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Abstract This paper witnesses the application of a tri-prong scheme comprising the well-known

Variational Iteration (VIM), Adomian’s polynomials and an auxiliary parameter to obtain solu-

tions of regularized long wave (RLW) equation in large domain. Computational work elucidates

the solution procedure appropriately and comparison with results by the standard variational iter-

ation method shows that the auxiliary parameter proves very effective to control the convergence

region of approximate solutions.
ª 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

Recently, lot of attention is being given to nonlinear sciences
due to the fact that most of the physical phenomenons are
nonlinear in nature. The regularized long wave (RLW) equa-

tion is one of the important partial differential equations of
the nonlinear dispersive waves. Solitary waves are wave packet
or pulses, which propagate in nonlinear dispersive media. Due

to dynamical balance between the nonlinear and dispersive
effects, these waves retain a stable wave form. The one-dimen-
sional RLW equation is as follows:

ut þ ð1þ uÞux � cuxxt ¼ 0; ð1Þ

with the physical initial condition

uðx; 0Þ ! 0; x! �1;

where c > 0 is constant. This equation was first proposed by

Peregrine in 1966 (Peregrine, 1966) as an alternative model
to the KdV equation. The word ‘‘regularized’’ refers to the fact
that the RLW equation has been studied extensively by Benja-
min, Bona and Mahoney (Benjamin et al., 1972) and indeed,

the equation is also referred to as the BBM equation. The
RLW equation plays a major role in the study of non-linear
dispersive waves (Abdulloev et al., 1976; Bona et al., 1985)

because of its description of a larger number of important
physical phenomena, such as shallow water waves and ion
acoustic plasma waves. Experimental evidence suggests that

this description breaks down if the amplitude of any wave
exceeds about 0.28, as wave breaking is observed with water
waves (Dogan, 2002).

The RLW equation has solitary wave solutions similar to
those of the KdV equation, and the interaction of solitary
waves studied by Benjamin et al. (1972); Bona et al. (1980) sug-
gested that the RLW wave interactions are inelastic, it was

shown by Olver (1979) that the equation has three independent* Corresponding author.
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solution invariants. The possession of only a finite number of
conservation conditions indicates that the equation is non-inte-
grable and it is not amenable to attack by the IST method

(Sloan, 1991). Since the analytical solution of the RLW equa-
tion is not very useful, the availability of accurate and efficient
numerical methods is essential.

The numerical solution of the RLW equation has been con-
sidered by many authors. Peregrine used a finite-difference
scheme to solve this equation, which is second-order in space

and first-order in time (Peregrine, 1966). Bona and Pritchard
applied the Runge–Kutta and predictor/corrector methods to
obtain RLW equation (Bona et al., 1985). Various numerical
studies have been reported based on the finite difference

(Qianshun et al., 1995), pseudo-spectral (Gou and Cao,
1988), splitting (Jain et al., 1993) and Galerkin methods
(Sanz-Serna and Christie, 1981). Gardner et al. used a least-

squares technique with space linear finite elements to construct
a numerical solution for this equation (Gardner et al., 1996).
In addition, finite element method based on both quadratic

and cubic B-spline finite elements within Galerkin’s method
has been used for obtaining the solutions of the RLW equation
by Gardner et al., 1995. Soliman and Raslan solved the RLW

equation by using the collocation method with quadratic
B-spline at the midpoint (Soliman and Raslan, 2001). Soliman
and Hussein used the collocation method with septic spline to
solve the RLW equation (Soliman and Hussien, 2005). Dong

solved the RLW equation with the petrov-Galerkin method
using quadratic B-spline finite elements (Dogan, 2001). Shokri
and Dehghan used a mesh less method by the radial basis

functions for numerical solution of the RLW equation
(Shokri and Dehghan, 2010). Recently, semi-analytic methods
have been used to solve the RLW equation. Some of these

methods are the Adomian decomposition method (El-Danaf
et al., 2005), homotopy analysis method (Rashidi et al.,
2009), homotopy perturbation method (Inc and Uğurlu,

2007) and variational iteration method (Yusufoglu and
Bekir, 2007).

In He, 1999, Ji-Huan He gave a very lucid as well as ele-
mentary discussion of the variational iteration method; the

method was further developed by the originator himself (He,
2006, 2007; He et al., 2010). The main property of the method
is its flexibility and ability to obtain solutions of nonlinear

equations accurately and conveniently (Noor and Mohyud-
Din, 2008; Heris�anu and Marinca, 2010; Yilmaz and Inc,
2010). Also, there are many modifications of the variational

iteration method, among which Herisanu and Marinca’s mod-
ification is much more attractive, where the variational itera-
tion method is coupled with the least squares technology,
and one iteration leads to ideal results (He, 2007). Yilmaz

and Inc constructed a variational iteration algorithm, where
an auxiliary parameter was introduced to adjust the conver-
gence rate, but they did not give a general rule for the best

choice of the auxiliary parameter (Yilmaz and Inc, 2010). This
modified method was further developed by Hosseini et al.
(2010a,b, 2012); Ghaneai et al. (2012) by introducing some

profitable rules for optimal determination of the auxiliary
parameter. It is to be highlighted that Abbasbandy (2007a,b)
introduced Adomian’s polynomials in the traditional VIM

for solving quadratic Riccati differential and Klein-Gordon
equations and subsequently Noor and Mohyud-Din (2008)
for solving singular and nonsingular initial and boundary
value problems. Ref., (Biswas and Zerrad, 2007; Biswas,

2010; Biswas and Kara, 2011; Girgis et al., 2010; Girgis and
Biswas, 2011; Antonova and Biswas, 2009; Girgis and
Biswas, 2010; Labidi et al., 2012; Kirshnan et al., 2011;

Kirshnan et al., 2012) also discuss regularized long wave equa-
tion in detail. Recently, Hosseini et al. (2011) made an elegant
coupling of Auxiliary parameter, Adomian’s polynomials and

correction functional to solve nonlinear problems. Inspired
and motivated by the ongoing research in this area, we apply
the tri-prong algorithm (Hosseini et al., 2011) which is

obtained by inserting Adomian’s polynomials in the correction
functional having auxiliary parameter to find approximate
solutions of RLW equation.

2. Variational Iteration Method (VIM)

Hereby, we briefly recapitulate the standard solution proce-

dure of the variational iteration method. Consider the follow-
ing functional equation:

Hu ¼ Luþ RuþNu� gðxÞ ¼ 0; ð2Þ

where L is the highest order derivative that is assumed to be
easily invertible, R is a linear differential operator of order less
than L, Nu represents the nonlinear terms, and g is the source

term. The basic characteristic of He’s method is to construct a
correction functional for Eq. (2), which reads:

unþ1ðtÞ ¼ unðtÞ þ
Z t

0

kðsÞHunðsÞds; ð3Þ

where k is a Lagrange multiplier which can be identified opti-

mally via variational theory, un is the nth approximate solu-
tion, and ~un denotes a restricted variation, i.e., d~un ¼ 0. After
identification of the multiplier, a variational iteration algo-

rithm is constructed, an exact solution can be achieved when
n tends to infinity:

uðxÞ ¼ lim
n!1

unðxÞ: ð4Þ

In summary, we have the following variational iteration for-
mula for (2):

u0ðxÞ is an arbitrary function

unþ1ðxÞ ¼ unðxÞ þ
R x

0
kðsÞHunðsÞds n P 0:

�
ð5Þ

3. Auxiliary parameter in variational iteration algorithm

An unknown auxiliary parameter h can be inserted into the
variational iteration algorithm, Eq. (5):

u0ðxÞ is an arbitrary function

u1ðx; hÞ ¼ u0ðxÞ þ h
R x

0
kðsÞHu0ðsÞds

unþ1ðx; hÞ ¼ unðx; hÞ þ h
R x

0
kðsÞHunðs; hÞds n P 1:

8><
>: ð6Þ

It should be emphasized that un(x,h),n P 1 can be computed
by symbolic computation software such as Maple or Mathem-
atica. The approximate solutions un(x,h),n P 1 contain the

auxiliary parameter h. The validity of the method is based
on such an assumption that the approximation un(x,h),n P 0
converges to the exact solution. It is the auxiliary parameter

h that ensures that the assumption can be satisfied. In general,
by means of the error of norm two of the residual function, it is
straightforward to choose a proper value of h which ensures
that the approximate solutions are convergent (Hosseini
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et al., 2010a,b, 2012; Ghaneai et al., 2012). In fact, the pro-

posed technology is very simple, easier to implement and is
able to approximate the solution more accurately in a large
solution domain.

4. Numerical examples

To elucidate the solution procedure, three examples are given.

Example 4.1. Consider the following RLW equation (Rashidi
et al., 2009):

ut þ ux þ uux � uxxt ¼ 0; t > 0; �5 6 x 6 5;

uðx; 0Þ ¼ 3a sech2ðbxÞ; �5 6 x 6 5;

�
ð7Þ

which admits the solution u(x,t) = 3a sech2(b [x � (1 + a)t]),
where a > 0 is constant and b ¼ 0:5ða=ð1þ aÞÞ

1
2. Take

(x,t) 2 [ � 5,5] · [0,3]. According to the traditional Variational
Iteration Method, we get

unþ1ðx; tÞ ¼ unðx; tÞ �
Z t

0

@unðx; sÞ
@s

þ @unðx; sÞ
@x

�

þunðx; sÞ
@unðx; sÞ
@x

� @
3unðx; sÞ
@s@x2

�
ds; ð8Þ

Now, using algorithm defined in Hosseini et al. (2010a,b, 2011,
2012), Ghaneai et al. (2012), we have the following correction

functional using Adomian’s polynomials:

unþ1ðx; tÞ ¼ unðx; tÞ

�
Z t

0

@unðx; sÞ
@s

þ @unðx; sÞ
@x

þ An �
@3unðx; sÞ
@s@x2

� �
ds;

ð9Þ

where An are the so-called Adomian’s polynomials. Now,
beginning with u0(x,t) = u(x,0) = 3a sech2(bx) and a = 0.2,

we stop the solution procedure at u4(x,t). Fig. 1a, is the abso-
lute error of u4(x,t) for (x,t) 2 [ � 5,5] · [0,3], showing that the
solution u4(x,t) is not valid for large values of x and t, of
course, the accuracy can be improved if the iteration procedure

continues and the exact solution can be obtained when n tends
to infinity. Now, using the recursive scheme (6), we have:

u0ðx; tÞ ¼ uðx; 0Þ ¼ 6

10
sech2

ffiffiffi
6
p

12
x

 !
;

u1ðx; t; hÞ ¼
6

10
sech2

ffiffiffi
6
p

12
x

 !
þ

ffiffiffi
6
p

10
h 1þ 6

10
sech2

ffiffiffi
6
p

12
x

 ! !

� sech2

ffiffiffi
6
p

12
x

 !
tanh

ffiffiffi
6
p

12
x

 !
t;

and in general,

unþ1ðx; tÞ¼ unðx; tÞ�h

Z t

0

@unðx;sÞ
@s

þ@unðx;sÞ
@x

þAn�
@3unðx;sÞ
@s@x2

� �
ds:

ð10Þ

In order to find a proper value of h for the approximate
solutions (9), we define the following residual function,

r4ðx; t; hÞ ¼
@u4ðx; t; hÞ

@t
þ @u4ðx; t; hÞ

@x
þ u4ðx; t; hÞ

� @u4ðx; t; hÞ
@x

� @
3u4ðx; t; hÞ
@t@x2

; ð11Þ

and the following error of norm two of the residual function,

e4ðhÞ ¼
1

30

Z 5

�5

Z 3

0

jr4ðx; t; hÞj2dtdx
� �1

2

: ð12Þ

Here, we apply numerical integration to calculate the approx-

imate e4 (h). For obtaining an optimal value of h, we choose
the minimum point of the error of norm two of residual func-
tion (12). The minimum point of e4(h), as h = 0.4476, is

obtained by using Maple software. By substituting
h= 0.4476 in u4(x,t,h), the absolute error of the 4th-order
approximation of the proposed method reduces remarkably,

as shown in Fig. 1b.
Fig. 1c shows the exact solution, and Figs. 1d and 1e show

the 4th- approximation solution by standard VIM and the
present technique, respectively. In addition, the plot of numer-

ical results for u4(x,t) by standard VIM and present technique
in comparison with the exact solution at t= 3 s, is shown in
Fig. 1f. The results show the high efficiency of the proposed

method in this example.

Figure 1a Absolute error for the 4th-order approximation by

standard VIM in Example 4.1.

Figure 1b Absolute error for the 4th-order approximation by

present technique when h= 0.4476 in Example 4.1.
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Using forward difference (Liszka and Orkisz, 1980) for time

derivative and center difference for x direction we get the
required form

Ui; jþ1 �Ui; j

k
þUiþ1; j �Ui�1; j

2h
þUi; j

Uiþ1; j �Ui�1; j

2h

� �

� Uiþ1; jþ1 � 2Ui; jþ1 þUi�1; jþ1

h2k
�Uiþ1; j � 2Ui; j þUi�1; j

h2k

� �
¼ 0:

The initial and boundary conditions are given as

ui;0 ¼ 3a sech2ðbihÞ; i ¼ 0; 1; 23; . . . ;m;

u0;j ¼ 3a sech2ðb½ð1þ aÞjk�Þ; un;j
¼ 3a sech2ð5þ b½ð1þ aÞjk�Þ; j ¼ 0; 1; . . . ; n:

2h2ðUi; jþ1�Ui; jÞþhkðUiþ1; j�Ui�1; jÞþhkðUi; j½Uiþ1; j�Ui�1; j�Þ
�2ð½Uiþ1; jþ1�2Ui; jþ1þUi�1; jþ1�� ½Uiþ1; j�2Ui; jþUi�1; j�Þ ¼ 0;

�2Ui�1; jþ1 þ ð2h2 þ 4ÞUi; jþ1 � 2Uiþ1; jþ1

¼ ð�hk� 2ÞUi�1; j þ ð4þ 2h2 � hk½Uiþ1; j �Ui�1; j�ÞUi; j

þ ð�hk� 2ÞUiþ1; j

Let us denote L ¼ ½Uiþ1; j �Ui�1; j�

�2Ui�1; jþ1 þ ð2h2 þ 4ÞUi; jþ1 � 2Uiþ1; jþ1

¼ ð�hk� 2ÞUi�1; j þ ð4þ 2h2 � hkLÞUi; j þ ð�hk� 2ÞUiþ1; j:

This numerical scheme has traction error of O(k) + O(h2)

which is similar to Kutluay and Esen, 2006. Since the stability
parameter k/h2 depends not only on the form of the proposed
finite difference scheme but also generally upon the solution

u(x,t) being obtained, the complications and difficulties may
arise in the analysis of stability. Let us take m= 5 and
n= 5 where m and n are number of meshes in x and t direc-

tions where x = ih and t= jk. According to this
k ¼ 3�0

5
¼ 0:6 and h ¼ 5þ5

5
¼ 2. Taking i= 1, 2, 3, 4 and

j= 0, 1, 2, 3, 4, 5. Using initial and boundary data we can

have tri diagonal matrix of the form for j= 0 and i= 1, 2,
3, 4.

Figure 1c Exact solution for Example 4.1.

Figure 1d 4th- order approximation solution by present tech-

nique when h= 0.4476 in Example 4.1.

Figure 1e 4th-order approximation solution by standard VIM in

Example 4.1.

Figure 1f The plot of numerical results for u4(x,t) by standard

VIM and present technique in comparison with the exact solution

at t= 3 s, in Example 4.1.
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AUi;1 ¼ BUi;0; i ¼ 1; 2; 3; 4; 5:

After solving we have the following error table.

x Exact solution Approx.

sol. k = 0.6

Approx.

sol. k = 0.1

Approx.

sol. k = 0.01

0.0 0.600000 0.600000 0.600000 0.600000

2.0 0.510146 0.511240 0.510120 0.510146

4.0 0.328115 0.310154 0.328784 0.328114

6.0 0.175583 0.174125 0.175142 0.175581

8.0 0.084973 0.084875 0.084453 0.084970

10.0 0.039146 0.034125 0.039145 0.039141

Example 4.2. Consider the following RLW equation
(Yusufoglu and Bekir, 2007):

ut þ ux þ uux � cuxxt ¼ 0; t > 0;�25 6 x 6 25;

uðx; 0Þ ¼ 3c sech2ðpðx� x0ÞÞ; �25 6 x 6 25;

�
ð13Þ

It is easy to verify that u(x,t) = 3c sech2(p(x � vt � x0)), where
p ¼ ðc=4cðcþ 1ÞÞ

1
2; v ¼ cþ 1 and c is constant. We take the

solution domain as (x,t) 2 [ � 25,25] · [0,50]. Similarly, the

absolute error of u3(x,t) for (x,t) 2 [ � 25,25] · [0,50],
c= 0.03, c = 1, and x0 = 0 tends to be very large when time
tends to 50, as illustrated in Fig. 2(a).

According to the traditional Variational Iteration Method,
we get

unþ1ðx; tÞ ¼ unðx; tÞ �
Z t

0

@unðx; sÞ
@s

þ @unðx; sÞ
@x

�

þunðx; sÞ
@unðx; sÞ
@x

� c@3unðx; sÞ
@s@x2

�
ds: ð14Þ

Now, using algorithm defined in Hosseini et al. (2010a,b, 2011,
2012), Ghaneai et al. (2012), we have the following correction
functional using Adomian’s polynomials:

unþ1ðx; tÞ ¼ unðx; tÞ

�
Z t

0

@unðx; sÞ
@s

þ @unðx; sÞ
@x

þ An �
c@3unðx; sÞ
@s@x2

� �
ds;

ð15Þ

where An are the so-called Adomian’s polynomials. Now,

using the iteration formulation (6), we successively have

u0ðx; tÞ ¼ uðx; 0Þ ¼ 9

100
sech2

ffiffiffiffiffiffiffiffi
309
p

206
x

 !
;

u1ðx; t; hÞ ¼
9

100
sech2

ffiffiffiffiffiffiffiffi
309
p

206
x

 !
;

þ 9
ffiffiffiffiffiffiffiffi
309
p

1030000
h 100 sech2

ffiffiffiffiffiffiffiffi
309
p

206
x

 !
þ 9 sech4

ffiffiffiffiffiffiffiffi
309
p

206
x

 ! !

� tanh

ffiffiffiffiffiffiffiffi
309
p

206
x

 !
t;

and in general,

unþ1ðx; tÞ ¼ unðx; tÞ � h

�
Z t

0

@unðx; sÞ
@s

þ @unðx; sÞ
@x

þ An �
@3unðx; sÞ
@s@x2

� �
ds:

We define the following residual function,

r3ðx; t; hÞ ¼
@u3ðx; t; hÞ

@t
þ @u3ðx; t; hÞ

@x
þ u3ðx; t; hÞ

@u3ðx; t; hÞ
@x

� @
3u3ðx; t; hÞ
@t@x2

;

and the following error of norm two of the residual function,

e3ðhÞ ¼
1

2500

Z 25

�25

Z 50

0

jr3ðx; t; hÞj2dtdx
� �1

2

;

clearly, suitable value of h is the global minimum point of e3
(h) which we obtain as h = 0.025 using Maple software. The
absolute error of 3rd-order approximation of the proposed
method in the solution domain (x,t) 2 [ � 25,25] · [0,50], is
given in Fig. 2(b), the accuracy is remarkably improved by

the optimal choice of h.
After solving by FDM, we have the following error table.

x Exact solution Approx.

sol. k = 0.6

Approx.

sol. k = 0.1

Approx.

sol. k = 0.01

0.0 0.090000 0.090000 0.090000 0.090000

5.0 0.075418 0.075210 0.075124 0.075411

10.0 0.046803 0.046421 0.046812 0.046812

15.0 0.023980 0.023142 0.023921 0.023940

20.0 0.011112 0.011242 0.011231 0.011121

25.0 0.004912 0.001420 0.004221 0.004899

ð2h2 þ 4Þ �2 0 0 0

�2 ð2h2 þ 4Þ �2 0 0

0 �2 ð2h2 þ 4Þ �2 0

0 0 �2 ð2h2 þ 4Þ �2
0 0 0 �2 ð2h2 þ 4Þ

2
6666664

3
7777775

U1;1

U2;1

U3;1

U4;1

U5;1

2
6666664

3
7777775

¼

ð4þ 2h2 � hkLÞ ð�hk� 2Þ 0 0 0

ð�hk� 2Þ ð4þ 2h2 � hkLÞ ð�hk� 2Þ 0 0

0 ð�hk� 2Þ ð4þ 2h2 � hkLÞ ð�hk� 2Þ 0

0 0 ð�hk� 2Þ ð4þ 2h2 � hkLÞ ð�hk� 2Þ
0 0 0 ð�hk� 2Þ ð4þ 2h2 � hkLÞ

2
6666664

3
7777775

U1;0

U2;0

U3;0

U4;0

U5;0

2
6666664

3
7777775
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Example 4.3. Consider the RLW Eq. (13), in a third numerical
experiment, we take c= 0.1, c = 1, x0 = 0 through the
interval [ � 40,60] · [0,10]. According to the standard VIM,

we have the following variational iteration formula:

unþ1ðx; tÞ ¼ unðx; tÞ �
Z t

0

@unðx; sÞ
@s

þ @unðx; sÞ
@x

�

þunðx; sÞ
@unðx; sÞ
@x

� @
3unðx; sÞ
@s@x2

�
ds;

Beginning with u0ðx; tÞ ¼ uðx; 0Þ ¼ 3
10

sech2
ffiffiffiffi
11
p

22
x

� �
, we calcu-

late the approximate solution till u3(x,t). The absolute error
is shown in Fig. 3a, it is obvious that the same problem keeps
unchanged. Similarly, by the iteration algorithm (6), we have

u0ðx; tÞ ¼ uðx; 0Þ ¼ 3

10
sech2

ffiffiffiffiffi
11
p

22
x

 !
;

u1ðx; t; hÞ ¼
3

10
sech2

ffiffiffiffiffi
11
p

22
x

 !

þ 3
ffiffiffiffiffi
11
p

110
h 1þ 3

10
sech2

ffiffiffiffiffi
11
p

22
x

 ! !
sech2

ffiffiffiffiffi
11
p

22
x

 !

� tanh

ffiffiffiffiffiffiffiffi
309
p

206
x

 !
t;

and in general

unþ1ðx; tÞ ¼ unðx; tÞ � h

�
Z t

0

@unðx; sÞ
@s

þ @unðx; sÞ
@x

þ An �
@3unðx; sÞ
@s@x2

� �
ds:

Figure 2 Error analysis of solution of Eq. (7) by finite difference method.

Figure 3a Absolute error for the 3rd-order approximation by

standard VIM for u3(x,t) in Example 4.2.
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We define the residual function of u3(x,t) as,

r3ðx; t; hÞ ¼
@u3ðx; t; hÞ

@t
þ @u3ðx; t; hÞ

@x
þ u3ðx; t; hÞ

� @u3ðx; t; hÞ
@x

� @
3u3ðx; t; hÞ
@t@x2

: ð16Þ

For obtaining an optimal value of h, we choose the global
minimum point of the error of norm two of residual function
(16):

e3ðhÞ ¼
1

1000

Z 60

�40

Z 10

0

jr3ðx; t; hÞj2dtdx
� �1

2

;

Figure 3b Absolute error for the 3rd-order approximation by

present technique when h= 0.025 in Example 4.2.

Figure 4 Error analysis of solution of Eq. (13) by finite difference method.

Figure 5a Absolute error for the 3rd-order approximation by

standard VIM for u3(x,t) in Example 4.3.
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thus we select h = 0.2712. The absolute error of 3rd-order
approximation of the proposed method in the solution domain
(x,t) 2 [ � 25,25] · [0,50], is given in Fig. 3b, the accuracy is

remarkably improved by the optimal choice of h (see
Figs. 5a and 5b).

After solving by FDM, we have the following error table.

x Exact solution Approx.

sol. k = 0.6

Approx.

sol. k = 0.1

Approx.

sol. k = 0.01

0.0 0.300000 0.300000 0.300000 0.300000

5.0 0.178117 0.176312 0.178112 0.178117

10.0 0.053475 0.052568 0.053445 0.053474

15.0 0.012753 0.011245 0.012714 0.012752

20.0 0.002872 0.005483 0.002845 0.002871

25.0 0.000638 0.001254 0.000636 0.000629

30.0 0.000141 0.002133 0.000147 0.000148

By using the transformation n = kx + xt, and sech
method of the Eq. (1), we get

ðxþ kÞuþ ku2 � ck2xu00 ¼ 0;

Consider the trial solution u(n) = a0 + a1 sech(n) + a2 sech2

(n), then follow the methodology given in Davodi et al.,
2009, we have the following solution set

k ¼ k;x ¼ k

�1þ 4ck2
; a0 ¼ 0; a1 ¼ 0; a2 ¼ �

12ck2

�1þ 4ck2
;

Their corresponding solution is

uðx; tÞ ¼ � 12ck2

�1þ 4ck2
sech2 kxþ k

�1þ 4ck2
t

� �
; ð16Þ

Figure 5b Absolute error for the 3rd-order approximation by

present technique when h= 0.2712 in Example 4.3.

Figure 6 Error analysis of solution of Example 4.3 by finite difference method.
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For k ¼ 1
2
ffiffi
6
p and c = 1, Eq. (16) becomes the solution to Eq.

(7), for k = 0.0853320186 and c = 1, Eq. (16) becomes the

solution to Eq. (13), and for k = 0.1507556723, and c = 1,
Eq. (16) becomes the solution to Example 3.3. Their graphical
representation is give in Fig. 7 .

5. Conclusion

The present technique provides a simple way to adjust and

control the convergence region of approximate solution of reg-
ularized long wave (RLW) equation for any values of t and x.
An optimal auxiliary parameter can be determined by the error

of norm two of the residual function. The obtained results are
compared with numerical method ‘‘Finite Difference
Method’’. Tables 1-3 represent the error table for different val-

ues of k and Figs. 2,4,6 represent the error analysis. Sech
method was also applied hence different values of k in their
solution are identical to the proposed algorithms and Fig. 7
represents the physical interpretation in 2D and 3D of Eq.

(1), this graph shows solitary wave solution, i. e., as t increases
the graph travels at a constant speed and maintains its shape.
Numerical results and graphical representations explicitly

reveal the complete reliability of proposed method. It needs
to be highlighted that the proposed variational iteration algo-
rithm involving an auxiliary parameter is particularly suitable

for inverse problems and differential-difference equations with
large domain.
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