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Abstract In this paper, a class of non-linear vector differential equations of third order with delay

is considered. The stability, boundedness and ultimately boundedness of solutions are studied. The

technique of proofs involves defining an appropriate Lyapunov functional. The obtained results

include and improve the results in the literature.
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1. Introduction

During the last years, many good results have been obtained on
the qualitative behaviors in ordinary and functional differential
equations of third order without and with delay. In particular,
for some works on the stability and boundedness in scalar ordi-
nary and functional differential equations of third order with-
out and with delay, we referee the interested reader to the
papers of Ademola et al. (2015), Ademola and Arawomo
(2011), Afuwape and Castellanos (2010), Graef et al. (2015),
Graef and Tunc (2015), Mehri and Shadman (1999), Meng
(1993), Omeike (2014), Omeike and Afuwape (2010), Qian
(2000), Remili and Oudjedi (2014), Tunc (2004, 2005a,b.c,
2007, 2009a,b, 2010a,b, 2013a,b, 2014, 2015), Tunc and
Mohammed (2014), Tunc and Ates (2006), Zhang and Yu
(2013) and their references. However, to the best of our knowl-
edge from the literature, by this time, little attention was given
to the investigation into the stability/boundedness/ultimately
boundedness in vector functional differential equations of third
order with delay (see Tunc and Mohammed (2014)).
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It should be noted any investigation into the stability and
boundedness in vector functional differential equations of
third order, using the Lyapunov functional method, first
requires the definition or construction of a suitable Lyapunov
functional, which gives meaningful results. In reality, this case
can be an arduous task. The situation becomes more difficult
when we replace an ordinary differential equation with a func-
tional vector differential equation. However, once a viable
Lyapunov functional has been defined or constructed,
researchers may end up with working with it for a long time,
deriving more information about stability. To arrive at the
objective of this paper, we define a new suitable Lyapunov
functional.

Recently, the authors in Tunc and Mohammed (2014) dis-
cussed the stability and boundedness in non-linear vector dif-
ferential equation of third order with constant delay 7; > 0:

X"+ ¥ X)X+ BX (t — 1) + cX(t —11) = P(2) (1)
In this paper, we consider vector differential equation of third
order of the form
X'+ HX)X'"+GX'(t—1))+cX(t—1) = F(t, X, X, X")
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where © > 0 is the fixed constant delay, c is a positive constant;
G:R"— N" is a continuous differentiable function with
G(0) =0 and H is an n x n— continuous differentiable sym-
metric matrix function such that the Jacobian matrices
Ju(X') and Js(X') exist and are symmetric and continuous,
that is,

Ohiy 0g; -
JH(Y): (8‘C],>7 JG(/Y/): <a_)gc/>7 (17J>k:17277n)
=

J

exist and are symmetric and continuous, where (x}, x5, ..., X)),
(hx) and (g;) are components of X', H and G, respectively;
F:R" xR xR xR —R" is a continuous function,
R* = [0,00), and the primes in Eq. (2) indicate differentiation
with respect to 1, t = £, = 0.

It should be stated that the continuity of the functions H, G
and Fis a sufficient condition for existence of the solution of
Eq. (2). In addition, we assume that the functions H, G and
F satisfy a Lipschitz condition with respect to their respective
arguments, like X, X’ and X”. In this case, the uniqueness of
solutions of Eq. (2) is guaranteed.

It will be convenient here to consider not Eq. (2) itself, but
rather the system

X’l = X27 X_(’z = X3
Xg = —H(Xz)X3 —G(Xz)-i—/ JG(Xz(S))Xg(S)dS—C}(l
—t

1
+C/ Xz(S)dS+F([,X17X2,X3) (3)
t—1

derived from it by setting X = X}, X' = X, X" = X;.

Along this paper, we assume that the existence and the
uniqueness of the solutions of Eq. (2) hold.

The motivation of this paper comes from the results estab-
lished in Datko (1994), De la Sen (1988a,b), De la Sen and Luo
(2004), Omeike and Afuwape (2010), Qian (2000), Tunc and
Mohammed (2014), Zhang and Yu (2013), the mentioned
papers and their references. The main purpose of this paper
is to get some new stability/boundedness/ultimately bounded-
ness results in Eq. (1) using the Lyapunov-functional
approach. By this paper, we will extend and improve the
results of Omeike (2014), Tunc (2009b), Tunc and
Mohammed (2014), Zhang and Yu (2013).

This is the novelty of this work. Besides, the results to be
established here may be useful for researchers working on
the qualitative behaviors of solutions.

One basic tool to be used here is LaSalle’s invariance prin-
ciple. Let us consider delay differential system

x=f(x;), x =x(t+0),

We take C = C([-r,0], R") to be the space of continuous
function from [—r, 0] into R" and ask that f: C — R" be con-
tinuous. We say that V': C — R is a Lyapunov function on a
set G C C relative to fif V is continuous on G, the closure of G,
V is defined on G, and V' < 0 on G.

The following form of the LaSalle’s invariance principle can
be found in Tunc and Mohammed (2014).

—r<0<0, >0

Theorem A. If V is a Lyapunov function on G and x,(¢) is a
bounded solution such that x,(¢) € G for t = 0, then w(¢p)70 is

contained in the largest invariant subset of E={y € G:
V() = 0}, w denotes the omega limit set of a solution.

We need the following lemmas in the proofs of main results.

Lemma A. Hale (1965) suppose f(0) = 0. Let V be a continuous
functional defined on Cy = C with V(0) =0, and let u(s) be a
function, non-negative and continuous for 0 < s < 0o, u(s) — oo
as u — oo with u(0) = 0. If for all ¢ € C, u(|p(0)]) < V(p),
V(p) =0, V(p) <0, then the zero solution of x =f(x,) is
stable.

If we define Z = {¢ € Cy : V(p) = 0}, then the zero solution
of X = f(x,) is asymptotically stable, provided that the largest
invariant set in Z is Q = {0}.

Lemma B. Let A be a real symmetric n x n-matrix. Then for
any X; € R"

SJX 17 < (AXy, X)) < AJIXq|

where d, and A, are, respectively, the least and greatest eigenval-
ues of the matrix A.

2. Stability

Let F(-) = 0. The stability result of this paper is the following
theorem.

Theorem 1. In addition to the basic assumptions imposed on H
G and ¢ with F(-) =0, we assume that there exist positive
constants o, &, ap, a,, by, by and c such that the following
conditions hold:

G(0) =0, Jg exists, n x n-symmetric matrices Jg and H
commute with each other,

apby —c >0, 1—o0aay >0, by< /1,(.](;()(2)) < b
and
ap+ ¢ < L(H(X2)) < ay for all X, € R"

If

. Otaoboc ks /((,
T < min , )
adoboby + aaboc’ (2ag + aaghg + 1)c+ aghy’ ¢ + (2 + ag + aagho ) by

with
k5 = 2(00[)0 — C) — O(a()b() |:a() + Cil(bl — b0)2:| >0
and
ke = 23[1 — aagboc(a; — ao)z] >0

then all solutions of Eq. (2) are bounded and the zero solution of
Eq. (2) is asymptotically stable.

Proof. We define a functional W(r) = W(X,(¢), Xa2(1), X5(1))
given by
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1
2W = aoc<X1,X1>+2aO/ <O'H(O'X2)X2,X2>d0
0

1
+ O(d()b(z)<X1,X1> + 2/ <G(O’X2),X2>do' + <X3,X3>
0
+2oca(2)b0<X1,X2>+2o¢aob0(X1,X3>+2a0(X2,X3>

0 t
+ 2C<X17X2> - Olaob0<X27X2> + 2/1/ / ||X2(9)||2d9d5
—T JI+s

0 t
e / / 1.X3(0) | dods, (4)
-7 t+s
where

. 1 a aoby — ¢ c
0<a<min{ —,—, , (5
{Ll() b() aObO [a0+c‘1(b| —b0)2:| aobo(al —ao)} )

a, > ay, by #by, and A and 5 are positive constants which will
be determined in the proof.
Since

G(O) :07 %G(O’Xz) :Jg(O'Xz)Xz

it follows that
/01<G(0'X2),X2)d0' = /01 /01 01(J6(010:X>) X2, X>)dodo,
Then, from (4), we have clearly
2W = aoboHaJ%Xz + a;%bgchl H2 + || X3 + aoXa + aapbo X ||2
+ 2ay /01 (cH(6X3) X, Xs)do — 2a(2)||)(2|\2
+ 2/0l /01 01{J(0102X2) X2, Xp)do doy — b()HX2||2
+ aaghl(1 — aap)|| X1|” + c(ao — cbgl)HXle
+ ao(ay — abo)||Xal* + 22 /0 / 1X(0) |2 dods
. Joo Jits
=7 /+ 1X3(0)]*d0ds. (6)

Under the hypotheses of Theorem 1, we have

W(0,0,0) =0

1
2a0/ (cH(0X2) X, Xa)do — 22| Xa > > eao] Xl
0
1 1 ,
2/ / O']<J(;(0'10'2X2)X27X2>d0'1d0'2 —bo”XzH Z 0
0 0

aaoby(1 = aao) | X1 ” = | Xa)®
= aaghy (1 — aag) > 0

c(ao = eb )X 1* = mall Xa|®
Hy = c(ao — cbal) >0

ag(ay — obo) | Xa|* = ps ]| X

s = ag(ag — aby) >0

In summary, in view of (6), the above estimates imply that

1 -1 -1 21
WZ anboHdO;X2+d02bach1H +§‘|X3+(10X2+06a0b0X1H2

1 1
5 (0 + @)X + 5 (e + )Xol

0 t 0 t
+za/ / |\X2(9)\|2d9ds+2;1/ / 1X3(0)| dods.
-t Jits -t Jr+s

It is clear from the first four terms that there exist suffi-
ciently small positive constants k;, (i = 1,2, 3), such that

W = ka1 X[1* + k|| X + s | X5
Let
ks = min{ky, ky, k3 }
so that
W= ke (IX07 + 12607 + 1)
A straightforward calculation from (3) and (4) gives that
W(1) = —aagbye| Xa|[* — a (X2, G(Xa)) + | Xa
+ aadbo|| Xa||* — aaoho (X1, H(X>) X5)
+oaaybo (X1, X5) — (H(X2) X3, X3)
+ a0 || Xs]|* — oaobo (X1, G(X2))

+aaob§<xl,xz>+<x3., / JG(XZ(S))Xg(s)ds>

-1

+ <X3,c /;X2 (s)ds> +cxaob0<X1, /7 Jo(Xa(s)Xs (s)ds>
+oca0boc<X1, /;Xz(s)ds>+ao<Xz, /;JG(Xz(s))X3(s)ds>

t
+agc<Xz,/ Xz(s)ds>+21||X2H2+111HX3||2
-1

t t
[ Ix@Fdo-n [ xo) do
-t JiI-T

1
= —52a0boc| Xy > = (a0 G(X2), Xo)

+{ (eI +oaibol) X2, X2 ) — (H(X2) — ao]) X5, X5)

2

AX 427 H(X,) — ag]) X5

1
— Zdaobo

1 2
+Zota0b0H2c’%(H(X2) —aD)X; H

2
C%Xl +2c7%(G(X2)X2 — bOXZ) H

1
- *Ota()bo

‘1‘ | 2
+meob0H2€7(G(X2)X2 - bon)H

+ <X3, /I;JG(XZ(S))X; (s)ds> + <X3,c /;Xz (s)ds>

t
ot X, [ Ja066)X0))
-1
+aa0boc<X17/ Xz(S)dS>+ao<X27/ J(;(Xz(S)X3(S)dS>
-1 -1
ot
+agc<X2,/ Xz(s)ds>+).r||X2H2+mHX3||2

t t
- / X (0)[d0 / 1X3(0) 20
-1 -1
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The assumptions of Theorem [ lead to

1

1
<610G(X2),X2>:/ <Cl0JG(O'X2)X2,X2>dG>/ <aob0Xz,X2>dO'
0 0

= ahy | Xa |

ao(X2, G(X2)) — (X2, Xa) — oagho (X2, Xo)
> (aphy — ¢ — aalhy)|| X[’

(e [ ga0e)xs(00s ) < 16l IVl 0o
<ol [ Ixols
<atn [ I+ e
el g [ e

<X37 / Xa(s > ) / 1a(5) s

1
<qeltl+ge [ )

aaob0<X1, /:1 JG(XZ(S))X3(s)ds>

[ 16 (X2 ()11 X3(s) | ds

< aaobol X1 ||
-1
1 t
< gty [ {IGOF + X617
-1
1 1 ’ ,
=3 a0b0b11:||X1H += fmobobl 1 X3(s)||"ds
-1

1 13
aaob0c<X1,/ Xz(s)ds> < aa0b0c||X1||/ | X2(s)]||ds
-1 -1

1
< EaaobocrHXl HZ + Ewoboc

1
x / X (s) s
-1

(2. [ 606160y <anmla] [ V66X 0

—_

1
<qab el Jab [ X

t t
aoc<X2,/ Xz(s)ds> < apel| Xz || || X2(s5)||ds
-1

-t
1 t
<zac [ {6 + X017}
t

1 1
= P + 3w [ Xl
=t

On combining the above obtained inequalities into W(z),

we have that

. 1
W(Z) < —EocaobocHX] H2 — ((lobo —C— da%bo)”Xsz

— ((H(X2) = aol) X3, X5)

1 2
- Z(Xﬂobo C%Xl + 267%(H(X2) - [101)/\/3

1 ! 2
+ ZO(aob()HZC‘ii(H(Xz) - [l()[)X}H

1 1 1 2
—foa()b() X, + 2c Z(B—b()l)XzH

1 | 2
+ Zocaob(,Hzc—f(i_e - bol))QH

1 1
20((10b0b1‘[||X1 ” + = OC(lob()C‘L'”X] H
1 > 1 )

+ zaoblfﬂXzH + 5000T||X2H

1 1
+ iblfHXst + ECTIIlel2 + 22| X + | X5

1 t
- {i- g+ e [
-1

1 t
i {,11 —( +a0+§aa0b0)b1}/ 1 (s) s
Let
1 1
A= E((lo + O((l()bo + l)candn = (1 + ag “Fidaobo)b]
Hence
. 1
W(1) < =5 aaboc]| X, 1> = (aoby — ¢ — aa2by) || X

—((H(X2) — ayI) X3, X3)

1
Zaaob()Hh 2(H(X2) — apl) X3H
1
foaoboHZC 2 B bo )
1 1 ,
E(O(a()bobl +O(610b0€ ||X1H + aobl +a()C)‘L'HX2||
1
+5 (a0 + xaoby + 1 Jer [ Xa]* + 5 (b1+0) X
1

+ = 2 (1 + doy =+ Otdobo)bl‘[||X3”
Since

%O{doboHZC_%(B* b()I)Xsz = O(a()b()<C_l (B* b()I)Xz, (B* b()])X2>

and
iaaoboHZC’%(H(Xz) — aOI)X3H2 = ocaobo<c’1(H(X2) —aol) X,
(H(X2) - aol)X3>

it is clear that
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. 1
W(f) g —zdaobo(}”X] Hz — ((lobo —C — ddébo)“Xz”z

+ aaghy (¢ (B — bol) X2, (B — bo) X>)

— ((H(X2) — ap]) X3, X3)

+ O((lob0<C71 (H(Xz) — (101)X3, (H(Xz) — a()I)X3>
1

1
+ = (Oﬁaobobl + OCCI()boC)T”X] H2 + ([lobl + aoC)‘L'”XzHZ

2
1
+ = (ao + aagho + Det|| Xa|* + 5 (b1 + o)) X

— N

+5 (1+ a + aagho) by 7| X5 °

N — DN

By Lemma B and the assumptions of Theorem 1, we get
. 1
W) < — E{ocaoboc — (xapboby + aagbyc)t}|| Xy H2
{(aOB — ) — aaghy |apl + ¢ (B — bol)z} }XL X2>

+ = (aohy + ape)t || X

+
BN — ] = DN = N =

(ao + Oﬁaobo + 1)6‘1’1 ||X2H2

{(H(X2) — ay])[I — aapbyc™ (H(X2) — apD)] } X3, X3)
+5 (b + o)tl| X

+ = (1+ ag + aapho) by || X
< ,%{fmoboc — (aagboby + oapboc)t}|| X, ||
— {(awbo — &) = sanbulay + ¢ (b = b HIIXa
+ % {(2ay + aaghy + 1)c + (101?1}T||X2H2
— o1~ saboe (@) - )] 13
+ % (261 + ¢ + aoby + aaoboby )| Xa| .
Let
ks = 2(aoby — ¢) — xagby [ao +c (b~ bo)z} >0
and
k¢ = 28[1 — aaphoc™! (a) — ao)z] >0
so that
W(r) < —%{azaoboc — (aapboby + aaghoc)t}|| X, |
_ %{1@ — [(ao + aaoho + 1) + aoh T} | Xa P
B %{ks — (2b1 + ¢ + aghy + aapboby ) T}H| X5

If

< min { O(lloboc k5 k(> }

aayboby + aagboc’ (2ag +oagbo + 1) e+ aghy "¢+ (24 ap + aagho )by
then, for some positive constants k7, kg and ky, it follows that
; 2 2 2
W(t) < =kl X0 |7 — ks || Xall” — kol X3]]” < O
In addition, we can easily see that

WX\, X5, X3) — oo as [ X0 |* + | X2]* + | X" — oo

Consider the set defined by
E = {(X1,X2,X3): WX, Xo, X3) = 0}

When we apply LaSalle’s invariance principle, we observe
that (X, X5, X3) € E implies that X; = X, = X3 = 0. Clearly,
this fact leads that the largest invariant set contained in E is
(0,0,0) € E. By Lemma B, we conclude that the zero solution
of system (3) is asymptotically stable. Hence, the zero solution
of Eq. (2) is asymptotically stable. This completes the proof of
Theorem 1.

3. Boundedness

Let F(-)#0. The boundedness result of this paper is the follow-
ing theorem.

Theorem 2. We assume that all the assumptions of Theorem 1
hold, except F(-) = 0. Further, we suppose that there exists a
non-negative and continuous function 0 = 0(t) such that

[F(2, X1, X2, X3)|| < 0(2) for all t = 0, max0(t) < co and
0 € L'(0,00)

where L'(0,00) denotes the space of Lebesgue integrable
functions.

If
. { oaybyc ks ke }
7 < min , )
aayboby + aaghoc’ (2ag + oaby + 1)+ aphy ' ¢+ (2 + ag + oaaoby ) by
with

ks = 2(aoby — ¢) — aapby [ao +c (b — bo)z} >0
and
ke = 28[1 — aaghoc ' (a; — ao)z] >0

then there exists a constant D > 0 such that any solution
(X1(1), X2(1), X5(2)) of system (3) determined by

Xi(0) = X190, X2(0) = Xa, X3(0) = X3
Satisfies
Il <D, [XxOI<D, |X@0)]|<D

Jor all t € R*.

Proof. Let F(-) = F(t, X1, X2, X3). In the case of F(-)#0, under
the assumptions of Theorem 2, we can easily arrive at

: 1
W(1) < =5 {aaoboc — (aaobob + oasboc) T} | X, |

1

— E {k5 — [(2&0 + OCa()b() + 1)6 + aobl]T}HXsz
1

-3 {ke — (2by + ¢ + aoh, + aaghob,)t}|| X3 |

+ (X3, F()) + aaobo (X1, F(-)) + ao (X, F(*))
< (oaobo| X1l + ao || Xof| + | XD FC) ||
<o(IXll + 1] + 1XIDIFC

<o+ X7+ [1X2) + 1X:]%)6(0)
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where
o = max{aayby, ay, 1}

Besides, in view of the discussion made, it is clear that

X P+ Xl + X6 < k'w
so that
W(t) < 300(1) + k;' W (6)0(z)

Integrating both sides of the last estimate from 0 to ¢
(t = 0), we have

W(t) < W(0) + 30_/f 0(s)ds + k' /t W (s)0(s)ds
0 0

Let
M= W(0) + 30‘/0OO 0(s)ds

Then
W(t) < M+k;' /000 W(s)0(s)ds

By noting the Gronwall-Bellman inequality, we can get
W(t) < Mexp (k;1 /OOO H(S)ds)

By the estimate [X,||° + || Xa|” + ||Xa]|> < k;'W and the
assumption 6 € L'(0,00), we can conclude that all solutions

of system (2) are bounded. This completes the proof of
Theorem 2.

4. Ultimately boundedness

For the case F(-)#0, the ultimately boundedness result of this
paper is the following theorem.

Theorem 3. We assume that all assumptions of Theorem 1 hold,
except F(-) =0. In addition, we assume that there exists a
positive constant &y such that the condition

[FC)I < 6o, (1= 0)
holds.
If
. { aaoboc ks ks }
T < min , , ,
aayboby +aagboc’ (2ag + aagby + 1)c +apby "¢ + (2 + ag + oaagby ) by

With

ks = 2(aphy — ¢) — aagby [ao +c (b - bo)z} >0
and

ke = Zs[l — aaghoc™" (a; — ao)z] >0

then there exists a constant d >0 such that any solution
(X1(1), X»(1), X5(2)) of system (3) determined by

X1(0) = X0, X2(0) = Xao,  X3(0) = X

ultimately satisfies

2 2 2
X I + 1 X0 + [1X5()]° < k
for all t € R*.
Proof. For the case F(-)#0, in the light of the assumptions of
Theorem 3, we can conclude that
W(t) < —pi | X017 = pollXa]l” = s X
+ (aaobo|| X1 | + aol| X2l + 1X5(DIIF(-)]
< —piIXlP = pal| Xl = s 1 X5
+ (aaobodo || X1 || + aodo|| X [| + do | X5])

The rest of the proof can be easily done by following a sim-
ilar procedure as shown in Meng (1993), Tunc and
Mohammed (2014). Hence, we omit the details of the proof.

5. Conclusion

A kind of nonlinear vector functional differential equations of
third order with a constant delay has been considered. Some
qualitative behaviors of solutions, stability/boundedness/
ultimately boundedness of solutions, have been discussed.
The technique of proofs involves defining an appropriate Lya-
punov functional. Our results include and improve some recent
results in the literature.
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