

International Journal of Computing and Network Technology
ISSN (2210-1519)

Int. J. Com. Net. Tech. 4, No. 1 (Jan.-2016)

E-mail address: aliathark2@gmail.com, amahmood@uob.edu.bh

http://journals.uob.edu.bh

Comparison of Software Complexity Metrics

Ali Athar Khan, Amjad Mahmood, Sajeda M. Amralla and Tahera H. Mirza

Department of Computer Science, University of Bahrain, Sakhir, Bahrain

Received: 25 Sept. 2015, Revised: 1 Dec. 2015, Accepted: 12 Dec. 2015, Published: 1 (January) 2016

Abstract: One of the main problems in software engineering is the inherent complexity. Complexity metric is used to estimate

various parameters such as software development cost, amount of time needed for implementation and number of tests required. In

this paper, different software complexity models are critically studied and compared. For application, quick sort algorithm is

considered. The programs are written in three object oriented languages: C++, Visual Basic and Java. Software complexity for each

program is found using the four popular LOC, McCabe, Halstead and Cognitive models. The results are compared.

Keywords: Software Complexity Metric, Line of Code, Cyclomatic Number, Cognitive Complexity.

1. INTRODUCTION

A software metric is the measurement, usually using
numerical ratings, to quantify some characteristics or
attributes of a software entity [1]. Typical measurements
include quality of the source codes, development process
and the accomplished applications. Software complexity
is a major feature of computer software and is difficult to
be measured accurately. It is defined as “the degree to
which a system or component has a design or
implementation that is difficult to understand and verify”
[2]. High complexity may result in more errors and
difficulties in maintenance, understandability,
modification and testing effort [3,4]. Therefore, there has
been a great deal of interest in defining appropriate
metrics to measure the complexity of the software.
Although some useful metrics have been proposed to
measure the software complexity [2-9], the current
solutions are not enough to settle down this rigorous
problem. Both computer researchers and the software
engineers are looking for more powerful and effective
metric of software complexity [10].

A study was done using 71,917 C/C++ programs to
find relations between internal software metrics and
metrics of software dependability. It was found that there
is a very strong correlation between Lines of Code and
Halstead Volume; there is an even stronger correlation
between Lines of Code and McCabe‟s Cyclomatic
Complexity; and none of the internal software metrics
makes it possible to discern correct programs from
incorrect ones [11].

The aim of this paper is to critically study and
compare four commonly used complexity metrics: LOC
complexity, McCabe Cyclomatic Complexity, Halstead
and Cognitive metric. It is demonstrated through an
example that these metrics provide different complexity
measures for the same piece of code, thus making it
difficult for the software engineer to choose a suitable
complexity metric. Therefore, there is a need to develop a
unified complexity metric which is more powerful and
effective in measuring the software complexity.

The rest of the paper is organized as follow: section 2

presents a review of the software complexity metrics.

Section 3 presents complexities of programs written in

three object-oriented programming languages using

various complexities metrics. A comparison of

complexity metrics is presented in section 4 followed by

conclusion in section 5.

2. REVIEW OF SOFTWARE COMPLEXITY METRICS

Several methods have been proposed to measure the
software complexity. Among the most frequently cited
measures are the line of code (LOC), McCabe‟s
cyclomatic complexity, Halstead‟s software metric and
Cognitive weights model. We briefly discuss these
metrics in this section.

A. Line of Code (LOC) Complexity

The simplest way to measure the complexity of a
program is to count the lines of executable code. There is
a strong relationship and connection between complexity
and size of code which influences the testability and
increases the implementation and running time [4]. A

 20 Ali Athar Khan et al.: Comparison of Software Complexity Metrics

http://journals.uob.edu.bh

program with larger LOC value takes more time to be
developed. Generally, logical lines of code (LLOC) are
more useful as compared to physical lines of code. LOC is
a good estimate of the complexity of a program, is easy to
implement, and does not require the complex operations
and calculations [6]. Moreover, counting lines of code can
be transformed from a manual operation to an automated
operation. However, it is programmer and language
dependent and it does not take into consideration the code
functionality [12].

B. McCabe’s Cyclomatic Complexity Complexity

McCabe defined the cyclomatic number as program
complexity [3]. This counts the number of linearly
independent paths through a program [11]. First the flow
graph of the program is drawn and then the cyclomatic
number is found using the following formula [5]:

 pneGVM 2)((1)

Where, e is the number of edges in the graph, n is

the number of nodes and p is the number of unconnected
parts in the graph. It is recommended that no single
module has a value of M greater than 10. Modules which
have a value of greater than 10 are considered as
complex modules and require much more testing effort.
Those modules should be redesigned to reduce value of
M [3]. Cyclomatic number can be easily computed in the
development lifecycle during all phases. It improves the
testing process, highlights the best areas of concentration
for testing and gives the number of recommended tests for
software [3,5]. However, the cyclomatic number presents
only a partial view of complexity and can be misleading
[4].

C. Halstead’s Software Metric

Halstead model defines a program as a collection of
tokens, classified as either operators or operands. He
proposed the following formulas to find Program Length,
Program Vocabulary, Volume, Difficulty, and Effort
[4,8]:

Program Vocabulary 21)(hhh (2)

Program Length 21)(NNN (3)

Volume hNV 2log)((4)

Potential Volume)2(log)2()(222
* hhV (5)

Program Level VVL /)(* (6)

Difficulty
*/)(VVD (7)

Effort LVE /)((8)

Faults
*/)(SVB (9)

Where N1 is the number of all operators in the code,
N2 is the number of all operands in the code, h1 is the
number of distinct operators in the code, h2 is the number
of distinct operands in the code, V* is the minimum
volume represented by a built-in function that can perform
the task of the entire program and S* is the mean number
of mental discriminations or decisions between errors - a
value estimated as 3,000 by Halstead.

Halsted found that complexity increases as vocabulary
and length increase. Moreover, complexity increases as
volume increases and program level decreases. Modules
which do not have program levels close to 1 are too
complex.

Halstead method is easy to implement, simple to
calculate, can be used for any programming language,
minimizes rate of errors and maintenance effort.
However, there are many shortcomings of this model. It
has little or no use as a predictive estimating model. It is
based on some unreal and imaginary assumptions which
cannot be proven easily. For the large programs it is
difficult to count the distinct operators and operands.

D. Cognitive Weights Model

Cognitive Weights Model proposed Cognitive
Functional Size (CFS) to measure the complexity. CFS is
based on cognitive weights. For this, every Basic Control
Structure (BC) is assigned a cognitive weight. Either all
the BCS‟s are in a linear layout or some BCS‟s are
embedded in others. For the former, sum of the weights of
all n BCS‟s are added and for the later, cognitive weights
of inner BCS‟s are multiplied by the weights of external
BCS‟s [2,7,9]. Figure 1 shows different types of BCSs,
the corresponding dedicated weight and Real Time
Process Algebra (RTPA) for each one [7].

The total cognitive weight of the software, Wc is
defined as the sum of cognitive weights Wc of its q linear
blocks composed of individual BCSs. Since each block
may consist of m layers of nesting BCSs, and each layer
of n linear BCSs, Wc is given as:

),,(

1 1 1

ikjwW
q

j

m

k

n

i
cc

 (10)

If there is no embedded BCS in any of the q blocks,
then m=1 and Wc is simplified as:

),,(

1 1

ikjwW
q

j

n

i
cc

 (11)

 12 Int. J. Com. Net. Tech. 4, No. 1, 19-26 (Jan. 2016)

http://journals.uob.edu.bh

Cognitive Functional Size is defined as:

ci WNNCFS)(0 (12)

Where Ni is the number of inputs and No is the number
of outputs.

Figure 1: BCSs and their cognitive weights [7]

It has been established that the larger is the cognitive
complexity, the larger the amount of information
contained in the software. Programs having higher code
cognitive efficiency use fewer lines of code to implement
more complex software. However, the cognitive weight
method was modified to become more efficient and easier
to calculate [2]. The following concepts were added.

1. Information contained in one line of code is the number
of all operators and operands in that line of code.
Thus Information contained in k

th
 line of code is

given by:

Ik = (Identifiers + Operands)k = (IDk + OPk) IU (13)

Where OPk is total number of operators in the k
th
 LOC

of software, IU is the Information Unit to represent that at
least any identifier or operator has one information unit in
them.

2. Total Information contained in a software (ICS) is sum
of information contained in each line of code:

LOCS

k
kIICS

1

 (14)

Where, Ik is Information contained in k
th
 line of code

and LOCs is total lines of code in the software.

3. The weighted Information Count of a line of code
(WICL) is defined as

WICLk = ICSk / [LOCs – k] (15)

Where, WICLk is Weighted Information Count for the
k

th
 line and ICSk is information contained in a software for

the k
th

line.

4. The Weighted Information Count of the Software
(WICS) is defined as:

LOCS

k
kW ICLW ICS

1

 (16)

5. Cognitive Information Complexity Measure (CICM) is
defined as:

CICM = WICS * Wc (17)

6. Information Coding Efficiency (EI) of a software is
defined as:

(EI) = ICS / LOCS (18)

Cognitive weight is a good method since it is easy to
understand and calculate, represents the complexity value
in terms of small number, and is almost independent of
language programmer‟s experience. Table 1 compares the
four metrics with reference to various parameter
attributes.

3. FINDING COMPLEXITY OF PROGRAMS

In this paper, quick sort algorithm is written in three
object oriented languages: C++, Visual Basic and Java
(program codes are given in Figure 2, 3 and 4). For each
program, all four metrics are found and compared. The
metrics which are obtained here are both „pure‟ object–
oriented metrics and metrics proposed for structural
programming that could also be applied to object–oriented
programming.

 22 Ali Athar Khan et al.: Comparison of Software Complexity Metrics

http://journals.uob.edu.bh

TABLE 1: COMPARISON BETWEEN COMPLEXITY METRICS

Attribute LOC McCabe’s Halsted Cognitive

Is it language
dependent?

Yes No Yes No

Is it sensitive
to cosmetic
changes?

Yes No No No

Is easy to be
computed?

Yes Yes No Yes

Is it predictive
estimating

model?
No Yes No Yes

1 #include<iostream>
2 using namespace std;
3
4 int main()
 5
6 {
7
8 int A[] = {1, 9, 0, 5, 6, 7, 8, 2, 4, 3};
9 intlength=10;
10 quickSort(A,0,length-1);
11
12 }
13 void quicksort(int A[], int F , int L)
14 {
15 int pivotIndex;
16
17 if (F < L)
18 {
19 Partition(A,F,L, pivotIndex);
20 quicksort(A,F,pivotIndex-1);
21 quicksort(A , pivotIndex+1, L);
22 }
23 }
24
25 void partition(int A[] , int F , int L , int &
 pivotIndex)
26 {
27 int pivot = A[F];
28 int lastS1 = F ;
29 int firstUnknown = F + 1 ;
30
31 for (; firstUnknown <= L ;
 ++ firstUnknown)
32 {
33 If (A[firstUnknown] < pivot)
34 { ++lastS1;
35 Swap(A[firstUnknown], A[lastS1]);
36 }
37 }
38 Swap(A[F], A[lastS1]);
39 pivotIndex=lastS1;
40
41 }
42
43 void Swap(int & x, int & y)
44 {
45 Int temp = x;
46 X=y;
47 Y=temp;
48 }

Figure 2. Quick sort implementation code in C++ [13]

1 Public Class QS
2 {
3
4 Public static void main (String[] args)
5
6 {
7 int arr[10] = {1, 9, 0, 5, 6, 7, 8, 2, 4, 3};
8 int length = 10;
9 int result[]= new int (10);
10 result =QuickSort (arr, 0, length-1);
11 }
12
13 Static int [] QuickSort (int [] a, int l , int r)
14 {
15 if (l < r)
16
17 {
18 int i=l;
19 int j=r;
20 int k = (int) ((l+r) / 2);
21 int pivot = a[k];
22
23 do
24 {
25 while (a[i].less (pivot))
26 i++;
27 while (pivot.less (a[j]))
28 j--;
29
30 if (i <= j)
31 {
32 int t = a[i] ;
33 a[i] = a[j] ;
34 a[j]=t;
35
36 i++;
37 j++;
38
39 }
40 }
41 while (i < j)
42
43 a= QuickSort (a, l, j);
44 a= QuickSort (a, i, r);
45 }
46
47 return a;
48
49 } // end of QuickSort
50
51
52 } // end of class QS

Figure 3. Quick sort implementation code in Java [14]

To find the complexity, we used the cyclomatic and
flow graphs for each program. These graph for C++ code
are given in Figure 5 and Figure 6 respectively. Similar
graphs were also prepared for visual basic and java codes
which are not included because of the lack of space.
Software complexity metrics are calculated and results are
shown in Table 2.

 12 Int. J. Com. Net. Tech. 4, No. 1, 19-26 (Jan. 2016)

http://journals.uob.edu.bh

1 Public Class Form1
2
3 Private Sub Form1_Load(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles MyBase.Load
4
5 Dim length as integer
6 Dim arr (10) as integer
7
8 arr(0)=1
9 arr(1)=9
10 arr(2)=0
11 arr(3)=5
12 arr(4)=6
13 arr(5)=7
14 arr(6)=8
15 arr(7)=2
16 arr(8)=4
17 arr(9)=3
18
19 length = 10
20
21 Quicksort(arr, 0, length-1)
22
23 End Sub
24
25
26 Public Sub Quicksort(list()As Integer,ByVal min As Long, ByVal

max As Long)
27 Dim med_value As Long
28 Dim hi As Long
29 Dim lo As Long
30 Dim i As Long
31
32 If min >= max Then Exit Sub
33 i = Int((max - min + 1) * Rnd + min)
34 med_value = list(i)
35 list(i) = list(min)
36 lo = min
37 hi = max
38
39
40 Do
41 Do While list(hi) >= med_value
42 hi = hi - 1
43 If hi <= lo Then Exit Do
44 Loop
45
46 If hi <= lo Then
47 list(lo) = med_value
48
49 End If
50
51 list(lo) = list(hi)
52 lo = lo + 1
53
54
55 Do While list(lo) < med_value
56 lo = lo + 1
57 If lo >= hi Then Exit Do
58 Loop
59
60 If lo >= hi Then
61 lo = hi
62 list(hi) = med_value
63
64 End If
65
66 list(hi) = list(lo)
67
68 Exit Do
69 Loop

70
71 Quicksort (list, min, lo – 1)
72 Quicksort (list, lo + 1, max)
73 End Sub
74
75 End Class

Figure 4: Quick sort implementation code in VB.Net [15]

int A[] = {1, 9, 0, 5, 6, 7, 8, 2, 4, 3};

start

1
1

int length=10;

Partition(A,F,L, pivotIndex);

int lastS1 = F ;

quickSort(A, 0, length-1);

int pivot = A[F];

if (F < L)

Int temp = x;

X=y;

++lastS1;

Swap(A[firstUnknown], A[lastS1]);Swap(A[F], A[lastS1]);

int firstUnknown = F + 1 ;

end

for (; firstUnknown <= L ; ++ firstUnknown)

 If (A[firstUnknown] < pivot)

Y=temp;

pivotIndex=lastS1;

Int temp = x;

X=y;

Y=temp;

quicksort(A , pivotIndex+1, L);

quicksort(A,F,pivotIndex-1);

8

7

6

5

4

3

2

15

14

13

12

11

10

9

21

19

18

17

20 16

22

10

9

8

7

6

5

4

3

2

16

17

15

14

13

12

11

23

22

20

19

18

21

25

24

28

26

int pivotIndex;

23

27

Figure 5: Cyclomatic graph of C++ code

 24 Ali Athar Khan et al.: Comparison of Software Complexity Metrics

http://journals.uob.edu.bh

start

1

13

12

11

10

9

8

7

6

5

4

3

2

14

end

15

22

21

20

19

18

17

16

23

1

6

8

7

5

4

3

2

14

13

12

11

10

9

19

18

17

16

15

24

23

22

21

20

25

27

26

28

Figure 6: Flow graph of C++ code

4. COMPLEXITY COMPARISON OF PROGRAMS

The complexity of the three programs are summarized
in Table 3. It can be seen that the VB program has the
highest LOC and LLOC values which are 75 and 24,
respectively. Hence it is more complex and takes more
time to be developed. The McCabe Cyclometic numbers
of all the three programs are greater than 10. These are
complex modules and require much more testing time.

Here also VB program is the worst. It is observed that one
of our calculated Halstead values which is Program Level,
L of all the three programs are not close to 1 and are very
low. This indicates that all the programs are too complex.
The Halstead difficulty level D for C++ program has the
highest value. This shows that C++ is the worst and
hence more complex compared to other two programs. It
is found that VB program has the highest Halstead effort
value. VB program has also the highest Halstead Faults
number which is 0.508. The Cognitive CICM value of
C++ program is 78.009 which is the highest. This means
that the amount of information contained in the software
is more as compared to others.

TABLE 2: COMPLEXITY CALCULATIONS

Complexity
Method

C++ Program VB Program
Java

Program

LOC

LLOC

48

17

75

24

52

18

McCabe
method

M = e-n+2p

M=28-23+2*3

= 11

M=60-51+2*5

= 19

M=30-24+2*3

=12

Halstead
method

h = h1 + h2

N = N1 + N2

V = N log2 h

V* = (2 + h2)
log2 (2 + h2)

L = V* /V

D = V/V*

E = V/L

B = V / S*

N1 = 142

N2 = 57

h1 = 25

h2 = 21

h = 46

N =199

V = 1100.47

V* =104.19

L = 0.094

D =10.56

E = 11707.13

B = 0.37

N1= 155

N2= 89

h1 = 41

h2 = 35

h =76

N = 244

V = 1525

V* = 192.77

L =0.126

D = 7.91

E =12103.17

B = 0.508

N1= 133

N2= 53

h1 = 33

h2 = 22

h =55

N =186

V = 1075.08

V* = 109.92

L = 0.102

D = 9.78

E =10540

B = 0.358

Cognitive
method

LOC

Total # of
identifiers

Total #r of
operators

Wc

WICS

CICM =
WICS * Wc

48

66

9

28

2.786

78.0094

75

86

17

23

2.2682

52.170

52

58

10

39

1.9934

77.743

 12 Int. J. Com. Net. Tech. 4, No. 1, 19-26 (Jan. 2016)

http://journals.uob.edu.bh

TABLE 3: SOFTWARE COMPLEXITY OF PROGRAMS

Complexity
Method

C++ Program VB Program
Java

Program

LOC
LLOC

48
17

75
24

52
18

McCabe
Cyclometic

number

11

19

12

Halstead
method

Program level

Difficulty
Effort
Faults

0.094
10.56

11707.13
0.37

0.126
7.91

12103.17
0.508

0.102
9.78

10540
0.358

Cognitive
method
CICM

78.0094

52.170

77.743

5. CONCLUSION

The Software complexity plays a vital role to reduce
the effort to build and maintain software, and to enhance
the effectiveness of testing and software quality. The more
complex the software solution the more errors it
generates. In this paper, four software metrics, their
importance, weaknesses and strengths are studied. Then
the LOC, McCabe‟s cyclometic, Halstead and Cognitive
Weight metrics were calculated for three programs written
in object oriented languages to implement the quick sort
algorithm.

According to LOC metric and McCabe‟s number M,
programs in C++, Java and VB are in increasing order of
complexity. All the three are too complex as their M
values are greater than 10. According to Halstead and
cognitive weight metrics, program in C++ has complexity
higher than that of program in Java and program in Java
has complexity higher than that of program in VB. Thus
it is not possible to say which program is more complex
because different software metric gives different result.
However, C++ is better in aspect of size, testing time, VB
is better in aspect of difficulty and Java is better in aspect
of effort.

The reason that not all metrics are giving the same
results is that each method covers a part and considers
some parameters while leaving some others. Therefore, a
combination of metrics is recommended to be used to
measure the complexity.

REFERENCES

[1] B. Jayanthi, and K. KrishnaKumari, "Brief study on
Software quality metrics and software complexity metrics
in Web application," International Journal of Engineering
Sciences & Research Technology, vol. 3, no. 12, 2014, pp.
441,444.

[2] D. S. Kushwaha, and A. K. Misra, “A modified cognitive
information complexity measure of software,” ACM
SIGSOFT Software Engineering Notes, vol 31, no. 5,
2006, pp. 1-4.

[3] A. H. Watson, and T. J. McCabe, “Structured testing: a
testing methodology using the cyclomatic complexity
metric,” Computer Systems Laboratory, National Institute
of Standards and Technology, September 1996.

[4] S. Nystedt, and C. Sandros, “Software complexity and
project performance,” School of Economics and
Commercial Law at the University of Gothenburg, 1999.

[5] A. and Sharma, D.S. Kushwaha, “A Complexity measure
based on requirement engineering document,” Journal of
Computer Science and Engineering, vol 1, no. 1, 2010, pp.
112-117.

[6] C. Jones, “Strength and weaknesses of software metrics,”
Version 5 , 2006.

[7] J. Shao,and Y. Wang , “A new measure of software
complexity based on cognitive weights,” Can. J. Elect.
Comput. Eng., vol. 28, no. 2, 2003, pp. 69-74.

[8] M. H. Halstead, “Elements of Software Science,” New
York : Elsevier North, 1976.

[9] S. Misra, “A complexity measure based on cognitive
weights,” International Journal of Theoretical and Applied
Computer Sciences, vol. 1, no. 1, 2006, pp. 1-10.

[10] S. Yu, and S. Zhou, “A survey on metric of software
complexity,” In The 2nd IEEE International Conference on
Information Management and Engineering (ICIME), 2010,
pp. 352-356.

[11] M. J. P. van der Meulen, “Correlations between internal
software metrics and software dependability in a large
population of small C/C++ programs,” 18th IEEE
International Symposium on Software Reliability
Engineering, 2007, pp. 203-206

[12] E. E. Mills, “Software metrics,” SEI Curriculum Module
SEI-CM-12-1.1, Seattle University, December 1988.

[13] F. M. Carrano, “Data abstraction and problem solving with
C++,” New Jersey: Pearson, 5th Edition, 2006.

[14] J. Bishop, “Java gently, Programming Principles
Explained,” England: Addison-Wesley, 3rd Edition, 2001.

[15] “http://www.bigresource.com,” Oct 2010.

 26 Ali Athar Khan et al.: Comparison of Software Complexity Metrics

http://journals.uob.edu.bh

Biographical notes

 Dr. Ali Athar Khan received a B.

Tech (Hons) EE from Indian

Institute of Technology, khargpur,

India; his M.E.ECE from Indian

Institute of Science, Bangalore,

India; and PhD in Computer

Science from Indian Institute of

Technology, Roorkee, India. He is

an Associate Professor in the Department of Computer

Science at the University of Bahrain. He has published

His research interests include Petri net, parallel

processing and software Engineering.

Tahera H. Mirza got her B.Sc. in computer science from

the department of computer science, university of

Bahrain, Bahrain

Dr. Amjad Mahmood is an

associated professor in the

department of computer science

in the University of Bahrain,

Bahrain. He received his M. Sc.

in computer science from QAU,

Pakistan in 1989 and a Ph.D.,

also in computer science, from

the University of London, UK

in 1994. Before joining the University of Bahrain in 2000,

he worked with King Saud University, Saudi Arabia

(1999–2000), Philadelphia University, Jordan (1997–

1999) and National University of Science and

Technology, Pakistan (1995–1997). He has published

over 65 research papers in international journals and

conferences. His research interests include distributed

computing, real-time systems, meta-heuristics, World

Wide Web, and software engineering.

Sajeda M. Amralla got her B.Sc. in computer science

from the department of computer science, university of

Bahrain, Bahrain.

.

