
Int. J. Com. Dig. Sys. 1, No. 1, 11-18 (2012) 11

M-based Filter Design for Communication and Imaging Systems

Akitoshi Matsuda

1
 and Shinichi Baba

2

1
Dept. of Automotive Science, Kyushu University, Fukuoka 814-0001, Japan

matsuda_aki@slrc.kyushu-u.ac.jp
2
Kyushu Embedded Forum, Fukuoka 814-0001, Japan

shinichi.baba@nifty.com

Abstract: The MATLAB M language provides constructs for the simple representation of functions, and has been used extensively for
algorithm development and verification in communication and imaging systems design. The M language processes entire arrays simultaneously,
and it is expected that design based on M can be implemented faster and with the same or higher quality as compared with design based on other
languages. This paper presents a design methodology using M-based design flow for signal processing filters. The results of this design
methodology demonstrate the high efficiency of the M-based design flow as compared with conventional functional modeling and manual
coding using a hardware description language.

Keywords: M language; algorithm development; verification; filter design; signal processing.

I. INTRODUCTION

In the design of current large-scale and highly functional
embedded systems, enhancement of design quality often
entails an increase in the time and cost of developing the
hardware of embedded systems. Design methods based on
MATLAB and Simulink focus on improving the efficiency of
developing increasingly complex hardware as well as
algorithm design in specification-level design [1]. Here, a
design method is proposed based on the MATLAB M
language. In this paper, model-based design (Fig. 1) represents
hardware models (multipliers, adders, multiplexer, etc.) as
combinations of hardware circuitry. The adoption of this
representation facilitates the understanding of hardware
configurations and architectures in comparison with
representation based on the C language or a hardware
description language (HDL). Fig. 2 shows coefficient matrices
used in a Sobel filter, which is commonly used for edge
detection in image processing. In the example, two operators
(one for horizontal and one for vertical line detection) are
represented in the M language [2].

In general, these matrix operations provide a description
similarly to mathematical formulas in M-based design, which
also facilitates the understanding of the processes in algorithm
development. In addition, these two design methods support
automatic simulation and generation of HDL code. Thus, their
adoption in hardware development is expected to reduce the
need for manual coding as compared with traditional methods
in design, implementation, and verification at the algorithmic

level. A “visualization” feature can also be added to the entire
development process, which is also expected to reduce turn

Figure 1. Hardware model.

Model-based design HDL

if (sel)

 y=d0

else

 y=d1 Multiplexer

sel

d1

assign

y=a+b

a +

b +

Adder

d0 y

y

% sobel coef

sobel_x = [-1 0 1 ;

-2 0 2 ;

-1 0 1];

sobel_y = [-1 -2 -1 ;

0 0 0 ;

1 2 1];

International Journal of Computing and Digital Systems
 -- An International Journal

@ 2012 UOB
CSP, University of Bahrain

12 A. Matsuda, S. Baba: M-based Filter Design for Communication…

Figure 2. Example of matrix representation using M.

around time (TAT) and to improve the overall design quality.

Our paper is structured as follows: Section 2 describes the
background to M-based design. Section 3 gives an overview of
design methodology in both M-based design and C-based
design. Section 4 presents an outline of the image processing
algorithm used in this study. Section 5 describes a set of
experiments that we conducted on diverse real-world
applications on the filter, and furthermore presents the design
methodology for the implementation and simulation of M-
based design. After that, we discuss the results in Section 6 and
state our conclusions in Section 7. Lastly, Section 8 discusses
future work.

II. BACKGROUND

In this paper, we introduce M-based design methods
implemented in MATLAB and Simulink. Model-based design
methods implemented in MATLAB and Simulink will be
described elsewhere. Increasing the productivity of hardware
implementation from the stage of algorithm design and
exploration should help to improve TAT, as well as the overall
quality of the entire embedded system. From the results of
several trials, the M language has been recommended for
algorithm design in earlier stages of hardware development,
which includes mathematical operations for signal processing
(linear operations, complex arithmetic operations, etc.) [3].
Behavioral synthesis with the M language is expected to be
advantageous for hardware design since M is highly efficient
for developing hardware design techniques that apply synthesis
at a high level of abstraction and language input. This efficient
M-based design method was applied in this work with the aim
to implement signal processing algorithms in hardware. While
an M-based design method was utilized in design development,
the HDL code for hardware implementation was generated
with a language conversion tool in order to automate the design
flow. An efficient hardware design method was used that
facilitates the trade-off analysis of hardware design in order to
visualize the overall structure and to remove unnecessary
variables. In this paper, we report a case study on the
application this design method to hardware design flow.

III. DESIGN BASED ON M AND C BASED LANGUAGES

Various methods have been proposed for reducing the time
necessary for designing embedded system hardware.
Schliebusch et al.’s technique [4] has been proposed as the
most versatile in the case of design methods based on C-based
languages (such as C/C++, SystemC, and SpecC) [5,6,7].
Techniques for automatic conversion from C-based languages
into HDL by means of behavioral synthesis tools have been
developed [8]. However, since C-based languages are
originally software-oriented, the utilization of these behavioral
synthesis tools for this task poses considerable difficulties.
Furthermore, in system-level design, C-based languages do not
implement the data structure and operators necessary for the
target operation, which further increases the cost and effort
associated with design implementation since these operations
must be created separately in accordance with the required

functionality. For example, in image processing of files in
various formats, a program must be written to create a stream
of image data. For this purpose, input/output functions are
embedded into the M language. Specifically, image files are
typically stored in various formats such as BMP, JPEG, and
TIFF, and pixel data can be read as an array by using the built-
in functions in MATLAB [9]. The following items represent
several major advantages of the M language over C-based
languages in regard to hardware design:

 Simplified test bench generation.

 Straightforward creation of fixed-point models.

 Quick response to design constraints.

In other words, the M language provides a rich simulation
environment for functional verification. Therefore, if the
advantages of the M language are utilized in the design
process, the flow from algorithm development to hardware
design can be simulated rapidly and accurately. Moreover, the
automatic conversion of M source code into valid HDL code is
expected to enable the design of high-performance and high-
quality hardware in a seamless process encompassing all steps
from algorithm development to hardware implementation,
while maintaining a high level of abstraction.

IV. ALGORITHM DEVELOPMENT

In this section, the image processing algorithm used in this
study is described. In image processing, there are a variety of
purposes that require detecting a boundary (edge) of an area in
the image. An edge can be detected by using the differential
operator for the change in pixel brightness, because this change
is large at the region boundary. Another possibility is using a
difference operation instead of a differential operation in
processing the digitized image. Here, a coefficient combination
for performing the differential operation is referred to as a
differential filter. Differential filters can be classified as first-
derivative filters (Sobel filter, Prewitt filter, etc.) and second-
derivative filters (Laplacian filter, etc.).

A linear filter is generally expressed in an input image f(x,y)
and filter function h(x,y) with a convolution integral as follow:

 dxdyyxfyyxxhyxg),(),(),((1)

In an actual computer, a digital calculation is performed using a
digital image. Therefore, equation (1) is expressed in discrete
form as follows:

1

0

1

0

),(),(),(

N

l

M

k

lkfljkihjig . (2)

Here, M and N are the number of pixels along the x- and y-
directions of each image. Moreover, a neighboring region in
the filter is a rectangular region around the target image
element.

2

1

2

1

),(),(),(

nj

njl

mi

mik

lkfljkihjig . (3)

A. Matsuda, S. Baba: M-based Filter Design for Communication… 13

Furthermore, we define m, n, and h’ as follows:

),(),(;; ' jihjihjlnikm , (4)

and

2

1

2

1

),(),(),('

n

nn

m

mm

njmifnmhjig . (5)

This section describes a differential filter. We calculate the
differential in the image with respect to x and y:

),(),1(jifjif
x

f

 (6)

and

),()1,(jifjif
y

f

. (7)

In the first-derivative filter, we then set up a differential
whose magnitude is independent of direction:

2/1
22

y

f

x

f
f . (8)

However, this calculation is nonlinear. The output filter is
therefore a nonlinear filter [10]. In the second-derivative filter,
the Laplacian of the second-order differential equation is
shown below:

 f
y

f
x

f
2

2

2

2
2

 . (9)

We present an overview of a design method based on the
MATLAB M language. This particular section presents the
development of an image processing algorithm for edge
detection with the aid of the M language. In general, when
investigating image features, it is necessary to perform feature
extraction and filtering. Accordingly, edge detection, an
important feature extraction process, is described here. This
algorithm uses Sobel edge detection of horizontal and vertical
lines in images [11]. Typically, the Sobel filter uses coefficient
matrices (shown in Table 1) to detect horizontal and vertical
lines Fig. 3 shows the original image, while Fig. 4 shows the
results of the edge detection process [12]. It is apparent that
only vertical and horizontal lines are clearly detected in the
respective steps of this algorithm. Combining the horizontal
and vertical gradients (fx(x,y) and fy(x,y) respectively), the edge
detector f '(x, y) can be calculated as follows:

 2/122)),(),((),(yxfyxfyxf yx . (10)

Equation (10) is calculated for each pixel, the resulting
image shows sharp contours representing edges in the image.
Thus, edge detection is possible by using a Sobel filter. In this
calculation process, an example of an implementation of the
Sobel filter algorithm in M is shown in Fig. 5, where the
coefficient matrices used in the filter can be defined directly
inside the function. The image data can be represented in the

form of an array, such as (I) in the example, by using built-in
file input functions.

Currently, the Verilog HDL and VHDL languages are used
for detailed design of hardware, the C and C++ programming
languages are used for software development, and system
description languages or blocks are used for system design in
order to integrate the specifications in a manner that satisfies
the specifications. Thus, one factor that obstructs the efficient
design of embedded systems is the use of different languages
by the parties involved, namely, the hardware designer, the
software designer, and the system designer.

In this regard, a model can be created automatically in
order to determine the detailed specifications for hardware
implementation from a high-abstraction algorithm developed
by using the M-based design method, which can improve
design productivity. In addition, simulation performance and
modeling efficiency can also be improved when a reference
model is created at a high abstraction level with the M
language and a simulation is conducted with that model.

TABLE I. COEFFICIENT MATRICES USED IN SOBEL FILTERING

Figure 3. Original image.

 Vertical feature extraction Horizontal feature extraction

Figure 4. Vertical and horizontal feature extraction with Sobel filtering.

Figure 5. Combined results of vertical and horizontal feature extraction.

-1 0 1

-2 0 2

-1 0 1

-1 -2 -1

0 0 0

1 2 1

14 A. Matsuda, S. Baba: M-based Filter Design for Communication…

Therefore, if HDL code can be generated automatically

from the M language, it would be possible to design a large-
scale integration (LSI) and field-programmable gate array
(FPGA) in short TAT and without the need for manual HDL
coding. In addition, the developed algorithms and the HDL
code can be easily simulated, which improves the efficiency of
functional verification. As a result, these measures would allow
for the implementation of efficient verification and co-
simulation environments for embedded systems.

V. EXPERIMENTAL RESULTS

A. Case study of image processing filter design

In this section, we report a case study where the M language
was used in the design of the Sobel image processing algorithm
described in the previous section. In this case study, an FPGA
was used as the target device for designing a hard-

Figure 6. Example of algorithm development in M.

Figure 7. Example of script in M.

TABLE II. PERFORMANCE RESULTS

ware implementation of this algorithm. First, the description in
M shown in Fig. 6 and 7, was simulated in MATLAB in order
to validate the algorithm, where the verification was followed
by the hardware development phase if the results agreed with
the specifications. The constraints of the hardware
implementation, such as fixed-point operations, the number of
input and output bits and the performance frequency, were
given, and behavioral synthesis was conducted. HDL was
automatically generated from the M source code at the
algorithmic level. Table 2 shows the circuit performance for
reference. The most important constraint in this study was the
operating frequency of the FPGA, which was set to 100 MHz.
The circuit was considered to be generated as desired when this
constraint was met.

Next, the design time was evaluated. The M language was
used to examine the Sobel filter design specifications
(including algorithm development). Thereafter, the time
required for automatic generation of HDL code in M-based
design was compared with the time necessary for manual HDL
coding. In the M-based design method, which was based on the
algorithmic level of abstraction, a simulation considering the
hardware design was conducted. Thus, the process of
converting floating-point operations into fixed-point operations

Latency Adder Logic level Frequency Area

8 15 9 101MHz 4455 Gate

clear all;
clc;
close all;

% Stimulus
 I = imread('original.jpg');

% Edge Detector (HW part)
 K = edge_detector (...
 I(:,:,3) ...

);

% Display result
 O(:,:,1) = uint8(K);
 O(:,:,2) = uint8(K);
 O(:,:,3) = uint8(K);

figure('Position',[100, 100, 1200, 500]);

 subplot(1,2,1)
 image(I)

 subplot(1,2,2)
 image(O)

function [K] = edge_detector(I)

%% Parameter and coeff setting

% size

[nRows, nCols] = size(I);

% sobel coef

 sobel_x = [-1 0 1 ;

 -2 0 2 ;

 -1 0 1];

 sobel_y = [-1 -2 -1 ;

 0 0 0 ;

 1 2 1];

%% Edge Detection

% Initialize variables

K = zeros(nRows, nCols);

% Adding margin rows and columns

Img_temp = [zeros(nRows,1) double(I) zeros(nRows,1)];

Img_marg = [zeros(1,nCols+2); Img_temp;

 zeros(1,nCols+2)];

% Main operation

for iRow = 1:nRows

 for iCol = 1:nCols

 ghs = 0;

 gvs = 0;

% Sobel filtering

 for jRow = iRow:iRow+2

 for jCol = iCol:iCol+2

 ghs = ghs + sobel_x(jRow-iRow+1,jCol-iCol+1)

* Img_marg(jRow,jCol);

 gvs = gvs + sobel_y(jRows-iRow+1,jCol-iCol+1)

* Img_marg(jRow,jCol);

 end

 end

 g = sqrt(ghs^2 + gvs^2);

 end

%Perform Thresholding

if g >150

K(iRow, iCol) = 255;

else

K(iRow, iCol) = 0;

end

 end

 end

A. Matsuda, S. Baba: M-based Filter Design for Communication… 15

TABLE III. COEFFICIENT MATRICES USED IN PREWITT FILTER

TABLE IV. COMPARISON BETWEEN SOBEL AND PREWITT FILTERS

(i.e., from M to HDL code) was automatic. In addition, the test
benches of the HDL description were also generated
automatically and simultaneously with the generation of HDL
code, and the time required for simulation verification was
reduced. Note that hardware and software design can be
validated in parallel with the design requirements after the
specifications are in place. Doing so can reduce the number of
design iterations and re-spins and thus reduce the overall
development time. Moreover, the reusability of the operating
environment increased by continuing the M-based design
process, which presents further possibilities for reducing the
development time [13].

Next, a Prewitt filter was designed by using M-based
design. This design was easily accomplished by simply
changing the values of the matrix elements of a Sobel filter.
Specifically, some values of the matrix elements in Table 1 are
changed to those in Table 3. Table 4 compares these two filters.
The performance (maximum operating frequency) and area (K-
gate number) of these two filters were nearly the same. The run
time in the table indicates the implementation time from
register-transfer level generation using the M language. In short,
once a Sobel filter is designed using an M-based language, a
Prewitt filter can be designed within approximately 500 s. This
remarkable feature is also effective for design reuse in M-based
design flow.

B. Case study of comunication filter design

We also conducted a case study involving the design of a
digital filter used extensively in various embedded systems. As
in the previous section, the target device of the design case
study was an FPGA. In this case, the filter algorithm was
developed in M, after which it was verified at the level of
floating-point operations. When the behavior of the algorithm

Figure 8. Comparison of fixed-point results (top) and floating-point
results (middle), and the resulting quantization error (bottom).

Figure 9. Digital filter design flow.

Figure 10. Trade-off analysis results.

-1 0 1

-1 0 1

-1 0 1

1 1 1

0 0 0

-1 -1 -1

Item Sobel Prewitt

Max freq. (MHz) 100.9 102.9

Area (KG) 7.74 7.49

LUT (pieces) 393 374

Levels of logic 9 7

Run time (s) 438 441

26

28

30

32

100 120 140 160

A
rea (K

G
)

Automatic conversion
Fixed-point

MATLAB

block

Design constraint

HDL

 code

Gate-level

netlist
Logic synthesis

A
u

to
m

atic

co
n

v
ersio

n

Floating-point

MATLAB

block Compare

Performance frequency (MHz)

16 A. Matsuda, S. Baba: M-based Filter Design for Communication…

was satisfactory, an automatic conversion into fixed-point
operation was performed in order to obtain the respective
hardware design, where the fixed-point operations were
described as fixed integer and decimal parts of a bit sequence.

Quantization error arises when approximating real
numbers with a variable decimal point, for example, when
comparing the results of floating-point and fixed-point
calculations. The magnitude of this error must be examined in
hardware design, and MATLAB can be used for rapid and
straightforward computation of this parameter. Fig. 8 shows the
results for the quantization error associated with fixed-point
and floating point operations, where the fixed-point simulation
results are shown in the top panel, the floating-point simulation
results are shown in the middle panel, and the quantization
error is shown in the bottom panel. Clearly, the quantization
error is within the interval of ±3/1000. Additionally, MATLAB
can display and compare three simulation results
simultaneously on the same screen, which is convenient when
verifying the results.

Here, we describe a case study of designing a Kalman filter,
which is often used in car navigation systems as well as in
video processing. First, the Kalman filter algorithm was
developed in M. Fig. 9 shows the hardware design flow, where
it is clear that once developed, the floating-point model in M at
the algorithm development phase automatically proceeds to the
hardware implementation phase in the form of a gate-level
netlist.

In general, the two major constraints in this case are speed
(frequency) and cost (device area) for digital filter design, in
other words, the desired results are high speed and low cost.
However, those two constraints are in a trade-off relationship,
and they must be investigated by changing a number of
parameters and performing several design iterations with each
set of parameters. This design flow can be automated in order
to promptly obtain trade-off analysis results in a simple manner
by examining various combinations of constraints. Fig. 10
shows the analysis results for this case study, where the design
constraints were a frequency over 100 MHz and an area
smaller than 30 KG, and it is clear that the optimal result is
attained at a frequency of around 120 MHz Thus, the M-based
design method can be used for performing faster and easier
trade-off analysis without any changes to the M-based
description at the algorithmic level.

C. Case study of FIR filter design and verification

Next, we introduce a case study where M-based design is
used in the verification of a finite impulse response (FIR) filter,
which is one of the most commonly utilized digital filter types
in mobile phones, receivers, and other devices. This time, the
target of the design is a 16-dimensional FIR low-pass filter
with given specifications. The main specifications are a
sampling frequency of 44 kHz and a cut-off frequency of 2
kHz. Other filter factors, such as response type, frequency
specification and amplitude, can be easily set in MATLAB.

In the M-based design environment, if a parameter is
defined as a user variable, then it is considered that the
parameter can be changed freely, and therefore the design

Figure 11. Setting the number of input bits.

TABLE V. TRADE-OFF ANALYSIS BASED ON THE NUMBER OF INPUT BITS

Number of

bits
8 12 16 20

Freq. (MHz) 142 136 133 110

Area (Gates) 923 1170 1215 1890

Slices (pieces) 67 83 103 144

specifications can be modified. Here, the process involves
designing the filter hardware and focusing on the number of
input bits, which is one of the most important variables. As
described earlier, the input consists of a number of bits and a
binary point. If these parameters are provided as data with
variable length and decimal point position, they can be
changed. In this regard, Fig. 11 shows an outline of this
configuration. At the filter algorithm development phase, input
signals are processed by floating-point operations, while fixed-
point operations are needed in the case of hardware design.
Therefore, the number of input signal bits must be fixed in the
latter. Although the signal accuracy becomes higher as the
number of input bits increases, the size of the designed circuit
increases, and vice versa. As described in the previous sections,
trade-off analysis is performed with respect to the number of
input bits. Table 3 shows how the circuit performance varies
based on the number of input bits.

At the design specification phase, the number of input bits
was set to 12 or 16, and the corresponding results are shown in
Table 3. As clear from the table, the effect of changing the
number of input bits on the operation frequency and the area
was negligible, and since the result with 16 bits indicates
higher accuracy, the number of bits was set to 16. In this case,
the data length (number of bits) was 16 bits, and the position
of the decimal point (binary point) was set to 10 bits. Based on
the trade-off analysis performed by applying the M-based
design method, it can be concluded that the analysis results can
be obtained promptly, thus reducing the amount of time
required for development, and the design specifications can be
verified with high accuracy [14].

VI. DISCUSSION

We have demonstrated the possibility for automating all
processes from algorithm verification to system description and
detailed design of hardware in a consistent manner by using a
design method based on the M language. As a result, high-
quality system-level design can be accomplished in a

1 1 1 0

Binary point = 10

・・・ ・・・ 0 1

Number of bits = 16

A. Matsuda, S. Baba: M-based Filter Design for Communication… 17

comparatively shorter period of time than with conventional
tools. The realization of such functionality has been
approached from various directions in the past, and currently
the most commonly used design techniques are based on C-
based languages (high-level synthesis techniques). This design
approach eliminates the need for rewriting C source code into
HDL code and shortens both the development time and the
simulation time.

When a design environment based on a C-based language is
constructed, two problems occur that strongly depend on the
high-level synthesis tool and the possibility for reusing
properties from current and previous designs. Using a C-based
language for the original design produces increasingly complex
code, which often entails an increase in development time. To
resolve these problems, we adopted a design technique based
on the M language, which facilitates the construction of
simulation environments.

The adoption of this method is expected to alleviate the
difficulties associated with design based on C-based languages,
which is implemented only by skilled software engineers, and
design based on manual HDL coding, which is implemented
only by skilled hardware engineers for embedded system
design. This method allows both software engineers and
hardware engineers to perform verification and debugging at
the algorithmic level. It also allows for specifications to be
promptly and accurately implemented as hardware modules by
system designers and algorithm designers.

On the other hand, the conversion of floating-point
operations into fixed-point operations is one of the important
issues which must be resolved in order to ensure the seamless
integration of all steps from algorithm development to
hardware development. Therefore, in this work we
intentionally adopted techniques based on the M language.
However, the support for automation for this language is not at
a satisfactory level, whereas design based on C-based
languages is 100% automated.

Since the results of these trials include application-specific
integrated circuit (ASIC) optimization, the same results or
trends might not be observed when designing different types of
hardware. However, it is clear that TAT can be consistently
reduced. It is possible that without strong dependence on high-
level synthesis tools, M-based design can be regarded as a
process of combining block modules from a database. We
believe that such algorithm modules can accelerate and
improve the reuse of properties from current and previous
designs while providing the possibility for visualization of the
design flow.

VII. CONCLUSION

Simulation environments for hardware design can be built
in a straightforward manner by using M-based design, and
simulations can be readily conducted in such environments.
The M language was also found to improve the reusability of
intellectual property from current and previous hardware
designs. This design method supports automatic conversion

from floating-point to fixed-point operations, which is highly
useful in hardware design.

In addition, the design method can be used to analyze trade-
off tendencies in circuit performance by taking into account the
input signal and the operating frequency. Therefore, M-based
design can increase the productivity of embedded systems
designers. In the design of complex embedded systems, this
design method might prove highly effective for shortening the
development period and reducing the incidence of serious
flaws.

VIII. FUTURE WORK

Currently, the adoption of the M language for all hardware
development is not possible since advanced functions, complex
control logic, a complete environment for fulfilling
equivalency checking, and formal property checking of
automatically generated HDL code are as yet unavailable. We
believe that when such functionality is implemented, hardware
development time can be dramatically reduced and co-
simulation and co-verification can be performed by assigning
equivalence relations between M-based modules and HDL
modules. We plan to continue our investigations in this
direction by using M-based design.

REFERENCES

[1] W.E. Leonard and W.S. Levine, “Using MATLAB to Analyze
and Design Control Systems,” Benjamin-Cummings Publishing,
1995.

[2] R.C. Gonzalez, R.E. Woods, and S.L. Eddins, “Digital Imaging
Processing Using MATLAB,” Prentice Hall Press, 2007.

[3] J.W. Woods, “Multidimensional Signal, Image, and Video
Processing and Coding,” 2nd edition, Academic Press 2011.

[4] O. Schliebusch, H. Meyr, and R. Leupers, “Optimized ASIP
Synthesis from Architecture Description Language Models,”
Springer, pp.1-21, 2007.

[5] P. Coussy, G. Gajski, A. Takach, and M. Meredith, “An
Introduction to High-Level Synthesis”, Special issue on High-
Level Synthesis, IEEE Design and Test of Computers, Vol.26,
No.4, 2009.

[6] G. Martin and G. Smith, “High-Level Synthesis: Past, Present,

and Future,” IEEE Design & Test of Computers, Vol.26, No.4,
pp.18-25, 2009.

[7] Z. Zhang, Y. Fan, W. Jiang, G. Han, C. Yang, and J. Cong,
“AutoPilot: A Platform-Based ESL Synthesis System,” in High-
Level Synthesis: From Algorithm to Digital Circuit, Ed. P.
Coussy, A. Morawiec., 2008.

[8] K. Wakabayashi, “C-based synthesis experiences with a
behavior synthesizer, “Cyber”,” in Proc. of DATE’99, pp.390-

393, 1999.

[9] B.K. Gunturk, J. Glotzbach, Y. Altunbasak, R.W. Schafer, and
R.M. Mersereau, “Demosaicking: color filter array
interpolation,” IEEE Signal Processing Magazine, Vol.22,
pp.44-54, 2005.

[10] J. Astola and P. Kuosmanen, “Fundamentals of Nonlinear
Digital Filtering,” Boca Raton, FL: CRC, 1997.

18 A. Matsuda, S. Baba: M-based Filter Design for Communication…

[11] P.P. Vaidyanathan, “Multirate Systems and Filter Banks,”

Prentice Hall 1993.

[12] Image web site:
http://users.ecs.soton.ac.uk/msn/book/new_demo/

[13] A. Matsuda and S. Baba, “An Automated Design Flow for
Image Processing Filter in Embedded Systems,” in Proc. of the

9th IEEE International Conference on ASIC (ASICON2011),
Vol.1, pp.768-771, 2011.

[14] A. Matsuda and S. Baba, “Case Study of Filter Design in
Embedded Systems,” in Proc. of the 2011 IEEE Student

Conference on Research and Development (SCOReD), pp.271-
276, 2011.

