameters    and    respectively, and the scale parameters 
 

  
 and

 

  
, respectively. The question 

here 
  

What is the joint probability density function of X = U W and Y = V W ? 
 

An answer is given in [8] for the case when    =  =  +  . 
 

In this paper, we give an answer for the case   +  -   -  =1.       

 

Now,  we prove the following result which is needed later 
 

Theorem 2.3: For t>0,  Re( )>0 and Re(b)>0. The product   (   ) ( ) satisfies 

 (   ) ( )=∫  (    
 

 
)    (   )    

 
   . 

 

PROOF: The transforms u=zw and v=z(1-w), Proposition 1.4, Remark 2.3, and Definition 1.1. give 

                             (   ) ( )=∫ ∫         

 
         

 

 
    

 ∫ ∫     (  )   

 
 

 

   (   )( (   ))   (   
 

 

   ) 

                                              ∫  (    
 

 
)    (   )    

 
   . 

Equation 1.1. and Proposition 1.3 give  

Corollary 2.4 : For t>0,  Re( )>0 and Re(b)>0. The product   (   ) ( )satisfies 

 (   ) ( )  ∫  (    
 

 
)    (   )    

 
   . 
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In particular, for 0<Re( )<1 and t>0 

 (   ) (   )= ∫
 
 

 
 

(   )     

 

 
   . 

 

Theorem 2.4: Assume that W, U and V are independent random variables where W is beta distributed with shape 

parameters    and   , U and V are gamma distributed with shape parameters     and   and scale parameters 
 

  
 and

 

  
, 

respectively where   +  -   -  =1. Define X = U W and Y = V W, then the joint distribution of X and Y is given as 

f(x,y) = 
           (         

 

  
 

 

  
)

 (  )  
    

   (     )
 

 

PROOF: 

f(u,v,w)=

     

  
  

  

 (  )
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)

     

  
  

  

 (  )
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     (   )    

 (     )
 

=  
               (   )    

  
    

   (  ) (  ) (     )
    ( (

 

  
 

 

  
))   

Therefore, 

f(x,y,w)  =  
                     (   )    

  
    

   (  ) (  ) (     )
    ( 

 

 
(

 

  
 

 

  
))  . 

Then 

 

f(x,y)  =  
          

  
    

   (  ) (  ) (     )
∫            (   )       ( 

 

 
(

 

  
 

 

  
))     

 

 
 . 

If   +  -   -  =1 and using Equation 2.4, we get 

 

f(x,y) = 
           (         

 

  
 

 

  
)

 (  )  
    

   (     )
. 

 
The following are the contour diagram and 3D representation of this distribution for the case when   =4.5,   =0.5, 

       and   =1.5 and the contour diagram and 3D representation of the distribution for the case constructed when 

a=1, b=1, and    . The densities of bivariate gamma distribution in this paper  and th e one  constructed  in [8] look 

different. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 1.  Contour diagram of  (   ) 
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Figure 2.  3D representation of  (   ) 

 

  
Figure 3.  Contour diagram of  (   ) in [8] 

 

 

 
Figure 4.  3D representation of  (   ) in [8] 
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