

International Journal of Computing and Network Technology
ISSN (2210-1519)

Int. J. Com. Net. Tech. 4, No. 1 (Jan.-2016)

E-mail address: yasserali1977@gmail.com

http://journals.uob.edu.bh

A Cost – Effective Programmable SoC for H.265/HEVC

Full Search Motion Estimation using Xilinx

ZYNQ-7 ZC706 FPGA

Yasser Ismail
1,2

1College of Information Technology, Department of Computer Engineering,

University of Bahrain, Sakhair, Bahrain.
2Electronics and Communications Engineering Department, Faculty of Engineering,

Mansoura University, Mansoura, Egypt.

Received: 02 Sept. 2015, Revised: 04 Dec. 2015, Accepted: 10 Dec. 2015, Published: 1 (January) 2016

Abstract: A complete Full Search Motion Estimation Video system that can be adopted and integrated into H.264/AVC and

H.265/HEVC standards. The proposed system reduces the computational complexity as well as hardware complexity. The overall

data needed by this system is greatly reduced by using smart and efficient local memory that uses data reuse principle. All

components of the proposed system are optimized, and so, the speed of the proposed Motion Estimation system is greatly improved.

Both of the current block and the corresponding search area are loaded efficiently inside the Processing Element (PE). The search

area is loaded horizontally from a local memory while the current block is loaded once from an external memory. The local memory

is implemented using registers and the addressing issues are done using a simple counter. This guarantees a fast processing,

regularity of the data flow, simplicity of the hardware design, and 100% utilization factor of all components of the proposed system.

Additionally, there are no complicated addressing modes to read or write data to/from the local memory. The proposed architecture is

implemented using Xilinx ZYNQ-7 ZC706 FPGA tool. For a search range of 32×32 and block size of 16x16, the proposed Motion

Estimation system can perform motion estimation of HDTV video at 123.53MHz operating frequency and achieving two levels of

data reuse.

Keywords: Motion Estimation, FPGA, HDTV, H.264/AVC, H.265/HEVC.

1. INTRODUCTION

H.264/AVC (Advanced Video Coding) and

H.265/HEVC (High Efficiency Video Coding) standards

are recently used for many real-time applications [1-4].

Video conferencing, HDTV broadcasting, video-on-

demand, and ultra frequency video transmission are

examples for such real-time applications [5]. Such

applications require very low bit-rate as well as high

video quality. Previous two video standards achieve the

last two requirements for real-time video applications by

adding some complex tools to the video encoder.

Multiple reference frames, half-pel and quarter-pel

accurate Motion Estimation, parallel processing, and

variable block sizes techniques are examples for such

added tools.

Full Search Motion Estimation (FSME) is the well

known algorithm used in both H.264/AVC and

H.265/HEVC standards for removing the temporal

redundancy of the transmitted video signal while keeping

high video quality as well as low transmission bit-rate.

However, it consumes most of the video encoding time

[5]. As a result, many fast Motion Estimation algorithms

were developed to tackle this problem. Three Step Search

(TSS) [6, 7], New Three Step Search (NTSS) [8], Four

Step Search (FSS) [9], Diamond Search (DS) [10], Cross

Diamond Search (CDS) [11], Successive Elimination

Algorithm (SEA) [12, 13], and Adaptive Search Window

Size (ASWS) [14, 15] are examples of such fast Motion

Estimation algorithms.

Although most of previous fast Motion Estimation

algorithms provide great reductions in time encoding

complexity, some of such algorithms are not implemented

in VLSI and decrease the video visual quality [16, 17].

This is why Full Search Motion Estimation is the most

used algorithm in most video coding standards due to its

data flow regularity that allow an easy implementation in

VLSI.

 2 Yasser Ismail: A Cost – Effective Programmable SoC for H.265/HEVC Full …

http://journals.uob.edu.bh

Motion Estimation process starts by dividing the

current frame into equal-sized blocks, each of size N×N

pixels. The best match candidate block is calculated for

each current block by searching a search area centered at

the same position of the current block in the reference

frame. Figure 1 shows the Motion Estimation process

using a search area of size 2Pmax×2Pmax.; where 2Pmax is

the range of a selected search area. The point located at

the smallest cost is selected as the best match candidate

block. The cost can be measured using the Sum of

Absolute Difference (SAD) metric. The displacement

between the center of the search area and the best match

reference block is represented by the Actual Motion

Vector (AMV) [5].

Current Frame

Current

block

+

Residue

(k,l)

Reference Frame

Best

match

A
M

V

Search Area

(0,0)

PmaxPmax

P
m

a
x

P
m

a
x

(u,v)

(k,l)

Figure 1: Motion Estimation process [5].

In this paper, a Full Search Motion Estimation

architecture design is implemented on Xilinx ZYNQ-7

ZC706 FPGA. Regularity of data flow and reducing the

I/O bandwidth required for video transmission are

achieved in the proposed design. The implemented

design is compared with the state of the art FSME

technique in [18].

The paper is organized as follows. Section 2 presents

the programmable system on chip. The proposed Motion

Estimation system is discussed in details in section 3.

Section 4 discusses the simulation results. Finally

conclusion is drawn in section 5.

2. RELATED WORK

Recently, many researchers propose algorithms to

speed up the Motion Estimation (ME) process. Some of

such algorithms are not implementable due to their data

flow irregularity. Other algorithms are implementable;

however, they degrade the video quality. Therefore,

although Full Search Block Matching (FSBM) algorithm

is consider as the most exhausted Motion Estimation

algorithm, most recent researchers implement FSBM for

two main reasons. First, FSBM algorithm has a regular

data flow that positively affects on area, power

consumption, and the ME speed. Second, the high video

quality results from FSBM algorithm can qualify such

architectures to be used in high efficient state of the art

video coding standard such H.264/AVC and H.265/HEVC

[1, 2][4]. In [19], an adaptive search window size

algorithm is used for each step of the Three Step Search

(TSS) algorithm. The size of the search area is calculated

using a parameter which is a function of the Sum of

Absolute Difference (SAD) values of previous search

steps. The calculated parameter is then allocated within

certain threshold values to decide if the search window

size will be incremented or decremented.. Although this

algorithm can be implemented in hardware, the main

disadvantage is the irregular data flow and the degradation

in video quality [20]. Additionally, such algorithm

increases the computations required to get the optimum

Motion Vector (MV) since it increases the number of

steps required for getting the final MV. In [21], the search

window size of a 2D log-search algorithm is updated

according to the SAD value calculated at the search center

position. The SAD value is used to calculate two different

thresholds that can categorize the motion of a current

block into slow, medium or fast motion block. According

to the selected category, a suitable search window size can

be estimated. Another methodology of reducing the

computations of ME process is to stop the search if further

search points in search area are expected not to be selected

as a best match. In [22], the Mean Absolute Difference

(MAD) of previously estimated blocks is used as a

threshold to stop the search for the current block. The

used search pattern for such algorithm is the spiral search.

If the current MAD exceeds a certain threshold, the

threshold should stop. The implementation of such

algorithm is hard due to the irregular search pattern (spiral

search). Another approach for speeding up the ME

process is to adapt the search window size using the

prediction technique [23]. Getting the benefit of spatial

and temporal homogeneity property of a video sequence,

the motion activity of the current block can be estimated

from the motion activities of previously surrounded

blocks. The motion vectors of previously encoded blocks

are used as indicators for the motion activities of the

surrounded blocks.

Some of the above mentioned algorithms are not

optimum for the hardware implementation since they have

irregular data flow. Additionally, extensive book-keeping

may be required to record the motion activities of

previous encoded blocks. Consequently, more additional

hardware may be required. More area and power

consumption may result from such additional hardware.

Finally, degradation of video quality is the main

bottleneck of using such adaptive techniques that may

result from accumulating error while adapting the search

window size.

 3 Int. J. Com. Net. Tech. 4, No. 1, 1-11 (Jan. 2016)

http://journals.uob.edu.bh

From previous discussions, we conclude that FSBM

algorithm is the best implementable algorithm in hardware

due to the regularity of its data flow and high resolution

video quality. Full Search Block Matching The regularity

of FS is maintained while reducing computations to about

60% as compared to full search. However, the drawback

of the FSBM approach is the huge data required from the

memory to perform exhaustive search for the best match

motion vector. In this work, a smart data reuse is proposed

to reduce the amount of data to be fetched from memory

to perform the Motion Estimation process. As a result, the

memory access time will be reduced and the speed of the

whole ME process will increase.

3. PROGRAMMABLE SYSTEM ON CHIP

Application Specific Integrated Circuit (ASIC) [24,
25] and Field Programmable Gate Array (FPGA) [26, 27]
are the most recent effective tools to implementing
different algorithms in hardware. Although implementing
an algorithm using ASIC flow is much faster than the case
of using FPGA, FPGA implementation provides a very
high flexibility to its implemented algorithms.
Additionally, the cost for implementing an algorithm
using FPGA tool is much lower than the case of using
ASIC flow implementation.

Recently, the capability of FPGA boards to download
huge design is greatly improved due to the advance in the
technology used in FPGA fabrication. As a result, the
capacity of FPGA boards is grown exponentially.
Consequently, a full embedded system can be
implemented on a single FPGA chip. It is well known that
video applications require huge data to be processed. One
of the main useful tools for hardware implementation of
such video algorithm is the use of FPGA. This is because
FPGA boards can provide high capacity that allows a
complete video system to be implemented on one FPGA
board. A complete Full Search algorithm is implemented
in hardware using special video Xilinx ZYNQ-7 ZC706
FPGA board. The selected FPGA board is suitable for
processing huge video data due to its huge hardware
capacity [28].

4. SYSTEM ARCHITECTURE

The whole implemented FSME system is shown in
Figure (2-a). The Current Block (CB) and the search area
are fetched from the external memory through the De-
multiplexer (Demux). The Demux distributes the data to
either the Local Memory or the Processing Element (PE)
Array. The Local Memory consists of three sub-
memories. Local Memory send candidate blocks to the
Processing Array which contains the data of both the
current and the candidate blocks. After the absolute
differences are calculated inside the PE array, they will be
sent to the Adder Tree to get the Sum of Absolute

Difference (SAD). The SAD value is then sent to the
compare unit to find the minimum SAD between the CB
and all candidates in the search area. After the
comparison, the position of the final minimum SAD is
stored in the motion vector memory. The motion vector
memory sends all the stored actual motion vectors to the
main processor. The Control Unit controls all activities of
the processor components. The RTL top-level schematic
of the implemented FSME system is shown in Figure (2-
b). Four inputs and one output are used in our design. The
first input (INDATA) is the data coming from the external
processor. INDATA is 128 data bus to carry 16 pixels
data. Each pixel is 8 bits. The second input is the main
system clock. The last two inputs are the DOIT and the
TRIGLEPULSE which are used as enable and reset
signals for our implemented design. The output of our
design is the actual motion vector represents the position
of the best match candidate block in the search area. The
position is represented in clock cycle number that can be
easily translated to a motion vector before sending to the
main processor. Since we need 32 clock cycles for
initializing the ME process followed by 1024 clock cycles
to cover the whole search area, a total of 11 bites are
needed to represent a total of 1056 clock cycles at the
output terminal. The second RTL level and the gate level
of the implemented FSME system are shown in Figure 3
and Figure 4, respectively.

It is worth mentioning that this architecture is scalable
one, so it can be easily used for both H.264/AVC and
H.265/HEVC standards. Local memory will have same
size but the PE array will be 16×16 or 32×32 in case of
using H.264/AVC and H.265/HEVC standards,
respectively.

Control unit

SUB memory1

PE Array

SUB memory2 SUB memory3

Local memory

DEMUX

Main ProcessorExternal Memory

Adder Tree

MVMem

Compare unit

Reference data

CB data

Absolute

difference SAD

minPOS

start System clock

(a)

(b)

Figure 2: (a) The implemented FSME system block diagram. (b)

RTL top-level schematic of the implemented FSME system.

 4 Yasser Ismail: A Cost – Effective Programmable SoC for H.265/HEVC Full …

http://journals.uob.edu.bh

A. Sum of Absolute Difference (SAD)

The output of the PE array is 256 Absolute difference
values that are needed to be summed to form one Sum of
Absolute Difference (SAD). To get the SAD value, all
values output from the PE array will enter an adder tree to
perform fast and parallel additions [5]. While we design
our processor, we combine both the PE array and the
adder tree units together to form the SAD unit as seen in
Figure (5-a). The RTL top-level of the SAD unit is shown
in Figure (5-b). It takes two inputs from the Local
memory (the current block data (CBRin_data) and the
reference block data (RBRin_data)). Both input have 128
bits each representing 16 pixels input at a time. The two
inputs enter the first module (PE array) to produce 256
Absolute Differences (AD). Each AD is represented by 8
bits. These absolute differences enter the second module
(adder tree) as one bus of size (8×256 bits) to get the final
SAD represented by 16 bits. All other input signals are
used to control the data flow inside the SAD unit.

Figure 6 represents the RTL second-level of the SAD
Unit. It is worth mentioning that the number of bits in the
output SAD is considered to avoid the overflow problem
that may result if not enough number of bits in the output
are considered.

Figure 4: Gate level of the FSME system.

B. Demultiplixer and Local Memory Unit

The demultiplixer and local memory unit
(demux_memory) is responsible for storing the data
coming from the external memory. Demultiplixer takes
the data from the external memory as a 16 pixels data bus
and decide the data path either to the PE array (current
block data) or to the local memory (the reference data) as
seen in Figure 7. Figure 8 represents the RTL top-level of
the demultiplixer and local memory unit. The value of

select terminal (sel_demux) decides the data path. If the
select terminal value is 0, the demultiplixer will open the
path for the CB data to go to PE Array. If it is 1 or 2 or 3,
the reference data will go to sub memory1, sub memory2,
sub memory3 in local memory, respectively. The search
area will enter to the PE array using a 16 pixel data bus
(128 bits) as one column at a time from each internal local
memory. Counter terminal in Figure 8 is used to select a
particular column to fill the search area into the PE array.
Figure 9 represents the architecture of each sub-memory.
One of the main advantages of our local memory is its
design simplicity. Each sub-memory consists of 16×16
register array. Each register is 8-bits in length to carry a
value of one pixel. The data enter each sub-memory as 16
pixels each clock cycle from the bottom of the sub-
memory. Each clock cycle, a new 16 pixels enter the sub-
memory from the bottom shifting all old data upward.
Once one sub-memory is filled the select terminal will
switch to fill the next one. After filling the first left sub-
memory, a counter will start counting column by column
to fill the PE array with the reference block data.

PE Array Adder Tree

Absolute

differences

(8×256) bits

CBRin_data

(128 bits)

RBRin_data

(128 bits)

S
U
M
(
1
6

b
i
t
s
)

SAD Unit

(a)

(b)

Figure 5: RTL top-level of SAD Unit.

 5 Int. J. Com. Net. Tech. 4, No. 1, 1-11 (Jan. 2016)

http://journals.uob.edu.bh

Demux

1

PE Array

2
0 3

16 pixel (8 bits each)

Memory

128 bit

Sub memory1 Sub memory2 Sub memory3

Selector

48 pixel (8 bits each)

Figure 7: Top-level of demux_memory Unit.

To Local

Memory

(127:0)

To PE

Array

(127:0)

Figure 8: RTL top-level of Memory and Demux Unit.

Sub memory

8-bit register #15

16 pixels (128 bits bus)

counter

8-bit register #223

8-bit register #0 8-bit register #1

8-bit register #208 8-bit register #209

8-bit register #224 8-bit register #225

8-bit register #240 8-bit register #241

8-bit register #239

8-bit register #255

1
6

 p
ix

e
ls

 (
1

2
8

 b
it

s
 b

u
s

)

Figure 9: The internal architecture of each sub memory.

C. Compare Unit

The compare unit gets the value of the current SAD
and its corresponding position to compare with the
minimum SAD so far from previous reference blocks
search. If the current SAD is less than the minimum SAD
so far, the minimum SAD so far will be updated and the
corresponding minimum position (represented by the
clock cycle number), accordingly. Figure 10 and Figure
11 shows RTL top level and second level of the compare
unit, respectively.

As seen in Figure 11, the 54-bits register is used to
store two vectors. The first vector represents the minimum
SAD so far and its corresponding position. The second
vector represents the input SAD and its position. This
register is initialized by maximum values at the beginning
of the system operation. Those stored values of the SADs
and positions are inputs to the COMPTRANS unit which
does the comparison operation. The COMPTRANS unit
uses the COMPARE16BIT to make the comparison and
pass the result to two multiplexers (i.e., MUX 16 and
MUX 10). The MUX 16 is responsible for passing the
value of the minimum SAD so far and its corresponding
minimum position will pass via MUX 10.

Figure 10: RTL top-level of Compare Unit.

D. Motion Vector Memory

Once the search for the optimum best match is
completed, the actual motion vector corresponding to the
best match candidate block in the search area will be
stored in the motion vector memory (MVMEM). The
implemented video processor can process HDTV video
sequence of length (720 pixels/line)×(486 lines/frame). As
a result, the MVMEM consists of 1395 registers, which
equals to the number of the actual motion vectors per
frame. For higher resolution video sequence, the
MVMEM size should increase. MVMEM takes an input
of 11-bits, representing the position of the best match
candidate block, and stores it using FIFO principle. The

 6 Yasser Ismail: A Cost – Effective Programmable SoC for H.265/HEVC Full …

http://journals.uob.edu.bh

MVMEM is very simple, no addressing complexity is
used. Figure 12 represents the RTL top level of the
MVMEM.

Figure 12: RTL top-level of MVMEM.

E. Control Unit

The control unit is the most important part in the
processor. It controls all components inside the processor
by providing the required control signals for each
component. The control unit consists of two modules, the
Up Counter (UPCOUNT) and the Control Signals
controller (CScontroller). The control unit has three
inputs, enable, reset and the system clock. The outputs are
all the needed signals to control all components of the
video processor. Figure 13 shows the RTL second-level of
control Unit. The OR gate takes two reset input signals.
One of them is coming from the main processor, and the
other reset input is coming from the control unit
(CScontroller). The CScontroller generates a reset signal
after each full searching of a current block. Consequently,
counter (upcount) has to restart counting the clocks of the
new search process.

5. IMPLEMENTATION AND DISCUSSION

The implemented video video processor can process
HDTV video sequence of length (720 pixels/line)×(486
lines/frame). The frames are divided into blocks of size
16×16. The maximum number of padding pixels (Pmax in
Figure 1) is 16. As a result, the size of the search area is
32×32. The proposed co-processor architecture is
implemented using VHDL and full functional verification
was performed using Modelsim tool with actual video
sequence as the test input. For the hardware
implementation, the architecture of the proposed co-
processor is checked using FPGA tool. The architecture in
[18] is implemented using FPGA tool and same
environment used for the proposed co-processor.

Table 1: A Summary of implementations using Xilinx

ZYNQ-7 ZC706 FPGA.

[18]
Proposed

system

FPGA FPGA

Xilinx ZYNQ-7 ZC706

Board
Xilinx ZYNQ-7

ZC706 Board

28 nm 28 nm

of PEs 256 256

Block Size 16 16

of Slice LUTs 13.01K 11.66K

of Slice

Registers
10.56K 14.59K

of LUT Flip

Flop
23.57K 26.25K

Max. Freq. 119.72MHz 123.53MHz

Data Reuse Level Levels A and B Levels A and B

For the FPGA implementation, Xilinx ZYNQ-7

ZC706 Evaluation Board with (7z045ffg900-2) FPGA
chip is selected to implement the synthesized VHDL code
of the proposed co-processor and the architecture in [18].
Table 1 summarizes and compares the proposed video
system with the fast motion estimation architectures in
[18]. The proposed video system is faster than the
architecture in [18] in terms of both the throughput and
the operating hardware frequency. This is due to the novel
and smart procedure of loading both the current block
pixels values and the search area inside the PE array. The
maximum operating frequency of the proposed video
processor is 123.53MHz. This guarantees real time ME
for high-resolution video sequences applications such as
HDTV and SDTV broadcast.

6. CONCLUSION

A Full Search Motion Estimation video processing
system is designed and implemented using FPGA tool.
The proposed motion estimation video system can
perform ME for 30 fps of HDTV video at 123.53 MHz.
the proposed ME video processor (system) can be
generalized to be used for any higher resolution video
sequence under a constrain of increasing the capacity of
the MVMEM at no other addition hardware complexity.
The proposed architecture improves the speed and
hardware complexity compared to the state of the art fast
ME techniques implemented on FPGA tools. This allows
the proposed ME video system to be used for any high
accuracy real time video applications such as HDTV and
SDTV broadcastings. The future work will address the

 7 Int. J. Com. Net. Tech. 4, No. 1, 1-11 (Jan. 2016)

http://journals.uob.edu.bh

possibility of adding more techniques and hardware to
speed up the ME process, so that, the new architecture can
be easily used for high resolution video sequences. The
new architecture should maintain regular data flow in
order to be easily implemented.

ACKNOWLEDGMENT

The author acknowledges the support of the Deanship
of Scientific Research – University of Bahrain – Bahrain
for supporting this work under the project number
20015/11. The author thanks his student, Najeeba
Mohammed Jaffer, for her efforts in simulations.

REFERENCES

[1] J. Ohm, G. J. Sullivan, H. Schwarz, T. Thiow Keng, and
T. Wiegand, "Comparison of the Coding Efficiency of
Video Coding Standards - Including High Efficiency
Video Coding (HEVC)," IEEE Transactions on Circuits
and Systems for Video Technology,, vol. 22, pp. 1669-
1684, 2012.

[2] Z. Hao and M. Zhan, "Fast Intra Mode Decision for High
Efficiency Video Coding (HEVC)," IEEE Transactions
on Circuits and Systems for Video Technology,, vol. 24,
pp. 660-668, 2014.

[3] Y. Ismail, J. B. McNeely, M. Shaaban, H. Mahmoud, and
M. A. Bayoumi, "Fast Motion Estimation System Using
Dynamic Models for H.264/AVC Video Coding," IEEE
Transactions on Circuits and Systems for Video
Technology, , vol. 22, pp. 28-42, 2012.

[4] "High Efficiency Video Coding (HEVC) Text
Specification Draft 6," ISO/IEC JTC1/SC29/WG11 and
ITU-T SG16 WP3, Feb. 2012.

[5] Y. Ismail, W. El-Medany, H. Al-Junaid, and A.
Abdelgawad, "High Performance Architecture for Real-
time HDTV Broadcasting," Journal of Real-Time Image
Processing, Springer, ISSN: 1861-8200 (print version),
and ISSN: 1861-8219 (electronic version), May 27, 2014.

[6] H. Amirpour, A. Mousavinia, and N. Shamsi, "Predictive
Three Step Search (PTSS) algorithm for motion
estimation," in 2013 8th Iranian Conference on Machine
Vision and Image Processing (MVIP), 2013, pp. 48-52.

[7] H. A. Choudhury and M. Saikia, "Reduced three steps
logarithmic search for motion estimation," in 2014
International Conference on Information Communication
and Embedded Systems (ICICES), 2014, pp. 1-5.

[8] L. Renxiang, Z. Bing, and M. L. Liou, "A new three-step
search algorithm for block motion estimation," IEEE
Transactions on Circuits and Systems for Video
Technology, vol. 4, pp. 438-442, 1994.

[9] P. Lai-Man and M. Wing-Chung, "A novel four-step
search algorithm for fast block motion estimation," IEEE
Transactions on Circuits and Systems for Video
Technology, vol. 6, pp. 313-317, 1996.

[10] Z. Shan and M. Kai-Kuang, "A new diamond search
algorithm for fast block matching motion estimation," in
Proceedings of 1997 International Conference on
Information, Communications and Signal Processing,
1997. ICICS., 1997, pp. 292-296 vol.1.

[11] C. Chun-Ho and P. Lai-Man, "A novel cross-diamond
search algorithm for fast block motion estimation," IEEE
Transactions on Circuits and Systems for Video
Technology, vol. 12, pp. 1168-1177, 2002.

[12] C. Changryoul and J. Jechang, "Successive Elimination
Algorithm for Constrained One-bit Transform Based
Motion Estimation Using the Bonferroni Inequality,"
IEEE Signal Processing Letters, vol. 21, pp. 1260-1264,
2014.

[13] L. Hwal-Suk, J. Jik-Han, and P. Dong-Jo, "An effective
successive elimination algorithm for fast optimal block-
matching motion estimation," in 15th IEEE International
Conference on Image Processing, ICIP 2008, pp. 1984-
1987, 2008.

[14] Y. Ismail, M. Shaaban, J. B. McNeely, and M. A.
Bayoumi, "An Efficient Adaptive High Speed
Manipulation Architecture for Fast Variable Padding
Frequency Domain Motion Estimation," IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 19, pp. 1239-1248, 2011.

[15] S. Goel, Y. Ismail, and M. A. Bayoumi, "Adaptive search
window size algorithm for fast motion estimation in
H.264/AVC standard," in 48th Midwest Symposium on
Circuits and Systems, pp. 1557-1560 Vol. 2, 2005.

[16] J. Sung-Tae and L. Sang-Seol, "A 4-way pipelined
processing architecture for three-step search block-
matching motion estimation," IEEE Transactions on
Consumer Electronics, vol. 50, pp. 674-681, 2004.

[17] D. Xu, J. M. Noras, and W. Booth, "A simple and
efficient VLSI architecture for a very fast high
performance three step search algorithm," in IEE
Colloquium on High Performance Architectures for Real-
Time Image Processing (Ref. No. 1998/197), pp. 6/1-6/6,
1998.

[18] Sumeer Goel, Yasser Ismail, and M. Bayoumi, "High-
speed Motion Estimation Architecture for Real-time
Video Transmission," The Computer Journal, vol. 55, pp.
35-46, 2011.

[19] L-W. Lee, J-F. Wang, J-Y. Lee, and J. D. Shie, “Dynamic
search-window adjustment and interlaced search block
matching algorithm,” IEEE Trans. on Circuits and
Systems for Video Technology, Vol. 3, No. 1, pp:85-87,
Feb. 1993.

[20] Srinivasarao, B.K.N.; Chakrabarti, I., “A parallel
architectural implementation of the fast three step search
algorithm for block motion estimation”, International
Multi-Conference on Systems, Signals and Devices,
2008. IEEE SSD 2008. 5th, pp. 1-6, 2008.

[21] S. Marlow, J. Ng, and C. McArdle, “Efficient motion
estimation using multiple log searching and adaptive
search windows,” in Proc. of the IEE Intl. Conf. on Image
Processing and its Applications, Vol. 1, pp. 214-218,
1997.

[22] M. Alkanhal, D. Turaga, and T. Chen, ”Correlation based
search algorithms for motion estimation,” in Proc. of the
Picture Coding Symp., pp. 99-102, April 1999.

[23] Sumeer Goel, Yasser Ismail, and Magdy A. Bayoumi, "
High-speed Motion Estimation Architecture for Real-time
Video Transmission," Oxford Journals - The Computer
Journal (2012) 55(1): 35-46 first published online April
29, 2011.

[24] Batinaa, L., Orsa, S.B., Preneela, B. and Vandewalle, J.,
“Hardware architectures for public key cryptography”,
Integration, the VLSI Journal, Vol. 34, pp. 1-64, 2003.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Srinivasarao%2C%20B.K.N..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chakrabarti%2C%20I..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4632849&newsearch=true&queryText=TSS%20architecture
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4632849&newsearch=true&queryText=TSS%20architecture
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4632849&newsearch=true&queryText=TSS%20architecture
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4620173
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4620173
http://www.oxfordjournals.org/

 8 Yasser Ismail: A Cost – Effective Programmable SoC for H.265/HEVC Full …

http://journals.uob.edu.bh

[25] Bertoni, G., Breveglieri, L., Koren, I., Maistri, P. and
Piuri, V., “Error analysis and detection procedures for a
hardware implementation of the advanced encryption”,
Standards IEEE Trans. Comput., Vol. 52 No. 4, pp. 492-
505, 2004.

[26] Hodjat, A. and Verbauwhede, I. , “A 21.54 Gbits/s fully
pipelined AES processor on FPGA”, 12th Annual IEEE
Symposium on Field – Programmable Custom Computing
Machines, Napa, CA, USA, pp. 308-309, 2004.

[27] Elias, G., Miri, A. and Yeap, T.H., “On efficient
implementation of FPGA-based hyperelliptic curve
cryptosystems”, Computers and Electrical Engineering,
Vol. 33, pp. 349-366, 2007.

[28] http://www.xilinx.com/products/boards-and-kits/ek-z7-
zc706-g.html, 15 Dec., 2015.

Dr. Yasser Ismail received
the B.Sc.degree in
Electronics &

Communications
Engineering from Mansoura
University, Mansoura, Egypt,
in 1999, the M.Sc. degree in
Electrical Communications
from Mansoura University,
Mansoura, Egypt, in 2002,
the M.Sc. degree in
Computer Engineering from
University of Louisiana at
Lafayette, Louisiana, USA,
in 2007. Dr. Yasser Ismail

got his Ph.D. from the University of Louisiana at Lafayette in
May 2010. Dr. Yasser Ismail worked as an assistant professor
in Umm Alqura University – KSA from 2010 to 2012. He is
currently working as an assistant professor in University Of
Bahrain (UOB) - Bahrain. Dr. Yasser permanently working at
the Electronics and Communications Engineering Department –
Faculty of Engineering – Mansoura University – Mansoura –
Egypt. Dr. Yasser is served as a reviewer for several
conferences and journals, including ISCAS 2010, ICIP 2010,
ICIP 2011, ICECS2013, Transaction on Circuit and System for
Video Technology (TCSVT), and IEEE Transactions on Image
Processing, and Signal Processing. He has also gained many
valuable projects from KSA, NSF, and Bahrain. Dr. Yasser
served in the organizing committee of 2013 IEEE International
Conference on Electronics, Circuits, and Systems
(ICECS2013). His research of interest includes video
processing, digital signal processing, Robotics, RFID,
Localization, VLSI, FPGA, wireless communication systems,
and low power embedded systems.

https://webmail.cacs.louisiana.edu/src/read_body.php?mailbox=INBOX&passed_id=5700&startMessage=1
https://webmail.cacs.louisiana.edu/src/read_body.php?mailbox=INBOX&passed_id=5700&startMessage=1

 9 Int. J. Com. Net. Tech. 4, No. 1, 1-11 (Jan. 2016)

http://journals.uob.edu.bh

b

m
in

S
A

D
_

V
E

C

(1
0

:0
)

Figure 3: RTL second-level schematic of the FSME system.

Figure 6: RTL second-level of SAD Unit.

 10 Yasser Ismail: A Cost – Effective Programmable SoC for H.265/HEVC Full …

http://journals.uob.edu.bh

RESET

POSITION (10:0)

EN

CLK

REGESTER 54

COMPAREUNIT

COMPTRANS

Figure 11: RTL second-level of Compare Unit.

 11 Int. J. Com. Net. Tech. 4, No. 1, 1-11 (Jan. 2016)

http://journals.uob.edu.bh

CScontroller

RESET

CLK

DOIT

CLKCOUNT(14:0)

A
ll
 C

o
n

tr
o

l
S

ig
n

a
ls

 t
o

 a
ll
 C

o
m

p
o

n
e

n
ts

Figure 13: RTL second-level of control Unit.

