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Abstract Here, we propose an improvement ansatz in three-wave method, then applying this

ansatz to an extended generalization of Vakhnenko equation, we obtain a new periodic type of

three-wave solutions including periodic two-solitary solution, doubly periodic solitary solution

and breather two-solitary solution, respectively. These results show that the three-wave type of

ansatz approach is an effective and simple method for seeking three-wave solutions and two-wave

solutions of higher dimensional nonlinear evolution equations.
ª 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

The investigation of exact solutions for nonlinear partial dif-
ferential equations plays an important role in the study of non-

linear physical phenomena. These solutions may give more
insight into the physical aspects of the problem modelled by
the nonlinear partial differential equations. However, it is

not easy to obtain solutions by using analytic methods. So,
to solve these nonlinear equations, new methods are needed.
In recent years, various methods have been proposed.

Recently, a new method, called the Extended three-wave
method, is proposed to seek multi-wave solutions of nonlinear

partial differential equations. This method was used by some
researchers to study various nonlinear partial differential equa-
tions in the straightforward way.

In nonlinear science, many important phenomena in vari-
ous fields can be described by the nonlinear evolution equa-
tions. Seeking exact solutions of nonlinear partial differential

equations is of great significance as it appears that these (NLP-
DEs) are mathematical models of complex physics phenomena
arising in physics, mechanics, biology, chemistry and engi-
neers. In order to help engineers and physicists to better under-

stand the mechanism that governs these physical models or to
better provide knowledge to the physical problem and possible
applications, a vast variety of the powerful and direct methods

have been derived. Various powerful methods for obtaining
explicit travelling solitary wave solutions to nonlinear equa-
tions have been proposed (Abdou and Soliman, 2005;

Abdou, 2007a,b; Abdou and Zhang, 2009; Abdou, 2008a,b;
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Abulwafa et al., 2007, 2008; Kim and Sakthivel, 2010; Lee and
Sakthivel, 2011; Sakthivel et al., 2010).

One of the most exciting advances of nonlinear science and

theoretical physics has been a development of methods to look
for exact solutions for nonlinear partial differential equations.
Seeking exact solutions of nonlinear equations has been of

much interest in recent years because of the availability of sym-
bolic computation Mathematica or Maple. These computer
systems allow us to perform some complicated and tedious

algebraic and differential calculations on a computer. Multi-
wave solutions are important because they reveal the interac-
tions between the inner-waves and the various frequency and
velocity components. The whole multi-wave solution, for

instance, may sometimes be converted into a single soliton of
very high energy that propagates over large regions of space
without dispersing and an extremely destructive wave is there-

fore produced of which the tsunami is a good example. Since
all double-wave solutions can be found by using the exp-func-
tion method proposed (Abdou and Soliman, 2005; Abdou,

2007a,b; Abdou and Zhang, 2009; Abdou, 2008a,b), we pro-
pose an extension of the three-soliton method (Dai et al.,
2006, 2008a,b, 2010), namely, three-wave method for finding

coupled wave solutions.
This paper deals with an extended generalization of Vak-

hnenko equation (eGVE) (Li et al., 2010)

@

@x
D2uþ 1

2
pu2 þ bu

� �
þ aDu ¼ 0; ð1Þ

D ¼ @

@t
þ u

@

@x
; ð2Þ

where a and b are arbitrary non-zero constants. Eq. (1) can be

traced to Vakhnenko equation (VE) which was initially pre-
sented to model high-frequent waves in a relaxing medium.
When a ¼ 1; b ¼ 0, Eq. (1) is reduced to Vakhnenko equation.

When a ¼ 1; b ¼ 0 is arbitrary non-zero constant, Eq. (1) is
reduced to a generalized (eGVE).

The structure of this paper will be organized as follows; In

Section 2, with symbolic computation, the bilinear form of Eq.
(1) is obtained. In order to illustrate the proposed method, we
consider an extended generalization of Vakhnenko equation

and new periodic wave solutions are obtained which included
periodic two solitary solution, and doubly periodic solitary
solution. Finally, conclusion and discussion are given in
Section 3.

2. Soliton solutions for an extended generalization of Vakhnenko

equation

Making use of the transformation

x ¼ Tþ
Z X

�1
UðX0;TÞdX0 þ x0; t ¼ X ð3Þ

where uðx; tÞ ¼ UðX;TÞ and x0 is a constant. X and T are two
independent variables. Under transformation of (3), Eq. (1)
admits to

UXXT þ aUUT � aUX

Z �1

X

UðX0;TÞdX0 þ bUT þ aUX ¼ 0

ð4Þ

We introduce a new function W defined by

WðX;TÞ ¼
R X

�1UðX0;TÞdX0

WX ¼ U ð5Þ

Thus Eq. (4) becomes

WXXXT þ a½WXWXT þWXXWT� þ bWXT þ aWXX ¼ 0 ð6Þ

According to the Hirota method, we use the transformation

W ¼ ðlnfÞx ð7Þ

Then, Eq. (6) can be expressed as the bilinear equation

½D3
XDT þ aD2

X þ bDXDT�f � f ¼ 0; ð8Þ

where Dm
x D

n
t is the Hirota bilinear derivative operator (Hirota,

1980) defined by

Dm
x D

n
t fðx; tÞ:gðx; tÞ

¼ @

@x
� @

@x0

� �m
@

@t
� @

@t0

� �n

½fðx; tÞgðx0; t0Þ�x0¼x;t0¼t; ð9Þ

ðD3
XDTÞf � f ¼ 2½fXXXf� 3fXXT fX þ 3fXT fXX � fXXX fT�;

ðDXDTÞf � f ¼ 2½fXT f� fX fT�;

ðD2
XÞf � f ¼ 2½fXX f� fX fX�: ð10Þ

To solve the reduced Eq. (8) by means of the extended

homoclinic test function (Dai et al., 2006, 2008a,b, 2010), we
suppose a solution of Eq. (8) as follows

fðx; tÞ ¼ e�p1ðx�w1tÞ þ c1cos½p2ðxþ w2tÞ� þ c2e
p1ðx�w1tÞ; ð11Þ

where p1; p2;w1;w2; c1 and c2 are parameters to be determined
later.

Substituting Eq. (11) in (8), and equating all coefficients

of ½ejp1ðx�w1Þt ðj ¼ �1; 0; 1Þ; cosðp2ðxþ w2Þt; sinðp2ðxþ w2Þt] to
zero,we get the set of algebraic equation for
pi; ci;wi ði ¼ 1; 2Þ. Solving the set of algebraic equations with
the aid of Maple,we have many solutions, in which the follow-

ing four solutions are chosen

Case(1):

p2 ¼ ip2; p1 ¼ p1; c1 ¼ c1;

w2 ¼
�2aþ 4p21w1 þ bw1

4p21w1 þ b
; w1 ¼ w1; c2 ¼

c21
4
: ð12Þ

In view of Eq. (12) Eq. (11) admits to

fðx; tÞ ¼ e�p1ðx�w1tÞ þ c1cos ip1 xþ �2aþ 4p21w1 þ bw1

4p21w1 þ b

� �
t

� �� �

þ c21
4
ep1ðx�w1tÞ: ð13Þ

By means of Eqs. (7) and (4), the periodic solitary wave solu-
tion of Eq. (11) admits to.

Case(2):

p1 ¼ p1; p2 ¼
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3p21 þ 9b

q
; c1 ¼ c1; c2 ¼ 0;

w2 ¼
3a

4p21 þ b
; w1 ¼

3að2p21 þ 3bÞ
2ð4p21 þ 9bÞp21

: ð14Þ

According to Eq. (14) Eq. (11) admits to
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fðx; tÞ ¼ e
�p1 x�

3að2p2
1
þ3bÞ

2ð4p2
1
þ9bÞp2

1

� �
t

� �

þ c1cos
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3p21 þ 9b

q
xþ 3a

4p21 þ b

� �
t

� �� �
ð15Þ

Knowing Eq. (15) with Eqs. (7) and (4), the periodic solitary
wave solution of Eq. (1) is obtained.

Case(3):

p1 ¼ p1; p2 ¼ ip1; c1 ¼ c1; c2 ¼
c21
4
;

w1 ¼ w1; w2 ¼
�2aþ 4p21 þ bw1

4p21 þ b
: ð16Þ

Using Eq. (16) with Eq. (11), we have

fðx; tÞ ¼ e�p1ðx�w1tÞ þ c1cos ip1 xþ �2aþ 4p21 þ bw1

4p21 þ b

� �
t

� �� �

þ c21
4
ep1ðx�w1tÞ: ð17Þ

Using Eq. (17) with the aid of Eqs. (7) and (4), the periodic sol-
itary wave solution of Eqs. (1) can be directly evaluated.

Case(4):

p2 ¼ p2; p1 ¼ p1; c1 ¼ c1;

w2 ¼
aðp22 þ p21 � bÞ

p42 � 2p22bþ 2p21p
2
2 þ b2 þ p41 þ 2bp21

;

w1 ¼
a p22 þ p21 þ b
� �

p42 � 2p22bþ 2p21p
2
2 þ b2 þ p41 þ 2bp21

;

c2 ¼ �
p22c

2
1ð3b� 3p22 þ p21Þ

4ð3p21 � p22 þ 3bÞp21
ð18Þ

In view of Eq. (18) Eq. (11) admits to

fðx; tÞ ¼ e�p1ðx�w1tÞ þ c1cos½p2ðxþ w2t� þ c2e
p1ðx�w1tÞ; ð19Þ

where w2;w1; c2 are defined by Eq. (18). Using Eq. (19) with
Eqs. (7) and (4), the periodic solitary wave solution of Eq.
(1) is obtained. For simplicity should be omitte here.

3. Conclusions

In this paper, the proposed a new technique, namely, three-

wave approach is used to seek periodic solitary wave solutions
for integrable equations, and this method has been used to
investigate several equations. The three-wave approach is an

extension of the three-soliton method, the main difference is
the selection of ansatz, by selecting and substituting a three-
wave type of ansatz rather than three-soliton type of ansatz

into the bilinear equation, one can effectively obtain exact
solutions with three-wave form.

With the aid of bilinear form and the extended homoclinic

test approach, we obtain breather-type soliton and two soliton
solutions for an extended generalization of Vakhnenko equa-
tion, the results show that the extended homoclinic test
approach is very effective in finding exact solitary wave

solutions for nonlinear evolution equation arising in mathe-
matical physics

It is worthwhile to mention that, the proposed method is
reliable and effective and can also be applied to solve other
types of higher dimensional integrable and non-integrable sys-

tems. Moreover, we investigate different mechanical features
of these wave solutions. It is worthnoting that the three-wave
approach is effective and simple method for seeking three-

wave solutions and two-wave solutions of higher dimensional
nonlinear evolution equations.
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