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Abstract In this paper, a simple harmonic balance method (HBM) is proposed to obtain higher-
order approximate periodic solutions of strongly nonlinear oscillator systems having a rational and
an irrational force. With the proposed procedure, the approximate frequencies and the correspond-
ing periodic solutions can be easily determined. It gives high accuracy for both small and large

amplitudes of oscillations and better result than those obtained by other existing results. The main

advantage of the present method is that its simplicity and the second-order approximate solutions

almost coincide with the corresponding numerical solutions (considered to be exact). The method is

illustrated by examples. The present method is very effective and convenient method for solving

strongly nonlinear oscillator systems arising in nonlinear science and engineering.

© 2015 University of Bahrain. Publishing services by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Nonlinear oscillation problems are essential tool in physical
science, mechanical structures, nonlinear circuits, chemical
oscillation and other engineering research. Nonlinear vibra-
tions of oscillation systems are modeled by nonlinear differen-
tial equations. It is very difficult to obtain periodic solutions of
such nonlinear equations. There are several methods used to
solve nonlinear differential equations. Among one of the
widely used is perturbation method (Marion, 1970; Krylov
and Bogoliubov, 1947; Bogoliubov and Mitropolskii, 1961;
Nayfeh and Mook, 1979) whereby the nonlinear response is
small. On the other hand, there are many methods (Amore
and Aranda, 2005; Cheung et al., 1991; He, 2002) used to solve
strongly nonlinear equations. The harmonic balance method
(HBM) (Belendez et al., 2007, Mickens, 1996, 1984; Wu
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et al., 2006; Lim et al., 2005; Alam et al., 2007; Hosen et al.,
2012) is another technique for solving strongly nonlinear equa-
tions. When a HBM is applied to the nonlinear equations for
higher-order approximation, then a set of difficult nonlinear
complex equations appear and it is very difficult to analytically
solve these complex equations. In a recent article, Hosen et al.
(2012) solved such nonlinear algebraic equations easily by
using a truncation principle. Recently, many authors (Khan
et al., 2011, 2012a,b, 2013a; Khan and Mirzabeigy, 2014;
Saha and Patra, 2013; Yazdi et al., 2010; Yildirim et al.,
2011a,b, 2012; Khan and Akbarzade, 2012; Akbarzade and
Khan, 2012; Akbarzade and Khan, 2013) have studied
strongly nonlinear oscillators. Khan et al. (2012a) used a cou-
pling method combining homotopy and variational approach.
Other authors (Nayfeh and Mook, 1979; Mickens, 2001; Hu
and Tang, 2006; Lim and Wu, 2003) used HBM to solve some
strongly nonlinear oscillators. But it is a very laborious proce-
dure to obtain higher-order approximations using those meth-
ods (Nayfeh and Mook, 1979; Mickens, 2001; Hu and Tang,
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2006; Lim and Wu, 2003). Fesanghary et al. (2009) obtained a
new analytical approximation by variational iterative method
(VIM); but the solution contains many harmonic terms. Many
analytical techniques (Hosen et al., 2012; Mickens, 1996, 2001;
Lim and Wu, 2003; Tiwari et al., 2005; Ozis and Yildirim,
2007; Ghadimi and Kaliji, 2013; Ganji et al., 2009; Zhao,
2009; Akbarzade and Farshidianfar, 2014; Khan et al.,
2013a,b) have been used to solve strongly nonlinear oscillator
systems having a rational force (such as Duffing-harmonic

. . 3
oscillator: X + e =

to a stretched wire: X + x — —=
V1+x2

solved the Duffing-harmonic oscillator by expanding the term

0 etc.) and irrational force (mass attached
= 0 etc.). Hosen et al. (2012)

H‘—l into a polynomial form X+ x* —x°+..-=0. But this
method (Hosen et al., 2012) is valid for small amplitude of
oscillations and it is invalid to investigate the nonlinear oscil-

lator X+ x — ’1‘ =0. On the contrary, other authors
+x2

(Fesanghary et al., 2009; Khan et al., 2013a,b) have used dif-
ferent analytical techniques to solve these nonlinear oscillators

¥4, =0; ¥+x——2_=0 etc. without expanding. But

e i

their solution procedure for determining higher-order approx-
imations of these nonlinear oscillators is not easy or straight-
forward and the results (obtained by second order
approximation) are not more accurate compared with numer-
ical results.

The purpose of this paper is to apply a simple factor on the
strongly nonlinear oscillator systems having a rational and an
irrational force and to obtain higher-order approximate fre-
quencies and the corresponding periodic solutions by easily
solving the sets of algebraic equations with complex nonlinear-
ities. The trial solution (concern of this paper) is the same as
that of Hosen et al. (2012). But the solution procedure is differ-
ent from that of Hosen et al. (2012). To verify the accuracy of
the present method, the two complicated nonlinear oscillators

(47 = 05 % + o — —A

= 0) are chosen as examples. The

method provides better result for both small and large ampli-
tudes of oscillations. The significance of this present method is
its simplicity, which not only provides a few harmonic terms,
but also gives more accurate measurement than any other exit-
ing solutions.

2. The methods

Let us consider the following general strongly nonlinear oscil-
lator systems having a rational or an irrational force:

¥4 olx + fx) =0, (1)

with initial conditions
x(0) = 4, x(0) =0, (2)

where over dot denotes the derivatives with respect to ¢, A
denotes the maximum amplitude, f{x) is a nonlinear
restoring-force function such that f{(—x) = —f{x) and w, > 0.

The approximate periodic solution of Eq. (1) is taken in the
form similar to that of Hosen et al. (2012)

Xu(t) = A((1 —u3 —us---)cos @ + u3 cos 3¢ + uscos 5S¢ + - - +),
n:071a2a""7 (3)

where ¢ = wt, o is an unknown angular frequency and
us, us,--- are constants which are to be further determined.

For the first-order approximation (putting n =0 and
uy; = us = --- = 01in Eq. (3)), Eq. (3) becomes
Xo(t) = Acos ¢. 4)
Eq. (4) also satisfied Eq. (2).
In this paper, Eq. (1) can be re-written as
¥+ oix +2f(x) o 5)
1+ x5

Using Egs. (3) and (4), we have the left-side the following
Fourier series expansions:

X+ ofx + f(x)
— 0 = - 3 . 504 .- 6
1+ c1co8¢+c3c083p +cscosSp+---,,  (6)
where
4 (% /%+wix+fx)
cznq:E/O <10+—vc(2) cos(2n—1)pdp, n=1,2,3,---,.
™)

Substituting Eq. (6) for Eq. (5) and then equating the coef-
ficients of the terms cos ¢ and cos 3¢, cos 5¢.. .., we get a set
of nonlinear algebraic equations whose solutions provide the
unknown coefficients us, us, - - - together with the frequency, w.

3. Examples

3.1. Example 1

Let us consider a one-dimensional, nonlinear Duffing-
harmonic oscillator of the form (Mickens, 2001)

3
. X

X+ ek 0, ()
with initial conditions

x(0) = 4, x(0) =0. 9)

Eq. (1) is an example of a conservative nonlinear oscillatory
system having a rational form for the non-dimensional restor-
ing force.

Mickens (2001) rearranged Eq. (8) as

1+ +x =0. (10)

Applying the lowest order harmonic balance method to Eq.
(10), Mickens (2001) obtained an approximate solution of this
oscillator. For the higher-order approximation solutions, a set
of complicated algebraic equations are involved and it is very
difficult to analytically solve. On the other hand, Fesanghary
et al. (2009) obtained higher-order solutions (containing up
to ninth harmonic terms) from Eq. (10). To overcome these
problems, approximation solutions (containing up to third
harmonic terms) have been obtained by applying an easy
approach to Eq. (10) which is based on HBM. In this article,
nonlinear algebraic equations are solved by truncating higher
order terms (followed partially by the principle rule presented
in Hosen et al. (2012)).

Consider the second-order approximate periodic solution
of Eq. (8) is of the form

x1(1) = A((1 — u3) cos ¢ + uz cos 3¢). (11)
Therefore, the first-order approximation becomes

Xo(1) = Acos . (12)
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In this paper, by dividing Eq. (10) by the factor (1 + x3)
and then substituting Egs. (11) and (12) for Eq. (10) and also
using Eqgs. (6) and (7), finally, the approximate frequency w
and the approximate periodic solution can be found. It is
noted that dividing by the factor ((1+ x3)), a set of simple
algebraic equations appears which contains lower order terms
and these lower order terms make the solution rapidly con-
verge. On the other hand, the results obtained in this paper
give more accuracy than other existing results.

We re-write Eq. (8) in the form

(I+x)x+x°
1+x3

Using Eqs. (11) and (12) in Eq.
Fourier series expansions:

(13)

(13), we have the following

(1+x?)%+x°

T = coS®+c3co83¢p+ -+, (14)
where
4 (5 ((1+x2)5+x°
Czn,]:g/o (W>COS(2H71)CPdQD,n:1,273,"'.
(15)

The first two terms have been obtained as
e = by — @A+ (by + &’by)us + (bs + w’by)us + 0(s3),
= d() + (d] =+ a)2d2)u3 + O(Z/l%),

where
5 2 2 24 1+A2 A 1+ 42
0: ] 1 N T o T T /="
A e e 28 Vig s
16 [ A* 344 1+ 47
by=—|-1-F4+"—+——xo],
A 2 16 V1 + A2
P B Y A N B R
A 28 16 1+
16| 414* 114° 2019 + 344> + 154*
by =— |38 +494% + - _Ay - ) )
A [ 4 8 V144
g8 2 8 6
d0_7+7 - )
A A par )’ a1+ 4
24 A% 4+74%434%
d=|-4-54L2-A+ 4+ = T
A5|: 8 1/14,142

114° 44742 +34°
16 V14 A4°

Here, we see that the above coefficients are not singular for
A tending to zero. For example,

2 2 24

A4 41+ 47 VI+ A1+ 42 41)

16
— |4+ 547+ 4" -

dzz

by=4A4

So,
lim by = 0.
A—+0
Substituting Eq. (14) for Eq. (13) and then equating the

coefficients of the terms cos ¢ and cos 3¢ equal to zeros,
respectively, we obtain

bo — UJZA + (bl + wzbz)u3 + (b3 + w2b4)u§ + 0(142) = 0, (16)

dy + (dy + &*dy)us + O(u2) = 0. (17)
At first take u3 = 0, Eq. (16) becomes
by — 0?4 = 0. (18)

Solving Eq. (18), we obtain

\/> ¢ 124-/12 (19

The first approximate frequency is given in Eq. (19) which
was also obtained by Lim and Wu (2003).

It is obvious that the frequency as well as solution Eq. (11)
gives better result when Egs. (16) and (17) are truncated
(Hosen et al. (2012)). Using the truncation rule of Hosen
et al. (2012) in the Egs. (16) and (17), we obtain the following
results

by — * A + (by + &*by)uz + (by + w*by)ui /2 = 0, (20)
d() + (d] + wzdz)u3 =0. (21)
Eliminating o from Egs. (20) and (21), we obtain
—Ady+ (bady — Ady — bods )uz + (bady — bydy +bady /2)u3 + - =0.
(22)
Solving Eq. (22), we obtain
p(A) — /q*(4) —8Adyg(4)
= 2
p(A) = 2b2d0 — 2Ad1 — Zbodg, q(A) = 2b1d2 — b4d0 — 2b2d1.

Solving Eq. (20), we obtain the second approximate fre-
quency as

bo*blu‘g b3u3/2

A) = A =/ —mm—m—m——————
w( ) w2( ) A*bzl/l}+b4l/l§/27

(24)

where u3 is given by Eq. (23).
Therefore, the second-order approximate periodic solution
of Eq. (8) is

x1(1) = A((1 — u3) cos wt + u; cos 3wt), (25)

where u; and o respectively, are given by Eqgs. (23) and (24).
In a similar way, a third-order approximate solution,

x2(1) = A((1 — us — us) cos wt + u3 cos 3wt + us cos Swt)  (26)
is found for which the related equations are obtained as
b() — sz + (bl =+ wzbz)ug + (b3 =+ w2b4)u§

+ (b5 + wzb())u3u5/2 + (b7 + wzbg)MS = 07 (27)

d() =+ (d] + (,Uzdz)u3 + (d} =+ w2d4)u§ —+ (d5 + wzd(,)us = 07 (28)

ro + (1 4+ @*ry)us + (r3 + w2r4)u§ + (rs + w2r6)u5 =0. (29)

where by, by, by, b3, by; dy, dy, d; are already defined above and

192 AS A8
44742 +344+ 4+ —
bs = A + TA-+ 34" + g +32

(4494 + 64" + A°)
(1 + A2)1/2
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594° _A_g
8 16

be = % {—140 —2374% — 1054* —

N (140 + 3074% + 2064* + 39A4°)

)

(1+A2)1/2

24 A* 44547+ 4°

b7:F —4—3A2—?+m,b8:—2b7/37
A% 34%° 4+411474+104%+34°

d3:9—? 4+9A2+6A4+7—73—7 ks ks 01/2+3

A 8 32 (1+4%)
d732 76 — 1554% — 944* 101Aﬁ+41A6
T 8 32

N 76 + 1934% + 1624* +454°
(1+A2)1/2 ?

24

4 A 16 +324% +194* +34°
5= "7 -
A

16 4244% 494 + —
2 (14 43"

ds = —2ds/3,

2 16 +204% + 54*
;‘0:F|:—16—12A2—A4+6+0—+5

(1+A2)1/2
24 16 + 364 4+ 254* + 54°
o= (1642847 1 1344 4 A0 - TR TS
A (14 4%)

32
ry = —2r1/3,13 = =5 | —48 — 1324% — 1234* — 424° — 34
A9

341 48 4+ 1564° + 1834* +904° + 1548
32 (1+A2)1/2

I

128

Iy =—o
A9

304 + 7724% + 667A4* +2144° + 1548

194" 304 + 10154 4+ 10154* + 4704° + 754°
32 (1+A2)1/2 ’

rs = 2_‘: {—64 —1284% — 804* — 174° — 4°
A

+im+ 64 + 1604% + 1364* + 454° + 54°
8 (1+A2)l/2

)

Fe = —254 — 21’5/3.

Solving Eq. (27) for w, we obtain the third approximate fre-
quency as

bo + byuz — b3u3 + bsuzus /2 + byus
A) = A) = : 30
(D( ) (D}( ) \/A - b2u3 - b4u% - b6u3u5/2 — bgMS, ( )

where u; and us are given in the following

(Ad] + b0d2 - bzdo)(Ad5 + b0d6 — bgdg)l‘o ﬂz

B=H Adé(AV5+b0r(,—b8V0)
+(b1d2/Ado—b4/A+"').U3+"'a (31)
e — L+ (r1/ro + bora/ (Arg) — bZ/A)”Jr ...
(bs/A —rs/ro — bors/(Ary)) ’
1
. (32)

T (baJA —dy]do — bods ) (Ady))

3.2. Example 2

In dimensionless form, we consider a mass attached to the cen-
ter of a stretched elastic wire has the equation of motion (Sun
et al. (2007))

X 0
V14 x?
where over dots denote differentiation with respect to time ¢

and 0 < A < 1.
The initial conditions are

x(0) = A4, x(0) =0. (34)

Eq. (33) is an example of conservative nonlinear oscillatory
system having an irrational elastic form for the restoring force.
Eq. (33) can be re-written as

VI+x2(X+x)—Ax=0 (35)
In this paper, we re-write Eq. (35) in the following form
VI+x2(E+x) —Ax

VI+x]

Using Eqgs. (11) and (12) in Eq. (36), we have the following
Fourier series expansions:

VI+x2(3+x) — Ax

X+x— (33)

0. (36)

=ccosp+c3c083¢p+ -, (37)
V143
where
4 (T(1+x)F+x°
C2,17|:E/0 <T COS(Z}’Z*1)(0d§0,n217273,"'.
(38)

The first two terms have been obtained from Eq. (38) as
o =ey— 0?4+ (e + le))uz + 0(3),
s = po+ (pr+ @07p)us + 0(us3),

where

4 24 A?
e =—— 24 AL ——
A° Vit AL
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8
P=5 44547+ A3 —54%/4 -

py=—p 84—
—2(16 +294% + 134%) K(—4%)).

164
5143

44+74%+34*

V1+ A

(32 +424° + 7TA*)E(— A7)

Substituting Eq. (37) for Eq. (36) and then equating the
coefficients of the terms cos ¢ and cos 3¢ equal to zeros,
respectively, we obtain

eg — w*A + (e2 + wzel)us + 0(”5) =0,

o+ (py + @py)us + O(u5) = 0.

At first take uz =

eg — w*A=0.

0, Eq. (39) becomes

Solving Eq. (41), we obtain

w:wl(A):\/"g:\/u

A

A’

[E(—4%) - K(=4%)]

(39)

(40)

(41)

(42)

The first approximate frequency is given in Eq. (42) which
was also obtained by Sun et al. (2007).
Eliminating o from Egs. (39) and (40), we obtain

—Apy + (e1py — Apy — eopy)us + (P21 *P1€2)“§ +ee

Solving Eq. (43), we obtain

Uy =

g(4) +

g2 (A) +4Apyw(A)

2w(A)

)

where g(4) = pieg + Ap> — poer, w(A) = e1p> — expy.

Table 1

=0.

Solving Eq. (39), we obtain the second approximate fre-
quency as

o(d) = or(d) = 2, (43)

where w3 is given by Eq. (44).
Therefore, the second-order approximate periodic solution
of Eq. (33) is

x1(t) = A((1 — u3) cos wt + u; cos 3wt), (46)
where u; and o respectively, are given by Eqgs. (44) and (45).

4. Results and discussion

Based on the modified harmonic balance method (Hosen et al.,
2012), an easy approach has been proposed to obtain higher-
order approximate frequencies and the corresponding periodic
solutions for both small and large values of amplitude of the
strongly nonlinear oscillators having a rational and an irra-
tional force. It has been already mentioned that the determina-
tion of second-order approximation is very difficult by
methods Nayfeh and Mook (1979), Hu and Tang (2006),
Lim and Wu (2003). In the present article, the higher-order
approximate frequency as well as periodic solution especially
second and third-order has been determined without any com-
plicity and easily analytically solved (Egs. (24), (30) and (45)).

We have calculated the second-order approximate frequen-
cies for several amplitudes of oscillation (by Eq. (24)) of Eq. (8)
and presented in Table 1. The results obtained in this paper are
compared with those of others (calculated by Mickens, 2001;
Lim and Wu, 2003; Tiwari et al., 2005; Ozis and Yildirim,
2007; Ghadimi and Kaliji, 2013; Khan et al., 2012a) all the

Comparison of the approximate frequencies obtained by present method (Eq. (24)) with the exact frequency w, and other

existing frequencies (those are obtained by Mickens, 2001; Lim and Wu, 2003; Tiwari et al. (2005), Ozis and Yildirim, 2007; Ghadimi

and Kaliji, 2013; Khan et al., 2012a).

A , Mickens Lim and Wu  Tiw. etal. Ozis and Yi  Ghadimi and Kaliji ~ Khan et al.  Present study
Er(%) Er(%) Er(%) Er(%) Er(%) Er(%) w, Er(%) w3 Er(%)

0.1  0.084389  0.086280  0.084256 0.086244 0.086268 0.084449 0.0757688  “0.084389  0.084389
2.240 0.158 2.198 2227 0.071 10.215 0.000 0.000

0.2  0.166830  0.170664  0.166563 0.170393 0.170575 0.166964 0.150020 0.166826  0.166830
2.298 0.160 2.136 2.245 0.080 10.076 0.002 0.000

0.4 0.319403  0.327327  0.318863 0.325513 0.326746 0.319757 0.288839 0.319359  0.319407
2.481 0.169 1.913 2.299 0.111 9.569 0.014 0.001

0.6 0.449101 0.461084  0.448326 0.456392 0.459648 0.449777 0.409333 0.448990  0.449109
2.668 0.173 1.624 2.345 0.151 8.855 0.025 0.002

0.8  0.554068  0.569495  0.553140 0.561440 0.567163 0.555136 0.509444 0.553895  0.554076
2.784 0.168 1.331 2.364 0.193 8.054 0.031 0.002

1 0.636780  0.654654  0.635796 0.643594 0.651641 0.638285 0.590597 0.636572  0.636785
2.807 0.155 1.070 2.333 0.236 7.252 0.033 0.000

2 0.847626  0.866026  0.847021 0.850651 0.862895 0.850963 0.811834 0.847505  0.847628
2.171 0.071 0.357 1.801 0.394 4.222 0.042 0.000

3 0.919599  0.933257  0.919328 0.920897 0.931207 0.923295 0.895338 0.919574 0919614
1.485 0.0295 0.141 1.262 0.402 2.638 0.003 0.002

4 0.950856  0.960769  0.950730 0.951481 0.959428 0.954174 0.933926 0.950862  0.950875
1.043 0.013 0.066 0.902 0.349 1.781 0.000 0.002

5 0.966976  0.974355  0.966913 0.967310 0.973431 0.969779 0.954642 0.966989  0.966992
0.763 0.007 0.035 0.668 0.290 1.276 0.001 0.002

10 0.990916  0.993399  0.990912 0.990954 0.993144 0.992118 0.986940 0.990921 0.990921
0.251 0.000 0.004 0.225 0.121 0.401 0.000 0.000

where Er(%) denotes the absolute percentage error.
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Table 2a

Khan et al., 2012a) when 4 = 0.5.

Comparison of the approximate frequencies obtained by present method (Eq. (45)) with the exact frequency w, and other
existing frequencies (those frequencies obtained by Mickens, 1996a; Ganji et al., 2009; Zhao, 2009; Akbarzade and Farshidianfar, 2014;

A W, Mickens Ganyji et al. Zhao Akbarzade and Farshidianfar Khan et al. Present study
Er(%) Er(%) Er(%) Er(%) Er(%) Er(%)
0.1 0.708423 0.707987 0.708424 0.86717 0 0.708431 0.708096 0.708423
2.159 0.000 22.408 0.001 0.046 0.000
0.2 0.712259 0.710582 0.712271 0.870489 0.712390 0.710997 0.712259
0.236 0.001 22215 0.018 0.177 0.000
0.4 0.726126 0.720330 0.726271 0.882252 0.728011 0.721720 0.726125
0.798 0.020 21.501 0.260 0.607 0.000
0.6 0.745140 0.734651 0.745683 0.897720 0.753326 0.737022 0.745145
1.408 0.073 20.477 1.099 1.090 0.000
0.8 0.765907 0.751536 0.767072 0.913595 0.769064 0.754488 0.765903
1.876 0.152 19.283 0.412 1.491 0.000
1 0.786171 0.769254 0.788075 0.927961 0.790009 0.772287 0.786165
2.152 0.242 18.036 0.488 1.766 0.000
2 0.860447 0.843401 0.864865 0.969782 0.864890 0.843545 0.860451
1.981 0.513 12.707 0.516 1.964 0.000
3 0.899904 0.887017 0.904671 0.984638 0.903592 0.885017 0.899922
1.432 0.530 9.416 0.410 1.654 0.002
4 0.922727 0.912871 0.927153 0.990901 0.925721 0.910077 0.922749
1.068 0.480 7.389 0.325 1.371 0.002
5 0.937317 0.929471 0.941285 0.994030 0.939793 0.926489 0.937338
0.837 0.423 6.051 0.264 1.155 0.002
10 0.968102 0.964358 0.970480 0.998456 0.969373 0.962054 0.968113
0.387 0.246 3.136 0.131 0.625 0.001

Table 2b Comparison of the approximate frequencies obtained by present method (Eq. (45)) with the
existing frequencies when 4 = 0.75.

exact frequency w, and other

A W, Mickens Ganji et al. Zhao Akbarzade and Farshidianfar Khan et al. Present study
Er(%) Er(%) Er(%) Er(%) Er(%) Er(%)
0.1 0.502786 0.501865 0.502788 0.664804 0.502805 0.502095 0.502786
0.183 0.000 32.224 0.003 0.138 0.000
0.2 0.510841 0.507336 0.510876 0.674494 0.511126 0.508213 0.510840
0.686 0.007 32.036 0.056 0.515 0.000
0.4 0.539214 0.527553 0.539633 0.708046 0.543139 0.530449 0.539211
2.163 0.0778 31.311 0.728 1.626 0.000
0.6 0.576587 0.556389 0.577983 0.750517 0.592663 0.561244 0.576575
3.503 0.242 30.165 2.788 2.661 0.002
0.8 0.615781 0.589244 0.618545 0.792449 0.655744 0.595194 0.615756
4.310 0.449 28.6901 6.490 3.343 0.004
1 0.652771 0.622597 0.656958 0.829156 0.660432 0.628649 0.652735
4.622 0.642 27.021 1.174 3.695 0.005
2 0.780662 0.752986 0.788662 0.930630 0.788702 0.753788 0.780668
3.545 1.025 19.211 1.030 3.443 0.000
3 0.844964 0.824742 0.853020 0.965092 0.851304 0.821921 0.845013
2.393 0.954 14.217 0.750 2.727 0.006
4 0.881255 0.866025 0.888492 0.979408 0.886250 0.861890 0.881313
1.728 0.821 11.138 0.567 2.197 0.007
5 0.904141 0.892119 0.910509 0.986516 0.908195 0.887659 0.904197
1.330 0.704 9.111 0.448 1.823 0.006
10 0.951696 0.946033 0.955378 0.996522 0.953690 0.942570 0.951722
0.595 0.387 4.710 0.210 0.959 0.003

results together with exact frequency have been shown in
Table 1. Table 1 indicates that the approximate frequencies
(concern of this paper) are better than those obtained by

Mickens, 2001; Lim and Wu, 2003; Tiwari et al., 2005; Ozis
and Yildirim, 2007; Ghadimi and Kaliji, 2013; Khan et al.,

2012a.
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Table 2¢

existing frequencies when 4 = 0.95.

Comparison of the approximate frequencies obtained by present method (Eq. (45)) with the exact frequency w, and other

A W, Mickens Ganji et al. Zhao Akbarzade and Farshidianfar Khan et al. Present study
Er(%) Er(%) Er(%) Er(%) Er(%) Er(%)
0.1 0.231367 0.228836 0.231391 0.323516 0.231436 0.229483 0.231367
1.094 0.011 39.828 0.023 0.814 0.000
0.2 0.252549 0.243639 0.252836 0.354238 0.253476 0.246025 0.252547
3.528 0.114 40.265 0.367 2.583 0.000
0.4 0.317642 0.293022 0.319674 0.447114 0.327109 0.300135 0.317594
7.751 0.640 40.760 2.981 5.511 0.015
0.6 0.391035 0.354195 0.395577 0.547084 0.422197 0.364869 0.390906
9.421 1.162 39.907 7.967 6.692 0.033
0.8 0.459947 0.416090 0.466860 0.634908 0.527257 0.428086 0.459761
9.535 1.503 38.039 14.634 6.927 0.0404
1 0.520335 0.473633 0.529168 0.706124 0.534618 0.485141 0.520138
8.975 1.697 35.706 2.745 6.764 0.038
2 0.709629 0.671950 0.721931 0.886069 0.721987 0.674087 0.709623
5.310 1.734 24.864 1.742 5.009 0.000
3 0.797913 0.771310 0.809330 0.943366 0.807038 0.768077 0.798006
3.334 1.431 18.229 1.144 3.739 0.012
4 0.846399 0.826640 0.856307 0.966748 0.853359 0.821520 0.846507
2.335 1.171 14.219 0.822 2.940 0.0123
S 0.876561 0.861071 0.885117 0.978276 0.882101 0.855466 0.876659
1.767 0.976 11.604 0.632 2.407 0.011
10 0.938333 0.931114 0.943122 0.994413 0.940956 0.926722 0.938376
0.7693 0.510 5.977 0.280 1.238 0.005
Next, we have calculated the second-order approximate fre- °
quency (by Eq. (45)) of Eq. (33) with several amplitudes of 1
oscillation and some different values of A that are compared 21
with numerical result and other existing results (those results x 0 ‘ ‘
obtained by Mickens, 1996; Ganji et al., 2009; Zhao, 2009; -2 1 ! 6 !
Akbarzade and Farshidianfar, 2014; Khan et al., 2012a) which 44
are presented in Tables 2a—c. The absolute percentage errors of 54

each method has been calculated and presented in all Tables 1
and 2c. The results of these Tables show that the approximate
frequencies (concern by this paper) provide better results than
those obtained by Mickens (1996), Ganji et al. (2009), Zhao
(2009), Akbarzade and Farshidianfar (2014), Khan et al.
(2012a). Thus, the present method provides better result than
other existing results.

0.8 -
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Figure 1a The present method solution of Eq. (8) has been
presented (denoting by circles) when small value of amplitude
A = 0.6, with initial conditions [x(0) = 0.6,x(0) = 0]. Corre-
sponding numerical solution has been presented (denoted by solid
line) to compare with present method.

Figure 1b  The present method solution of Eq. (8) has been
presented (denoting b circles) when large value of amplitude
A = 5.0, with initial conditions [x(0) = 5.0,x(0) =0]. Corre-
sponding numerical solution has been presented (denoted by solid
line) to compare with present method.
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Figure 2a  The present method solution of Eq. (33) has been

presented (denoting by circles) when small value of amplitude
A=0.6 and A =0.75, with initial conditions
[x(0) = 0.6,%(0) = 0]. Corresponding numerical solution has
been presented (denoted by solid line) to compare with present
method.
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Figure 2b  The present method solution of Eq. (33) has been
presented (denoting by circles) when small value of amplitude
A =50 and A =0.75, with initial conditions
[x(0) = 5.0, %(0) = 0]. Corresponding numerical solution has been
presented (denoted by solid line) to compare with present method.

0.6 4

Figure 2¢  The present method solution of Eq. (33) has been
presented (denoting by circles) when small value of amplitude
A =106 and A=0.95, with initial conditions
[x(0) = 0.6, x(0) = 0]. Corresponding numerical solution has been
presented (denoted by solid line) to compare with present method.

Figure 2d The present method solution of Eq. (33) has been
presented (denoting by circles) when large value of amplitude
A =50 and 1=095, with initial conditions [x(0)= 5.0,
x(0) = 0]. Corresponding numerical solution has been presented
(denoted by solid line) to compare with present method.

Next, the second-order approximate periodic solution of
Eq. (8) has been determined by present method when
A =0.6 and 4 = 5.0 and respectively presented in Fig. la
and b and each figure includes the corresponding numerical
solution. In a similar way, the second-order approximate peri-
odic solution of Eq. (33) has been determined by present
method for small value and large values of amplitude which
are presented in Fig. 2a—d and each figure includes the corre-
sponding numerical solution.

Seeing all the figures, we observe that the present method
solutions are nicely agreement with the corresponding numer-
ical solutions for both small and large amplitudes of
oscillations.

5. Conclusions

In present work, a simple harmonic balance approach has been
presented to obtain higher-order approximations of strongly
nonlinear oscillator systems having a rational and an irrational
force. Recently, many analytical techniques have been devel-
oped to solve strongly nonlinear oscillators. But these tech-
niques are very difficult to determine higher-order
approximations because a set of complex nonlinear algebraic
equations involve higher order terms and it is very difficult
to solve these equations analytically. In this article, this limita-
tion has been eliminated by applying a simple factor to the
nonlinear oscillators. The solution procedure of the present
approach is very simple involving a lower order term. Results
obtained in this paper are compared with other existing results.
As indicated, the error of the present method is much low than
others. On the other hand, it makes the approximate solution
rapidly converge. Thus, the present approach is an extremely
effective and powerful method for solving strongly nonlinear
oscillator systems arising in nonlinear science and engineering
especially in vibration engineering.
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