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ABSTRACT

The boundary effects on a quantum system are discussed by examining an N- dimensional
harmonic oscillator confined in an impenetrable spherical well. The corrections, due to the
boundary and the space dimension, to the ground- state energy and wave function are
calculated by using a linear approximation method which is linear in energy and by
numerical method using Mathematica. Our results for the energy corrections obtained by the
two methods are in very good agreement. A simple analytical expression for the asymptotic
dependence of the ground — state energy on the well radius and on the dimension N is
derived. Finally, the pressure needed to compress a free N-dimensional harmonic oscillator
to a certain size is computed.
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INTRODUCTION

The simple harmonic oscillator is a topic of utmost importance which is discussed in every
standard textbook on quantum mechanics. It is applicable in different physical situations
(Moshinsky and Sminov, 1996) and has the great advantage that it has closed solutions for
the energy eigenvalues and eigenfunctions. Various investigations of the harmonic oscillator
have been considered, time — dependent harmonic oscillator (Liu and Wang, 2007), harmonic
oscillator with delta —function potential (Patil, 2006), relativistic harmonic oscillator
(Nagiyev et al., 2007), anharmonic oscillator (Skala et al.,1999), and the spiked harmonic
oscillator (Hall et al., 2001) . Another system which has received considerable attention is the
confined one (Froman et al., 1987), (Sako et al., 2004) and (Zang et al., 2008).

Recently, there has been some renewed interest in the confined hydrogen atom (Djajaputra
and Cooper, 2002), and in the confined harmonic oscillator (AL-Jaber, 2002), (Marcilio et al.,
2005) and (Ndengue and Motapon, 2008). This interest is partly motivated by the
technological advances, for example in the field of semiconductor quantum dots (Jacak et al.,
1998), where the computation of the electronic structure of such systems necessarily has to
take into account the presence of the finite confining boundaries and their effect on the
system. During the past years, the generalization of physical problems to higher dimensions
received a considerable development in theoretical and mathematical physics. For example,
the N- dimensional analogy of the hydrogen atom has been studied extensively over the years
(Nouri, 1999), (Kirchberg et al., 2003).

The purpose of this paper is to consider the boundary corrections for an N- dimensional
harmonic oscillator in a spherical cavity using an approximation method which is linear in
energy and compare the results with those obtained numerically by using Mathematica. This
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method (Anderson, 1975) is usually used in the calculations of a wave function of a
Hamiltonian with energies which are close to the energies of a known wave function. Beside
its mathematical interest, the present paper presents a new approach, which has some
pedagogical simplicity to the confined N- dimensional harmonic oscillator.

THE LINEAR APPROXIMATION

We examine the boundary corrections for a harmonic oscillator situated at the center of an N-
dimensional spherical cavity of radius S. It is assumed that the wall of the cavity to be
impenetrable. Thus the potential to be considered is:

r<S

V(r) = %krz (1)

The time — independent Schrédinger equation for the harmonic oscillator is

m@FLgfﬂ%mﬂmm=mm) @

Where V?is the N- dimensional Laplacian operator given by :

2
SRR )RR I (3)
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where r is the radial coordinate and Q*is the Laplace operator on the unit sphere S™!. The
eigenfunction 1//(r) satisfies the Schrodinger equation for the harmonic oscillator for r<S and

should still be regular at the origin. The only difference from the free space- case is that now
we have to impose a different boundary condition. Namely, the ware function must vanish at
r=S instead of at r = oo . For S>>r, the changes in the ground- state wave function and energy

due to the presence of the well are expected to be small. Herer, , to be determined latter, is

the radius at which the radial distribution function for the free- space case is maximum. In
free space, i.e, in the absence of the cavity, the energy spectrum for the N- dimensional
harmonic oscillator is

£, =ha)(n + %) n=0,1,2,..... 4
In the presence of the cavity, the energy spectrum is

E=¢+Ac %)

n n n

And the un normalized wave function at energy E is approximated by:

‘P(@,r)=¢(€,r)+Afg;§(§,r) (6)

n
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where ¢ is the wave function in the free- space case and ¢(8 ,r) is the derivative with respect

to the energy of ¢(£, r) evaluated at £ =¢. therefore,
¢(e,r)=i e.r)|e=¢ (7
n 0E n

The vanishing of the eigen functions for the cavity problem at r = S implies lI‘(E S )= 0an

thus the ener)gy correction becomes

dle.s

o ®)
ole.s)

The Schrodinger Eq. 2 splits into radial and angular differential equations with the latter
having the hyper-spherical harmonics as solutions (eigenfunctions of Q7), Y/" ({‘9,- }) withi=

1, 2, ...., N-1, which are independent of the form of the central potential. The radial part
solution R(r) satisfies.
—n*(d* N-1d) At+N=2) 1 ,,
— — |+ +— R(r)=E 9
{Zm [dr2 r er 2mr? me ' (r) R(r) ®)

where @” = k/m. Introducing the variables

1
p=ar , a=(mw/h):,and A = 2E | ho,

and letting R(r) = U(r) N2 Eq.9 becomes

( N—3J( N—lj
, ||+
& 2 2 4 - |Ulp)=0 (10)

The above equation can be transformed into Kummer-Laplace differential equation
(Bransden and Joachain, 1990) whose solution is the confluent hypergeometric function, ;F;(

a,b,z) with a=l £+E —i and b=€+ﬂ, and thus
2 2 4 2
R(r)=Ar€e_a2r% a 1 €+ﬂ —é,f+ﬂ,0!21’2 ) (11)
2 2) 4 2

where A is a normalization constant and the energy €, is given by

hao N
e, =A—=howon+— , 12
5 (n+=) (12)

n

wheren=20,1,2, ......



Al-Jaber, S.A, J. Association of Arab Univ. for Basic and Applied Science, Vol.6, 2008, 1-13

Now, as the radial function R(r) is known, we are in a position to discuss the validity of the
linear approximation method in N dimensions. As we mentioned earlier , this method is valid

whenever the radius of the cavity is much greater than some radius 7,. We choose 7, to be
the value of r at which the radial distribution function D(r)(: P ‘R(r) |2) is maximum. This

occurs when the angular momentum has its largest value /=n.In that case n, =0 and thus the

confluent hypergeometric function |Fjis unity. Therefore, the radial distribution function,
with the help of Eq. 11, is

D(I") ~ r(N—]+2n) e—ozzr2 ,

and hence D(r) exhibits a maximum at the value r obtained by requiring

iD(r) | =0, which yields
dr r=r
rf=(n+N2_1J/a2. (13)

This shows that the linear approximation is valid when S >>\/n+(N -1)/2/«a.We note that

S increases as the dimension N increases. This is so because the centripetal term in the
effective potential becomes more repulsive as N increases, which means tries to repel the
particle away more as N increases (AL-Jaber, 1998).

The function R(r) given in Eq. 11 contains most of the aspects we are looking for. For
example the A=N case is the ground — state wave function of the N- dimensional harmonic

oscillator in the free space and is nodless. As A is increased above N, the wave function
acquires a node atZ_, i.e the hypergeometric function |F; (a, b, Z_) vanishes . This occurs at
a cavity radius S given by , (see Eq.13):

S=ro\/zo /(n+N2_1j. (14)

For example, consider the case /=0and A=N+2 and N+4. By using the relation
A=2E/hw, we find:

For A=N +2 , this corresponds to the energy E =ha)(1 + %) which becomes the (n,f)z

(1,1) eigenstate of N- dimensional harmonic oscillator in free space.

For A=N+4, this corresponds to the energy FE =ha)(2 + %] which becomes the
(n,( )=(2,0) eigenstate of the V- dimensional harmonic oscillator in free space. For these two
cases, the wave function for the cavity problem acquires a node which moves from r = o to
r(=S) given by equation (14) with n=0 , namely § =(2 Z, / (N - 1))% , where Z is the point at

which the hypergeometric function ;F;(a,b,z) vanishes. Note that in the above two cases
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a=—%f0r A=N+2,and a =-1 for A=N +4, and in each case there is only one zero of |F,

(a, b, z).

One can therefore obtain the ground- state wave function and energy of the harmonic
oscillator in a cavity of radius S by numerically searching for the energy ( via the parameter
A) which gives a wave function with a node at r =S . This is achieved by using the
Mathematica software. This gives a useful comparison for our approximation.

Since the hyperspherical harmonics are independent of the energy, Eq. 8 could be written as:
PP R(l”,S)/[%j . (15)
n 2 A ),

Substituting the radial function R(A,r)in Eq.11 into Eq.15 yields an expression for Ae

which should be valid for r >> r given by Eq.13.

We shall consider the ground state ( n=0). Here /=0 and thus Eq.15 gives

Ioe(/l,r)=Ae‘“2’2’2IFIB(N—A),%,O:Z# )} (16)

The ground state ( n=0) implies that , see (Eq.12), A= N and thus we have
R(N.r)=Ae™ r%lFl(O,%, azrzj (17)

Our purpose is to obtain a simple analytical expression for the correction to the ground — state
energy for S >>r . Therefore, we calculate the limiting form of R(}.,r)for r >> r. Following

(Djajaputra and Cooper, 2000), the asymptotic expansion of the confluent hypergeometric
function |F, ( a, b, z) for large z is (Abromowitz and Stegun, 1965).

Flabz) ™ ez
= I, (a,b, 1, (a,b, 18
M) rpoa) @y e 8
where
R-1 _ im
Il(a,b,z)=ZM ¢ +oliz1) (19)
n=0 n: Z
R-1 (7, _ _
1,(a.b.z)= wiw(lzr’*) (20)
n=0 n‘ Zn
The Pochhammer symbol (a), is given by [28]
(a)p=a(atl) (at2)....... (atn-1)= M. (21)
I'(a)

1(N-/l)with A=N.

We seek the derivative of |F; (a,b,z) at a =Z
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The dominant term comes from the derivative of I’ (a)in the second term in Eq. 18.

The first term can be neglected because it does not contain the exponential term e which
dominates the derivative at large z. Retaining only the largest term, we get

a2 b b ) Y )

Ta)

where ‘I‘(a) is the digamma function defined as W(a)=F'(a)/F(a). The ratio‘P(a) to
F(a)asa — ( satisfies.

1
TR C PN B Ja). 1

a—0 F(a) a—0 | _ }/ _ % o

9
da

where 9 is the Euler constant. Thus

9
- Flabz) |~z Tb)L(ab.z2) (23)

Using this expression and taking the first two terms in I»(a,b,z), we get.

d e Nb-a+1)I(2-a)
%Jﬁ(‘hb,g:e Z F(b{l"' zl"(b—a)l’(l—a) } (24)

Using a=%(N—A) Jb=N/2,Z=a’r*, we get.

-a’r

OR _OR ba_ 1, o OiF
dA  da oA 4 da 'V

and using (31) , we obtain
R | _—ACE (NN s
EY) ‘/1=N = 4(W)N P +5 2r (25)

Therefore, using the above equation and equations (13) and (17) we obtain the boundary
correction at r = S to the ground — state energy:

2hwe™ S |l s N}
Ae === (aS §T-— 26
CTTv2) (@) {a 2] (26)

which shows its dependence on the space dimension N.

We must note that the expression in Eq.26 is a double approximation. It is an asymptotic
form of the linear approximation method, and hence it is valid for large values of S/r, . For

small values of S/r, , but within the linear approximation method, on has to use Eq.15 which

in general does not correspond to a simple analytic expression. In actual electronic- structure
calculations this does not pose a problem, since there the wave function and its derivative are
computed numerically. In this paper, for pedagogical purposes, we calculated the asymptotic
formula (Eq.26), which corresponds to a simple analytic expression. For numerical purposes,
we choose the radius of the cavity to be S=4/a. For this value and =0 for the ground-state, in
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the first method, we use Mathematica to search for the value of a at which the confluent
hypergeometric function |Fi(a,b,16) has its first zero. In this case b=N/2 and a = (N — 1)/4.
The zeroes of |F; occur at negative values of a and thus the ground-state energy for the
confined oscillator can be written as Ey = ho( 2 | a | + N/2 ). Knowing the ground-state
energy for the free harmonic oscillator (gy = hwN/2), we compute the energy correction Ag
for the ground-state due to the presence of the boundary. These results are presented in table
1 in which the energies and the energy corrections are in units of ho.

In the second method, we use the asymptotic form of the linear approximation method, given
in Eq. 26, to calculate the ground-state energy correction (A€g).pp. These results are presented
in table 2, in which we also include the percentages of the energy corrections (Agy/ €0)num%
and (Ago/ &p)app% obtained by numerical method and approximation method, respectively.

Table 1: Numerical values of |a| (S =4/ a)and E. for the ground state of the confined harmonic

oscillator, £ and r, for the ground state of the free harmonic oscillator, and energy correction Ag,
for different dimensions.

N |a| Ey £ Ae. r

2 1.68 X107 1.00000336 1 3.36 X10°® 0.7071

3 7.302 X10°° 1.5000146 1.5 1.46 X107° 1

4 2.489X 107 2.00004978 2 4978 X 10°  1.22474
5 7.19X 107 2.5001438 2.5 1438 X 10  1.41421
6 1.83 X 10™ 3.000366 3 3.66 X 10 1.58113
7 421X 10™ 3.500842 3.5 8.42X10* 1.73205
8 8.89 X 10 4.001778 4 1.778 X 107 1.87082
9 1.745 X 107 4.50349 4.5 349X 107 2

10 321026 X 107 5.0064205 5 6.4205 X10°  2.12132
11 5579 X 107 5511158 55 0.011158 2.23606
12 9213 X107 6.018426 6 0.018426 2.3452

13 0.014535 6.52907 6.5 0.02907 2.44948
14 0.022 7.044 7 0.044 2.5495

15 0.0322 7.5644 75 0.0644 2.6457

16 0.04546 8.09092 8 0.09092 2.7386
17 0.06243 8.62486 8.5 0.12486 2.8284
18 0.0835 9.167 9 0.167 2.91547
19 0.10922 9.71844 9.5 0.21844 3

20 0.14 10.28 10 0.28 3.0822

It is instructive to plot a graph between the ground state energy correction, calculated by
numerical and linear approximation methods, and the space dimension N. This is shown in
Fig.1. It is clear that the results for the energy correction using the linear approximation
method are in excellent agreement with those obtained numerically.
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Fig. 1: Ground-state energy correction for a confined harmonic oscillator vs. space dimension N, by
numerical and linear approximation methods.

Ae
Table 2: Energy correction A, by linear approximation and the percentages (—"jnum% and

80
Ae, o
£ o app. for different dimensions for a cavity radius, (S =4/ a).

N Ae, A

( )app (&Jnum% (—5] %

£, &, app

2 3.376 X 10°° 336 X 10 3.376 X 10™
3 1.473 X 107 9.73 X 10* 9.82 X 10*
4 5.04112 X 107 249X 107 2.52X10°
5 1.4628 X 107 5.75X 107 585X 107
6 3.74516 X 10™ 1.22X 102 1.248 X 1073
7 8.6686 X 10™ 2.4057 X 10 2.4767 X 107
8 1.84377 X 107 445X 107 4.609 X 1072
9 3.64578 X 107 7.7555 X 1072 8.101 X 10
10 6.7605 X 107> 1.2841 X 107! 1.1267 X 10!
11 1.18356 X 107 0.20287 2.1519 X 107
12 1.9667 X 107 0.3071 0.3277
13 3.11517X 102 0.44723 0.4792
14 4.7200 X 107 0.62857 0.67428
15  6.86094 X 107 0.85867 0.91478
16  9.58996 X 107 1.1365 1.1987
17 0.129147 1.4689 1.5193
18 0.167824 1.8555 1.8647
19 0.210687 2.2993 22177
20 0.2557 2.8 2.557

It is noticed that as the dimension N increases the energy correction A ¢ increases, which can

be explained as follows: r increases with N as /(N -1)/2, as Eq.13 yields for n=0,
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therefore, one expects the effect of the boundary on the energy correction increases as N
increases.

It is interesting to calculate the pressure needed to compress an N- dimensional harmonic
oscillator in its ground state to a certain size. This is of interest in dealing with studies on
quantum systems enclosed in boxes, like the fabrication of semiconductor quantum dots
(Varshni, 1997). The pressure p(s) needed to compress the system is

P(s)= ——A£=——(A€)£
° ° aV

The volume, in N- dimensional space, of a sphere of radius S is

N/2 N
V=i , and thus
D(1+N/2)

v N 72§V _ s r(1+1%) r(n/2)

S T(+N/2) oV NaVisN¥ o agVgh

Therefore,
-T(N/2) 9
P - St o bl @n

Using Eq.33, we get

%( )= 2hw ‘:_20!N+2SN+1_%(N_z)aN—ZSN—S _'_2]\70{N5~1\7-1:|e-o:252 (28)

{5)

The substitution of Eq. 27 into the above expression gives:

aN[2a2S2 +g (N2;22)

- ZN}‘“ZSZ (29)
(04

For numerical purposes, again we choose S= 4/a, to calculate the pressure needed to
compress an N- dimensional harmonic oscillator in the ground state. This is shown in table 3
below, in which p(s) is in units of hwo".

It is noticed that as the dimension N increases the pressure decreases, which is again due to
the increase of ry. This means that it becomes easier to compress the free oscillator to a given
size as the dimension N increases.

It is interesting to plot a graph that shows the dependence of the pressure P on the space
dimension N for the cavity radius S=4/a. This is shown in Fig. 2, which shows that pressure
decreases as the space dimension N increases.
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Table 3 : Pressure P(s) to compress a free harmonic oscillator to a size S =4/ in
different dimensions.

N P(s)

2 1.003 X 10°®

3 5.2765 X 107
4 2.785 X107~

5 1.4454 X 107
6 7.5310 X 107
7 3.9098 X 10
8 2.0217X 108
9 1.0408 X 10
10 5.3322 X 107
11 2.7166 X 10
12 1.37539X 10
13 6.91366 x 10°7'°
14 3.4465 X 1071
15 1.7014 X 107"°
16 8.30207 X 107"
17 3.9939 X 107"
18 1.8876 X 107!
19 8.7193 X 107"
20 3.90546 X 1072

Pressure vs space dimension

1200

1000 *
7 \
S 800
% \
¢ 600
S
z \
g 400
$ol

200
0 W

0 5 10 15 20 25
Space dimension N

Fig. 2: Pressure needed to compress a free harmonic oscillator to a size S=4/a vs. space dimension N.
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SUMMARY AND CONCLUSIONS

In this paper, a linear approximation method has been used to calculate the asymptotic
dependence of the ground- state energy of an N- dimensional harmonic oscillator confined in
a spherical cavity on the radius of the cavity and the space dimension N. The asymptotic
formula derived in this paper, for pedagogical purposes, does correspond to a simple
analytical expression which is valid for S >> r,, that is when the radius of the cavity is much

greater than the radius at which the radial distribution function for the free- space case is
maximum. The ground-state energy, Ey, in the presence of the cavity was calculated by two
methods for a selective value of the radius S of the cavity, namely S=4/a. In the first method,
E\, was calculated numerically by using Mathematica. In the second method, Ey was found by
the linear approximation method. The energy corrections Agy and their percentages in both
methods were calculated by comparing Ej to the ground-state energy & for the free harmonic
oscillator. It was demonstrated that these energy corrections obtained by the linear
approximation method are in very good agreement to those obtained numerically. Our results
also showed that the energy correction increases as the dimension NV increases, which is due
to the increase of ry at which the distribution function for the free oscillator has it maximum.
In addition, the pressure needed to compress a free N-dimensional harmonic oscillator in its
ground-state to a certain size has been calculated. It was shown that this pressure decreases
as the dimension N increases which is due to the increase of ry, at which the ground-state
distribution function of the free harmonic oscillator has its maximum.
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