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Abstract: Group screening or testing has long been recognized as a safe and sensible alternative to one-at-a-time testing in 

applications wherein the prevalence rate p is small. In this paper, we developed an Empirical Bayes (EB) procedure to estimate p 

using a beta-type prior distribution and a squared error loss function. We showed that the Empirical Bayes (EB) estimator is 

preferred over the usual Maximum Likelihood Estimator (MLE) for small group sizes and small p. The methods were illustrated 

using group testing data from a prospective hepatitis C virus study that was conducted in China. 
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1. INTRODUCTION 

The group testing experimental design has received considerable attention in recent years.  Unlike one-at-a-

time testing, observations are made on groups of individuals pooled together with  group size 1k  . In most 

applications, the group response is binary, and is classified to be either positive or negative.   We defined a 

positive group to be one that contains at least one positive individual, and a negative group to be one that 

contains no positive individuals.  Gastwirth and Johnson (1994) argue that group testing serves as a cost-effective 

quality control procedure in the contexts of Human Immunodeficiency Virus (HIV). However, Neill and Conradie 

(1992, 1994) proposed the use of group testing in screening experiments to estimate hepatitis C prevalence.  In 

addition, Gastwirth and Hammick (1989) and Hammick and Gastwirth (1994) confidentiality discussed issues 

which are associated with the use of group testing in public health settings. Pritchard and Tebbs (2011) have 

considered the use of inverse binomial distribution in group testing. In addition, they have considered both point 

and interval estimation procedures for small p. This gave better estimates compared to the usual binomial 

distribution. 

The gains from group testing (compared to one-at-a-time testing) is the greatest when dealing with rare traits (i.e. 

when the proportion of interest, p, is small).  Group testing experiments  do not require as many tests  as one-at-a-time  

testing  experiments  to obtain  an equally good estimator of p. Statistical considerations involved with choosing k have 

been investigated  by Swallow (1985) and Hughes-Oliver and Swallow (1994).  Kline et al. (1989) and Munzon et 

al. (1992) have reported that tests currently used in HIV screening have near perfect sensitivity and specificity 

when 0k  . In addition, Neill and Conradie (1992, 1994) have shown that tests used in hepatitis C screening are 

reliable for group sizes, 8k  .  

The traditional approach to estimating p entails the use of the method of maximum likelihood.  Swallow (1985) 

provided an indepth analysis of the point estimate properties of the maximum likelihood estimator (MLE). Lew 

and Ley (1989), Gastwirth et al. (1991), Johnson and Gastwirth (1991), Chaubey and Li (1995), and Chick (1996) 

have each proposed classical Bayesian approaches in the group testing estimation problem. Pritchard and Tebbs 

(2011) studied a problem of estimating disease prevalence using negative binomial distribution from the 

Bayesian approach. They derived closed form expressions for posterior distributions and the resulting point and 

credible interval estimators.  Hwang and Mi (2015) showed the existence and uniqueness of maximum 

likelihood Empirical Bayes (MLEB) and proposed an alternative Bayes estimator whose performance was found 
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to be better than MLEB. Such approaches require researchers to specify the values of the model hyper parameters 

a prior.  However, poor choices of such parameters could cause the posterior distribution to be concentrated far 

away from the truth, especially if there are not enough observed data to dominate the prior.  In such situations, 

the parametric empirical Bayesian approach that we propose may be desirable. there are not enough observed 

data to dominate the prior.  In such situations, the parametric empirical Bayesian approach that we propose may be 

desirable.  

Subsequent sections in this paper were organized as follows. In section 2, we derive a parametric Empirical Bayes 

(EB) estimator using a beta-type prior and squared-error loss function.  In section 3, we compare the MLE and EB 

point estimators in terms of bias and efficiency, and illustrate it using data from HCV study conducted in China.  In 

section 4 , we conclude with a brief summary discussion. 

 

2.  ESTIMATION 

2.1. The Maximum Likelihood Estimate 

 

In group screening, the responses are assumed to be independent and identically distributed Bernoulli (p) random 

variables which can be combined into groups of size k > 1. The experimental design calls for units to be randomly 

assigned to one of g groups with no testing errors. Hence, the number of defective groups observed say, r, has a 

binomial distribution with parameters g and 1 (1 )kp  . Under the group screening model, the MLE of p has been 

shown by Muhua et al. (2010) to be

1

ˆ 1 1
kr

p
mle g

  
 
 
 

. Although ˆ
mlep is strongly consistent for large g and 1k  , 

it is positively biased for g   . 

 

2.2 Empirical Bayes Estimate 

 

Since the probability of a factor being defective is small, we used a family of prior distribution appropriate for rare 

traits.   The beta  (α, β) distribution is regarded as a family since for large values of β, the probability  distribution of the 

random variable p is close to zero. 

If r is the number of defective groups out of g groups formed, then: 

 
( )

1 (1 ) (1 ) 0,1,...,
| [1]

0

rg k g rkp p r g
f r p r

otherwise

               



 

Thus, the joint distribution of r and p is given by: 

        
1 11

, , 1 1 1
rg kg kr kf r p B p p p

r


 

 
       

 

   
     

where; 

 ,B
 

 
 




 

 

The marginal probability density function of r is given by: 

 
1 1 11

( ) ( , ) (1 ) [1 (1 ) ]
0

( )

( 1) [4]
0

g kg kr k r
f r B dp

r

k g r kj
rg r j

r jj


    

 

   

   
   



 
 

 
 
 

      
      
      

 using the approximation 

N a a b
N

N b

 


for large [5]N  

given by Abramonitz and Stegun (1960). 

[3]

 

[2]
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For the estimates ̂ and ̂  for the hyper parameters  and  , the posterior distribution of p is given by: 

( , )
( | )

( )

f r p
f p r

f r
 =

ˆˆ 1 1

0

(1 ) [1 (1 ) ]
[6]

ˆ( 1) ( , )

kg kr k r

r
j

j

p p p

r
B kj kg kr

j

 

 

   



  

 
    

 


 

Therefore, this leads to the Bayes estimator of p  based on squared error loss which is given as:  

 
( )ˆˆ

ˆ 1
( ) 1ˆ0 ˆ( )

k j g rr r j
p

k j g rjj



 

 

 
   

 
 
 

 

2.3 Special case:  A priori on p with 1    

Here, the probability distribution of p is given by:  

1
( ) (1 )f p p





   

The joint probability distribution function of r and p conditional on   is 

   ( ) 1
( , | ) [1 (1 ) ] (1 )

g k g rk r
f r p p p

r


 

  
   

 
 
 

 

for 0,1,...,r g  and 0 1p  . The marginal distribution function of r is therefore: 

1 ( ) 1
( | ) [1 (1 ) ] (1 )

0

g k g rk r
f r p p dp

r


 

  
   

 
 
 

 

Using the change of variables technique, the equation becomes: 

1

( 1)
( 1)

( | )

( 1)

r

r

g g r
gk

f r

k gk g r g
kk










 
   

 
 

  
     

  

 

for 0,1,...,r g . Differentiating with respect to  and equating to zero gives: 

ˆ
gk

r
   

The 

posterior 

distribution 

is therefore 

given by: 

 

for 

0 1p  . 

Using squared error loss function 
2

( , ) ( )L p a p a  , the Bayes estimate of p is the mean of the posterior 

( | )f p r given as: 

 

 

 

 

 

2.4. Prior on 
*p  

 

 
1

( ) 1
( | ) 1 [1 (1 ) ]

1

g
k g gk

k g rk k rrf p r p p
g

g r r
k

 
  

   

  

 
 
 

 
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 

[8]

 

[9]

 

[10]
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[13]
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p
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 Here, we consider an alternative approach to determining the Bayes estimate based on the relationship between p 

and 
*p . This is the probability that a group-factor is declared defective. Therefore, we call the resulting estimate the 

Indirect Bayes Estimate, ˆ
Ibysp  

The probability of  r conditioned on 
*p  is given by: 

 
* *

(1 ) 0,1, ...,
| [15]

0

g g rr
p p r g

f r p r

otherwise


 



  
  
  


 

The prior probability of 
*p  is given by:  

 

    
11* * 1 *

( ) , 1f p B p p



 

 
   

 

Thus, the joint distribution of r and 
*p is given by: 

      
11* * 1 *

, , 1
g r rg r

f r p B p p
r




 
    

 
 
 
 

 

where; 

 
( ) ( )

( )
,

T T

T
B

 

 
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
 

The marginal probability density function of r is therefore: 

    
11 1 * 1 * *

( ) , 1
0

( ) ( ) [17]

g rg r
f r B p p dp

r

g gr

r




 

 

  

    
 



 
 
 

 
 
 

 
The posterior distribution of 

*p can be shown to be: 

1* 1 *
(1 )*

( / )
( , )

g rr
p p

f p r
B r g r



 

   



  

 

The posterior mean based on squared error loss is given by: 

*
ˆ

r
p

g



 




 
 

Therefore, this yields the posterior of p through the transformation 
* 1 (1 )kp p   ; and we compute the Bayes 

estimator under the squared error loss as: 

                           

1

ˆ 1 1
r kp

Ibys g



 


  

 

 
 
   

 

 

 
 

 

 

3.  COMPARISON OF ESTIMATORS 

[16]

 

[18]
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[20]
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3.1 Point Estimate characteristics 

 

In this section, we compare the Maximum Likelihood Estimate and the Bayesian Estimate through the measures of 

bias and mean squared error.   In a Bayesian framework, the choice of the loss function determines the specific form of 

the estimator.  However, since we are comparing the two estimators on frequentist terms, after the specific form of the 

estimator is identified, the loss function is no longer used.   For p  fixed, the bias and mean squared error of 

ˆ
bysp respectively are given by:   

 

     
 

ˆ ˆBias( ) E

ˆ 1 1 1
0

p p p
bys bys

rg g k k g r
p p p p
bys rr

 


    



 
 

   
     

and

   

     

2
ˆ ˆ           MSE E

2 ( )
ˆ 1 1 1 [21]

0

p p p
bys bys

rg g k k g r
p p p p
bys ri

 


    



 
 
 

     
       

 

In particular, for indirect Bayes estimator ˆ
Ibysp , the Bias is given by: 

ˆ ˆ                    Bias( ) Ep p p
Ibys Ibys

  
 

 

And the mean squared error is given by: 

   
2

ˆ ˆ                 MSE Ep p p
Ibys Ibys

 
 
 
 

 

where:                   

1

ˆ 1 1
r kp

Ibys g



 


  

 

 
 
 

 

For comparing the Bayes estimator corresponding to a Beta ( , )  prior on p, the prior on 
*p is chosen to be 

Beta
* *( , )   , where 

* *α and β are given as: 

 

                                           
(1 )( )*

2

A B A

A B


 



 

and 

( )*
[22]

2

A B A

A B






 

                            where A and B are the first two moments given as: 

( ) ( )

( )

k
A

k

  

  

   


   
 

and 

( ) ( )

( 2 )

k
B

k

  

  

   

   

 

For the special case where 1  , 
* 1  and 

*

k


   
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Example 1 

Liu et al. (1997) reported results on 1875 blood donors screened for anti HCV at the Blood Transfusion 

Service in China. The 1875 serum samples were tested individually (k = 1) to examine the effectiveness of 

pooling. With a group size of k =5 and g = 375, they got r = 37. Using equation (12), 

1875
ˆ 50.66

37
    

The posterior mean is given by: 

1
375 37 5ˆ 1 1

376

  1 –  0.97891

0.021083

p


  





 
 
 

 

Thus, it compares favorably with    ˆ 48.13   and is given by Tebbs and Bilder (2003). For the indirect Bayes 

estimate, equation (20) is given as: 

1
37 1 5ˆ 1 1

50.66
375 1

5

  1 –  0.979494

0.020506

p
Ibys


  

 





 
 
 
 
 

 

 

In addition, comparison can also be made in terms of relative bias and relative efficiency which are  

respectively defined as: 

ˆ( )Bias p
RB

p


 

and 

ˆ( )

ˆ( )

MSE p
kRE

MSE p


 

where 
ˆ

kp
 is the estimate for k > 1. The tables below give a summary of the relative bias and the relative efficiency for 

various values of p and k  for g = 10, based on the maximum likelihood, the direct Bayes, and the indirect Bayes 

estimators. 

 
Table 1 . Relative Bias for selected values of p, k and g = 10.  

g=10 

p 

 

K 

 

p̂mle 

 

(α, β) 

 

p̂bys 

 

(
* *,  ) 

 

p̂I bys 

0.25   (1,3)    

 1 0.00000  0.00000 (1,3.00) 0.00000 

 5 0.21661  0.09552 (1,0.60) 0.01252 

 10 1.57583  0.29291 (1,0.30) 0.00192 

 15 2.56691  0.37393 (1,0.20) -0.10853 

 20 2.88854  0.35010 (1,0.15) -0.23565 

0.10   (1,9)    

 1 0.00000  0.00000 (1,9.00) 0.00000 

 5 0.05731  0.03843 (1,1.80) 0.00311 
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 10 0.19010  0.08031 (1,0.90) 0.00494 

 15 0.90474  0.14572 (1,0.60) 0.01453 

 20 2.39111  0.23484 (1,0.45) 0.01712 

0.05   (1,19)    

 1 0.00000  0.00000 (1,19.0) 0.00000 

 5 0.04851  0.02363 (1,3.80) -0.00740 

 10 0.06713  0.04351 (1,1.90) -0.00431 

 15 0.11444  0.06241 (1,1.27) -0.00053 

 20 0.29962  0.08494 (1,0.95) -0.00039 

0.01   (1,99)    

 1 0.00000  0.00000 (1,99.0) 0.00000 

 5 0.04360  0.00452 (1,19.8) -0.00870 

 10 0.05082  0.01180 (1,9.90) -0.01101 

 15 0.05451  0.01821 (1,6.60) -0.01103 

 20 0.05734  0.02374 (1,4.95) -0.01033 

 
 

Table 2 . Relative Efficiency for selected values of p, k and g = 10. 
 

g=10 

p 

 

k 

 

p̂mle 

 

(α, β) 

 

p̂bys 
 

   

  

 

(
* *,  ) 

 

p̂I bys 

0.25   (1,3)    

 1 1.00000  1.96000 (1,3.00) 1.96000 

 5 1.03260  4.69672 (1,0.60) 7.04301 

 10 0.99481  19.03341 (1,0.30) 80.62304 

 15 0.99862  35.90983 (1,0.20) 269.94501 

 20 0.99971  59.85294 (1,0.15) 147.47321 

0.1   (1,9)    

 1 1.00000  4.00000 (1,9.00) 4.00000 

 5 1.17922  1.70664 (1,1.80) 1.91413 

 10 1.04641  7.82342 (1,0.90) 10.69631 

 15 1.00283  35.66633 (1,0.60) 69.54100 

 20 0.99924  71.11520 (1,0.45) 210.27562 

0.05   (1,19)    

 1 1.00000  9.00000 (1,19.0) 9.00000 

 5 1.12490  2.19461 (1,3.80) 2.35772 

 10 1.19852  1.89812 (1,1.90) 2.17101 

 15 1.07565  5.68040 (1,1.27) 7.04622 

 20 1.01584  24.86763 (1,0.95) 34.74474 

0.01   (1,99)    

 1 1.00000  121.00000 (1,99.0) 121.00000 

 5 1.09484  9.85463 (1,19.8) 10.12575 

 10 1.11742  4.47010 (1,9.90) 4.69181 

 15 1.13311  3.14221 (1,6.60) 3.35011 

 20 1.14780  2.57100 (1,4.95) 2.77764 
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From the tables, we noted  that the  biases and  the  MSE’s of the  Bayes  estimators are  smaller  than  that 

of MLE  especially for low prevalence  rate.  The indirect Bayes estimator in general performs very well for small 

k and large g in the sense of having even smaller bias and MSE. This mainly o c c u r s  when the experimenter 

is forced to use smaller group sizes perhaps due to biological considerations involved in test assays. 

 

3.2.  Asymptotic Distribution and Interval Estimation  

In practice, the population size and the number of groups  are  fairly  large. However, this was such that large 

sample estimates can be used for inference purposes. The asymptotic distributions of the MLE and that of the Bayesian 

estimator follow from the general result which obeys the Mann-Wald theorem, given in Rao (1973). For the function h, 

if  

( ) 1 1
1

a
p b

h p
c

 
   



 
 
 

 

then 

2
1

ˆ( ) ( )
0, 1 [24]

(1 ) 1 1

a
h p h p a p b

m N
p p c c


   


   

            

 

For the Bayes estimator, 
α α+β 1

ˆh(p )=p, with b = ,c= anda =
g g k

 . Thus,  

2
1 1

* * *
(1 )

ˆvar( ) 1 [25]
( )

kg gp p p
p

k g g g



   
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   
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From the example 1 above, ˆ0.0224 0.021083p and p  , giving that 

2
0.8

0.2 0.0224 0.00267 0.0224(0.9776)
ˆvar( ) 1

1.13101 1.13101 375

6
1.89270 10

p




 


 

   
     

 

The standard error of p̂ is therefore 0.0026965 resulting in a 95% confidence interval of 0.0183865 and 0.023779. 

For the maximum likelihood estimator, the confidence interval is given by: 

ˆvar( )
ˆ

1
2

p
mlep z

mle g



 

Where ˆvar( )mlep  is the asymptotic variance given by 
2 2

ˆvar( ) [1 (1 ) ](1 )
k k

p k p p
mle

 
    and 

1
2

z 


denotes 

1
2


  quantile of the standard normal distribution. Thus, from the above example 1, we get: 

2 5 2 5
ˆvar( ) 5 [1 (1 0.020557) ](1 0.020557)

0.004199

p
mle

 
   



 

The standard error is 0.0033466 giving a 95% confidence of 0.01905 and 0.02575. Thus, the indirect Bayes 

estimator is more precise than the MLE since for the same level of confidence, it gives a narrower interval. 
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4.   CONCLUSION 

Group testing is in general economical in the light of reduced average number of units to be tested or samples to be 

screened since a group is declared defective as soon as an item is found to be defective. Based on a given total cost per 

unit to be tested, a group size k may be determined in advance and fixed. Next, based on prior knowledge of the 

population proportion, the group size may be compared to the optimal value of the MLE or that for the Bayes estimator. 

The direct Bayes method offers a good alternative to the experimenter, as he may have some general ideas about the 

population proportion which can be used to obtain the value of the optimum k, which can be updated in subsequent 

testing and estimation. Once k is known, a prior on p may be transformed into a prior on 
*p̂ ; and then, the alternative 

Bayes estimator or the indirect Bayes estimator may be used. This estimator is simple to calculate and hence may be 

attractive to users. Choice of k may be determined by physical considerations or from the optimal k for the MLE. For 

practical purposes, a fixed k is desirable unless variability of the prior is very high. 
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