Journal of the Association of Arab Universities for Basic and Applied Sciences (2014) 16, 38-45

¢ o .
Q)l ' University of Bahrain
SRR
\y . . . sy
&, JJ\ Journal of the Association of Arab Universities for
== S . . .
g S Basic and Applied Sciences
A%
?7’:/ j www.elsevier.com/locate/jaaubas
4’4”\[.’._") www.sciencedirect.com

PeH NCFy ned S 4sliiall 5,3l & X9 = 5 £ 68 0 Adlaada

Shuker Mahmood™*”, Andrew Rajah’

'Department of Mathematics, College of Science, University of Basra, Basra, Iraq
2School of Mathematical Sciences, Universiti Sains Malaysia, Penang, Malaysia

1 aidlal)

BeH, NCY oo I A, Ljiidl 55030 & X=B & 5 e Adladd Jolall Lo Gl 134 3
(nge mmia e s 0 5 A, A APB) G Caa G paie s ned={1,2,56,10,14}
Sy b 3l cam s CF (H, ={C"0f S |n>1, gajhs dilide 58 o o i sl 3aY) S a)
A S Y s AT eladl s e palial o Ayl &) e adiny CF 85 Caa JS S
CAy e CF iall ) adn Y CF b AgH, NC* 5 1eC” S 1Y (8,5 kil 5 53l
ALY (e 230y 3 0me Jaall 138 o LS Jslall aae apaad 5 Caal) 12 b

S. Mahmood and A. Rajah



Journal of the Association of Arab Universities for Basic and Applied Sciences (2014) 16, 3845

0
AU
AT

_-3 ey ey .
o}

L¢3

Ll Ry j
%
6,4)4/'\/._;4-)-

University of Bahrain

Journal of the Association of Arab Universities for
S Basic and Applied Sciences

www.elsevier.com/locate/jaaubas
www.sciencedirect.com

Solving class equation x*

= f in an alternating

@ CrossMark

group forallnc 0 & fc H,NC"

Shuker Mahmood *"*, Andrew Rajah "

& Department of Mathematics, College of Science, University of Basra, Basra, Iraq
> School of Mathematical Sciences, Universiti Sains Malaysia, Penang, Malaysia

Available online 17 December 2013

KEYWORDS

Alternating group;
Frobenius equation;
Ambivalent groups;
Conjugacy classes;
Cycle type

Abstract In this paper we find out the solutions to the class equation x? = f in the alternating
group 4, foreach f € H,N C*andn € 0 = {1,2,5,6,10, 14}, where ff ranges over the conjugacy class
A(p) in A, and d is a positive integer number, H, = {C* of S,| n > 1, with all parts oy of o different
and odd}, C*is conjugacy class of S,, and form each conjugacy class C* depends on the cycle partition
o of its elements. In another direction, for any permutation A in the symmetric group S,, if A € C* and
A ¢ H, N C* then C* does not split into the two classes C** of 4,,. Moreover, in the present research,

the number of solutions is determined and this current work is supported by examples.
© 2013 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

If x is a solution of x" = f, n is a positive integer and y is a
conjugate to x, then y is a solution of x" = A, where 1 is con-
jugate to f in an alternating group (or any finite group). We
call x" = B a class equation in 4,, where f§ and x belong to
conjugate classes in an alternating group. The Frobenius
equation x? = ¢ and conjugacy classes in finite groups were
introduced by Frobenius (1903), and studied by many others,
such as Lam (1988), Kimmerle and Sandling (1992), Mann
and Martinesz (1996), Muller (2000), Takegahara (2002) and
Eric (2007), who dealt with some types of finite groups,
including finite cyclic groups, m-generated finite groups, and
Wreath products of finite groups. Goldmann and Russell
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E-mail addresses: shuker.alsalem(@gmail.com (S. Mahmood), an-
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(2002) studied the computational complexity of solving
systems of equations over a finite group G, where
X1X2X3...X;, = lgis an equation over a finite group G. A study
was introduced by Taban (2007) to solve the class equation
x? = B in a symmetric group and explain the solutions using
group-theoretic approach. This approach states that all pairs
of permutations y and f in a symmetric group are conjugates
iff they have the same structure. However, this is not necessar-
ily true in an alternating group 4,, specially, at n € 0. More-
over, Montserrat and Ilva (2011) gave a description of the
solution set of systems of equations over an equationally
Noetherian free product of groups G by using an analogue
of the Makanin—Razborov diagrams. Also, Gabor and Csaba
(2012) show that the complexities of the equivalence and the
equation solvability problems are not determined by the clone
of the algebra, where they explain that by using alternating
group on four elements. In any way in the current work, the
conjugacy classes in an alternating group will be studied in
detail when n € 0. Choose any f €S, and write it as yy,
V2, Vep)- With p; disjoint cycles of length o; and ¢(f) is the
number of disjoint cycle factors including the 1-cycle of f.

1815-3852 © 2013 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.
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Since disjoint cycles commute, we can assume that o > o -
= -+ = ayp). Therefore o = (o, 00,...,0.p) 1S a partition of
n and it is called cycle type of f. Let C* = S, be the set of all
elements with cycle type o, then we can determine the conju-
gate class of f € S, by using cycle type of f3, since each pair
of A and f in S, are conjugate iff they have the same cycle type
(Zeindler, 2010). Therefore, the number of conjugacy classes of
S,, is the number of partitions of n. However, this is not neces-
sarily true in an alternating group. Let f = (124) and
A = (142) be two permutations in Sy that belong to the same
conjugate a(f) = (o (B),x2(B)) = (1,3) = (e (4), (-
7)) = a(Z), and they have the same cycle structure, but 1 and
f are not conjugate in Ay4. Since (ky, ks, . .. g = (k. k-
ki) we obtain o (f) = ("), then every permutation in S, is
conjugate to its inverse. Thus we have S, as an ambivalent
group. This is not true for the alternating groups, where if
we assume 0 = {1,2,5,6,10,14} we have (4,, n € 0) as ambiv-
alent groups and (A4,, n ¢ 0) as not ambivalent groups. The
main purpose of the present research is to solve and determine
the number of solutions of the class equation x? = B (i.e find
out the solution set X = {x € 4,] x’ € A(f)} and the number
of these solutions | X) in the alternating group A4, for each
B e H,N C*and n € 0, where f ranges over the conjugacy class
A(p) in A4, and d is a positive integer number, H, = {C* of S,..
| n > 1, with all parts o of « different and odd}. C*is conjuga-
cy class of S, and form each conjugacy class C* depends on the
cycle partition « of its elements. If 1 € C* and 4 ¢H, N C*, then
C* does not split into the two classes C** of 4,,.

2. Definitions and notations

Definition 2.1. A partition « is a sequence of nonnegative
integers (oy,0,...) With o = o > -+, and >_.°,0; < oo. The
length /o) and the size | of « are defined as
l0) = Max{i € N; o;#0} and |a| = > 2 0, We set atn = {o
partition ;| l = n} for n € N. An element of on is called a
partition of n (see Zeindler, 2010).

Remark 2.2. We only write the non zero components of a
partition. Choose any f € S, and write it as 7. . .7.p). With
y; disjoint cycles of length o; and ¢(f) is the number of disjoint
cycle factors including the 1-cycle of f. Since disjoint cycles
commute, we can assume that oy > o > -+ > o). There-
fore oo = (01,0, .., 0.p) is a partition of n and each «; is called
part of o (see Zeindler, 2010).

Definition 2.3. We call the partition o = a(f) = (x1(f),0
(B), ... ,2(p)(P)) the cycle type of B (Zeindler, 2010).

Definition 2.4. Let « be a partition of n. We define C* c S, to
be the set of all elements with cycle type a (Zeindler, 2010).

Definition 2.5. Let fe€S, be given. We define
em =" = c"(p) to be the number of cycles of length mof 8
(Zeindler, 2010).

Remark 2.6.
(1) The relationship between partitions and ¢, is as fol-

lows:if B € C* is given then ¢ (B) = |{i: o = m}| (see
Zeindler, 2010).

(2) The cardinality of each C* can be found as fol-
lows:|C*| =2 with z, = [['_;7(c,)! and ¢, = " (B) =
[{i: o =r} (see Bump, 2004).

Q) BT =|Cc*(B)| :% (see James and Kerber,
1984). Hence, the number of the solutions for the class
equation x¢ = f in A, if exists is only

n!
224"

Definition 2.7. Let € C* where f is a permutation in 4,,.
A(p) conjugacy class of f§in 4, is defined by

A(B) = {y € A,|y = tpr’"; for some ¢ € 4,}

- {c (if B ¢ H,)

¢ or ¢, (if pe H,)
where H, = {C* of S,Jn > 1, with all parts o of o different
and odd} (Mahmood and Rajah, 2011).

Remark 2.8.

(1) pe H,= € A4,.
(2) pe C* NH,NA, = A(f) = C*, where H, is a comple-
ment of H,,.

(3) pe C*n H,= C* splits into two classes C** of 4,,.

@ If BieCnH, and ieC”, then A(p)=
ctoif /3;@ A
c* ifow

(5) Ifne 6 = {1,2,5,6,10,14}, then for each f € 4,, f§ is con-

jugate to B! in 4, (,BT ﬁ’l) (Shuker et al., 2011).

Theorem 2.9. If f € [A°, B®,..., T'] is a conjugacy class in sym-
metric  group S, then pTe [Q T, W™  where
ged(d,A) = r, ged(d,B) = s,...,gcd(d, T) = m and A = Qr,
B = ¢s,...,T = ym (Taban, 2007).

Remark 2.10.

(1) Ifx? € [B}',BY,...,B]. then we can find each solution

for every part of x?e[B)'],x'€ [BY],...., and
x? € [Blr] separately, and then we collect all the solu-
tions to find the solution of x¢ € [B}',By,...,B"] in

S,. Moreover, if there is no solution for at least one of
the parts, then there is no solution of
x! € [B),BY,....,B"] in S,

(2) Theorem 2.9 gives us all conjugacy classes of the form
[T, T%,...,T"] which are belonging to the solution
set of x?¢ [BI‘”,BEZ’Z, ... ,B;j”"‘] in S,  where
ged(d, Ty) = ry,gcd(d, Ty) = rs,...,gcd(d, T,,) = r,, and
T, = Biry, T> = Bors,...,T,, = B,r,. But this does
not give us all the solutions of
x? e [B", B3, ... By in S, except when 1, = 1, = -
-oo=t,=landry =r, = --- =r, = 1(Taban, 2007).

3. Ambivalent alternating groups

The group in which each element is a conjugate of its inverse is
called ambivalent group. Moreover, for all pairs of
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permutations y and f in a symmetric group are conjugates iff
they have the same structure. However, this is not necessarily
true in an alternating group A, specially, at ne€ 6 =
{1,2,5,6,10,14}. In another direction, if n € 0. Then 4, is an
ambivalent alternating group and form set H, for each n € 0
can be summarized as follows:

1. H, = ¢ and H. =5, if (n=1,2).
2. Hs = {[5]}.
3. Hg = {[1,5]}.

4. Hyp = {[1,9.[3,7]}.
5. Hy4 = {[1,13],[5,9],[3, 11]}.

Definition 3.1. Let 7y = (aj,az,a3,a4,as) €[S] of Ss and
B = (b1,bs,b3,bs,bs) €[1,5] of Ss. We define classes [5]* and
[1,5]" as following:

A(y) = [5]7 = (2 €[5]| 4 = tyr! for some 1 € 45},
A(%%) =[5 ={ief)i= ttt" for some ¢ € As}, where

#

Y= (a17a3>a57a27a4)7

AB) = [1,5]" = {2 €[1,5]l 2 = tpr~" for some 1€ Ag},
and

# #
A(B) =[1,5 ={A€]L,3)]A=tpt! for some t€ Ag},

#
where ﬁ = (b|,b3,b5,b2,b4).

Remark 3.2.

(i) Let y = (a1,a2,a3,a4,as) € [5] of Ss and f =
b4ab5) € [175] of S65

(b1,b2,b3,-
#
where 7 = (al,a3,a5,a2,a4),

#
B = (b1, b3,bs,by,by), and d is a positive integer. Thus,

1 = jan dp'= B« d=1(mod 5)
) y“':# ﬁ:ﬁ#c:)dEZ(modS)
3) yd:y dﬁ:ﬁ@d53(mod5)
@ "=y 'land p'=p ! < d=4 (mod 5)

(i) A) =4, 4(7) =a(3") i 45 and
AB) =A(B), A<§> :A(zﬁ’l) in Ag, [given that 4,,
for (n = 5,6) are

AGA( ) [5]2 eA(ﬁ) n[,s]

(i) 4(2) = A0 =[5" if
AQ) = A0 =1[1,5]"

i
AO):A(A 1):[1,5} 1fA6A(ﬁ)ﬂ[1,5].

Lemma 3.3. Let L= {meNm=q (mod 5) for some
q = 1,4}. If d is a positive integer such that ged(d,5) = 1 and
B e [5] of Ss, then the solutions of x* € A(B) in As are

ambivalent groups].

A€ A(y)N[5], and
if A€ A(f)N[L,5].

if zeA(?)m[s], and

1. A(B), if d € L.
2.A(§), ifd¢L.

Proof. Given that f € [S] N Hs, [5] splits into two classes A(f3)
#
and A([)’> of As. Moreover, ged(d,5) = 1. Then, by (2.10),

solution set of

[5]=4(p)uUu4 (?)’) is a
xle[5|=A4(pu4 (ﬁ) in Ss. However, 4A(B)N A(?)’) = ¢.
Hence, for each ne€l[5]= (TE € A(P)&m ¢ A(?i’)) or

(rea(B)eneam).

(1) Assume d € L. If = € A(f), then (n~ f)x is conjugate to
As
B in As. However, et ~m (because
#
dEL)ﬁn”fﬁéndeA(ﬁ)&ndgéA(ﬁ). If
# ‘ #

me A(ﬁ), then (nz ﬁ). However, ndAzn (because

5 5

del)=n? ~ /3:> n? eA(ﬁ)&n ¢ A(f). Then, the

solution set of x? e A(p) in As is A(P)

#
(2) Assume d¢ L. If ne A(f), then (nT ) = % Z p.
5

However, n¢ ~ % (because d¢L)= n“’Am B=

5 5

# # #
n EA(ﬁ)&ndgéA(ﬁ). If = EA(ﬁ> = <nf ﬁ) =

5

% Af«\:ﬂ. However, nd:Tv % (because d ¢ L) = ndi\:ﬁ = nf
5 5 5
#
A(B)&n? ¢ 4 (/3). Then, the solution set of x¥ € A(f)

#
in As isA(ﬁ). O

Example 3.4. Find the solutions of x> € 4(5324 1) in 45 and
the number of the solutions.

Solution: Since f = (53241)€ Hs, ged(23,5) =1 and
23 ¢ L, then the solution set is A(52134) and the number
of the solutions is HS” 5' =12, where
A(52134)={(12354), (1 5423) (1 2543) (13245),
(14253),(13524), (124395), (14532), (14325),
(15234),(15342),(13452)}.

Theorem 3.5. Let L= {me Mm=q(mod 5) for some
q = 1,4}. If d is a positive integer such that ged(d,5) = 1 and
B e [1,5] of Sy, then the solutions of x* € A(B) in Ag are

1. A(B), if d € L.
2.A(§), ifd¢L.

Proof. Given that f € [1,5] N Hg,[1,5] splits into two classes

#
A(f)and A(ﬁ) of A¢. Moreover, ged(d,5) = 1. Then, by
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(2.10), [1,5] = A(B) UA([#;) is a solution set of x? € [1,5] =
A(p)u 4 (7)’) in Ss. However, A(f) N A(?f) = ¢. Hence, for

each

ne[l,5] = (nEA([f)&n¢A(§)) or

(rea()eneam).

(1) Assume d € L. If = € A(p), then (n:}“ﬁ)n is conjugate to

B in A;. However, ndA%n (because del)=

6

ndfﬁindeA(ﬁ)&ndeéA(z). If neA<7)’), then

n~n
Ao

#
(nz ﬂ). However,

(because
A

del)=

# #
”d;? B=n'eA4 (ﬁ) &n? ¢ A(f). Then, the solution set
6
of x € A(p) in Ag is A(P).

#
) Assume d¢ L. If ne€ A(f), then (n;zﬁ) -7 h B.
6
However, n¢ ~ 7 (because d¢L)= ~ =
6 6

6

# #
ndeA(ﬁ)&ndéA(ﬁ). If neA(ﬂ) :>(7I:‘4~"' p) =
% ~ B. However, n ~ 7 (because d ¢ L) = n' ~ f = n¢

As A As
#
€ AP)&n? ¢ A (/3) Then, the solution set of x¥ € A(f)

#
in Ag is A(ﬁ). O

Example 3.6. Find the solutions of x'° € 4(24 56 3) in 4¢ and
the number of solutions.

Solution: In as much as f=(24563)¢e Hs = {[1,5]},
gcd(19,5) =1, and 19€ L, then the solution set is
A(24563), and the number of the solutions is

Hlé—'s]l = 26—;5 =72, where

A(24563)] ={(15432).(12345).(12534),(13254),(14235),(13542),
(14523).(15243).(15324).(13425).(12436).(12563).(125 4 0),
(14365),(14263),(14562).(15463).(15426).(15634),(15623),
(15264),(15236),(15642),(16524),(16354),(16342),(23465),
(15362),(16452),(16532),(16423),(16435).(165423),(16245),
(13645).(13265).(14536).(14632).(14625).(14326).(23654),
(24635),(26345),(26453),(15346),(14352),(12453),(12465)
(12356),(12364),(12643),(12654),(12635),(13652),(13462),
(13246),(13456),(13564),(13526),(13624),(14256),(1465 3),
(16234),(16253),(16325),(24563),(25643),(26534),(243506),
(25436),(23546),(25364)}

Definition 3.7. Let f = y4 € [3,7] of Syg, where y = (b1, b2,b3),
) = (ay,a», a3, as, as, ag, a7). We define classes [3,7]F of 4;, by:

APB) =371 = (ue 3.7 u=1tptr™" for some t€ A0}
and A(?)’) =[3,7 = {u €3, 7u= I#Et*' for some € Alo},

# _ _
where f=7y4 and A= (a1,a4,a7,a3,a6,a2,0s).

Remark 3.8

() Let B =74€[3,7] of Sio, where y = (b1,b2,b3), 1=
(6117512,43704,&57%,517), A= (41,047617,03746,“2:“5)7 4=
(a1, a3, as,a7,a2,a4,a6), and dis a positive integer number.
Thus,

(1) p?=p < d=1 (mod 21)

) p'=y"li<d=2 (mod 21)
(3) pY=92" < d=4 (mod 21)
4 pl=y"1"0" = d=5 (mod 21)
(5) p?=y'2 <= d=8 (mod 21)
6) p*=7yi<=d=10 (mod 21)
(1) p'=y"1" <= d=11 (mod 21)
(8) p=92"' < d=13 (mod 21)
) p'=yi< d=16 (mod 21)
(10) p!=97"1 < d=17 (mod 21)
(1) pi=92" <= d=19 (mod 21)
(12) p?= p' <= d=20 (mod 21)

(i) A(B) =A(B™"), A7) = A(yi"), AGAT") = A7),
AW = AQA), A 12) = A2, A(A) =42
[given that ambivalent group]

(i) A(B) =A(y~'2) [because, 3t = (by,bs)(a1,as,as,as,az,-
ae) € Ay such that 1" = 1),

(iv) A(B) = A(yA) [because, It = (ay,as,a4)(a7,a6,a2) € A1o
such that 11! = pi].

(V) A(y27") = A(y4) [because, 3t = (a1, aq,a2)(as,as,ae) -
€ Ao such that A" =y

(i) A(pA") =A(yA") [because, 3t = (ay,aq as)(ar as,az) -
€ Ay such that ey~ = 9271,

Lemma 3.9. Let L == {meNMm=q (mod 21) for some
q=14,516,17,20}. If d is a positive integer such that
ged(d,3) =1 & ged(d,)7) =1 and € [3,7] of Sy, then the
solutions of x* € A(B) in A;y are

1. Ap),ifde L.
2. A(}?), ifdé L.

Proof. Given that f# € [3,7] N Hyo, [3,7] splits into two classes
#
A(p) and A(ﬁ) of Ajy. Moreover, gcd(d,3) =1 and

#
ged(d,7) = 1. Then, by (2.10), [3,7] = A(f) U A(ﬂ) is a solu-
#
tion set of x?€[3,7]=A(p) UA(ﬂ) in Sj. However,

A(B)n A (z) =¢. Hence, for each =w€l[3,7]=

(n € AP ¢ A(§>> or (n € A(?)&w A(ﬁ)).

(1) Assume d € L. If 7 € A(f), then (nf f)m is conjugate to

. 10
p in Ao- However, nl~n (because
Ao

deL):>7rdA%ﬁ:>7rdeA(ﬁ)&nd¢A<73). If
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d
Ao

However, n* ~ n (because

# #
neA(ﬁ), then (nAz p).

del)

solution set of x¥ € A(f) in Ao is A(p). .
(2) Assume d¢ L. If = € A(p), then (n ~ [i) =i~ B. How-

o Ao #
[3:> b GA(ﬁ)

&n? ¢ A(B). Ifm e A4 (ﬁ) (n ~ [f) = n ~ ﬁ However,

Ao

# #
= nd;‘v“ B=n’€ A(ﬁ)&nd ¢ A(B). Then, the

ever, ¢ ~ % (because d ¢ L) = n‘
Ao

o~k (because d ¢ L)

= %[f:>n"€ A(p)&n
Ao

#
¢A(ﬂ). Then, the solution set of x? € A(f) in A, is

Definition 3.10. Let f = [1,9] of Sy9, where f§ =
as,ag,d7,ds,d).  We define class [1,9]F

(a1,as,a3,a4,-
of AlO by

AB) = [1,9]" = {ue[l,9]] u = tptr™! for some 1 € Ay}
Remark 3.11.
@ [1,9] =1[1,91— 4B = {ue[1,9| u=tpr™" for all
te A}
(ii) Let g = [1,9] of Sio where B = (a1,as,a3,a4,as,as,a7,-
ana9)7

ﬁ = (a17a37 as,az, dy, Az, a4, de, 03)7 ﬁ = ((117 as, ag, dy, dsg,
as,as, a2, dg), and d is a positive integer number. Thus,

(1) p’=pB<=d=1(mod9)
®) [)’d <= d=2 (mod9)
3 B'=8 = d=4 (mod 9)
) ﬁ" B! = d=5 (mod 9)
(5) p'=p'<=d=7 (mod?9)
6) p?'=p!' <= d=8 (mod 9)

(it)) AGB)=A(B™), A(B) = A(B™), AB) = AGB)
[because 4o is an ambivalent group].

(iv) A(B) =A(P) [because, 31 = (bs,be)(ar,as,ar,as,as, ar) -
€ Ay such that tf~" = f].

(V) A(B™") = A(B) [because, 3r =
€ Ay such that (' = 7]

(b3, bo)(ay, ag, az, a», as, as) -

Theorem 3.12. Let f = [1,9] of S;o. If d is a positive integer
such that ged(d,9) = 1, then the solution of x" € A(B) in Ay

is A(B).

Proof. Given that € [1,9] N Hyo, [1,9] splits into two classes
A(pP) and [1,9] of 4,9. Moreover, gcd(d,9) = 1. So by (2.10),
the solution set of x?e[1,9] in Sy, is [1,9]. For each
Le[1,9,(Ae A(P)) or (A¢AP). If ALe A(f), then
Axf= 2"~ B However, '~ = 1~ = )"e A(p).

Ao Ao Ao Ao

If  J¢A(f), assume 27 e A(p) = ¢ ~f. But
B~ B = r’f Bl = Axf=ieA(p) which is " contradic-
10 10 10

tion. Then the solution of x¥ € A(f) in Ao is A(f). O

Definition 3.13. Let § = y4 €[5,9] of Sy4, where A = (ay,a,,-
as, as, ds, g, a7, ds, ag) and y = (b1, by, b3, b4, bs), we define clas-
ses [5,9]+ of 4,4 by:

AB) = [5,91" = (ue[59]] u=1tpr™" for some t€ A4}

and

# #
A(ﬂ) =[59 ={ue59p=1Br" for some 1 € A4},

#
where ﬁ = ?ﬂ. and ? = (h17h3,b5,b2,b4).

Remark 3.14.

>i) Let = yA €[5,9] of Si4, where y = (by,bs,b3,-
b4,b5), ? = (blj b3,b5,b2,b4) = (al,az,a3,a4,a57-
g67a77(187a9), A= (au03705,(17,5197027(14,(16#18),
A= (al,aS,ag,a4,a3,a3,a7,a2,a(,) and dis a pOSi-
tive integer number. Thus,

(1) p'=p<=d=1(mod 45)

) ﬁd =J1 = d 2 (mod 45)

B p'= f'm:»d 4 (mod 45)

) ﬁd:w <:>d 7 (mod 45)
5) ;3 =517 = d=8 (mod 45)
©6) pl=yi=d=11 (mod 45)

(7) /3" =5 l<d= (mod 45)
®) p¢ —y‘ll 1 <:>d 4 ( mod 45)
© pl=yi'=d=16 (mod 45)
(10) pY=752"" <= d =17 (mod 45)

(A1) p?=y7") = d=19 (mod 45)
(12) B =74 < d=22 (mod 45)
(13) pY=7"12"! = d =23 (mod 45)
(14) ﬁd = 2! = d=26 (mod 45)
(15) p{=5"11" <= d=28 (mod 45)
(16) ' =7_'% <= d=29 (mod 45)
(17) B9 =9l <= d=31 (mod 45)
(18) p!=752" <= d =32 (mod 45)
(19) p? =912 = d =34 (mod 45)
(20) p? =74 <= d=37 (mod 45)
(1) p!=7""1 < d=38 (mod 45)
(22) p!=92" < d=41 (mod 45)
(23) p'=7"12" = d =43 (mod 45)
24) p =901 = d=44 (mod 45)

() AB)=AB).,  AGH=AG"2").  AGL) =
A@%mﬂw=MWKm()=(*FL
A(2) =A@, 4G A) = AGAT), A1) =
AGZ) AGT2) = AG2), A1) = ARaT,

A(y™'7) = AT, A7) = A(yi!
Ay4 is an ambivalent group].

(iii) A(B) = A(y2) [because, 3 1 = (a3,a¢)(a,as, a7, as,

a4,a>) € A4 such that tpr! = yxl] Also, A(31) =
A[2), AG'2) = AG'2), A1) = A7),

(iv) A(B") =A(y ') [because, At = (a3,a0) (ay,as, az,
a>,a4,as) € A4 such that ry=' 2t~ = p7']. Also,
AWl) = A7), AG2) = A@iTY), AGT'A) =
AGta

) [given that
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V) AP =4a@aH
bs)(b3,by) € A14 such that tyA™

=
AWZ) = A('D), AGZ) = AG™').
Theorem 3.15. Let L = {mec Mm=q (mod 45) for some
q=1411,14,16,19, 26,29,31,34,41,44}. If d is a positive

integer such that ged(d,5) =1 & gecd(d,9) =1 and
Be[59] of S;4 then the solutions of x* € A(p) in A4 are

1. Ap),ifde L.
2. A<§), ifd¢L.

[because 3 t = (b,
I'= g711. Also,

Proof. Given that § € [5,9] N H4, [5,9] splits into two classes
#
A(p) and A<ﬁ) of Aj4. Moreover, gcd(d,5) =1 and

#
gcd(d,9) = 1. So by (2.10), [5,9] = 4(p) UA<[f> is a solution
#
set  of x?¢€[59]=A4(p) UA([)’) in  S;;  However,

Hence, for

#
A(B) ﬂA(ﬁ) = ¢. each 7nel59=

(reanea(5)) or (nealB)ene a).

(1) Assume d € L. If = € A(p), then (n ~ [ | ® is conjugate

to B in A4 However, n? N (because del)= n“’ ~ /3

et a(F) 10x < a(F). ven (v )

14

#
However, n”’jx n  (because d€L)= nd?* B=
14 14
#
n? eA(ﬁ)&ndéA(ﬂ). Then, the solution set of x“

€ A(p) in A4 is A(f).
(2) Assume d¢ L. If ne A(f),
#
T

#

then (n”&:ﬁ)é j\‘:ﬁ

Ais
~

#
d¢L)=n ~ﬁ:>
=

Q%

d

However, = (because

LS

ndeA(E)&ndaéA(ﬁ). If nGA(ﬁ)é( )

% ~ /3 However, ¢ ~ % (because d ¢ L) = n¢ [)’

As

n eA(ﬁ)&n" ¢A<ﬂ). Then, the solution set of
#
x?e A(B) in A4 is A(ﬂ). a

Definition 3.16. Let ff € [1, 13] of S}4, where § = (ay,as, a3, as, -
= (a1, a2, a3,a4,as, ag, a7, ag, @y, a1o, a1, d12, a13). We define clas-
ses [1,13]F of A4 by:

AB) = [1,13)" = {p e [1,13]ju = 1"

# #
A(ﬂ> =[1,13] ={pc1,13]ju=tpt" for some t € A4},

for some 7 € 414} and

#
where = (a1, a3,as,a;7, a9, a11, 413, a2, a4, A, ag, A19, a12).

Remark 3.17.
(i) Let g €[1,13] of S4, where

ﬂ = (alyaz,a%a4aasy5167‘177618751975110,(1117”127an)
ay, as, ds, dg, dy, Ay, A13, dz, dg, de, dg, d1o, d12
ay, dy, ag, dyo, A13, Az, de, dy, d12, Ay, ds, dg, di|

=( )
=( )
(d 615709701137114’0870127d37a77an,dz7dmalo)
(d dg, d11, Az, dg, 13, ds, dyo, dz, d7,d12, d4, d 9)
=( )

ay, ag, 3, e, A1z, ds, A1y, A4, dio, d3, dy, d, dg

and d is a positive integer . Thus,

(1) p?=p<=d=1 (mod 13)
) p?= Py < d=2 (mod 13)
(3) p?= pr < d=3 (mod 13)
4) p?= p3 < d=4 (mod 13)
(5) p?= Py d=5 (mod 13)
6) p?= ps<= d=6 (mod 13)
(7 p*=p;5' <= d=7 (mod 13)

®) p'= /3;‘ <~ d=8 (mod 13)
© B'=p" =d=9 (mod 13)
(10) [)’d By! <= d =10 (mod 13)

(an pl=p;" <=>d—11 (mod 13)
(12) p'= /r‘ < d=12 (mod 13)

(i) 4(p) l:A(ﬁfl)a A(ﬂ1)1:A(ﬁf1)a A(py)=4 gﬁz ), A(B3) =
A(By"),A(By) = A(B;') and A(Bs) = A(B5') [given that
Aj4 1s an ambivalent group]

(iii) A(B) = A(B») [because, It = (az,a4,a10)(as,a3,a7)(ar1,-
t = (as,a4,a10)(ag,az,a7)(ay,as,a13)(as,ag,ayz) € A4
such that tﬁl_1 = po].

(iv) A(B) = A(B3) [because, 3Tt = (as,as,as,as,ar,a12)(aio,-
t = (as,ag,a3,a9,a7,a12) (A10,a11,02,d5,04,a13) € A4
such that lﬁl_1 = p3/.

(v) A(By) = A(Ps) [because, It = (ar,as,ac)(as, arr,ar3)(as, -
t = (ay,a3,a6)(as,ayy,a13) (a9, ag,ay2) (a4,a,a10) € A4
such that l/fll_l = P4].

(vi) A(B1) = A(Bs) [because, 3t = (az,a4,aio)(ac, az,az)(ai,-
t = (as,a4,a10)(ag,az,a7)(ay,as,a3)(as,ag,ay») € A4
such that l/fll_l = Ps/.

Lemma 3.18. Ler L= {meMm=q (13) for some
q=13,4,9,10,12}. If d is a positive integer such that
ged(d,13) = 1 and p € [1,13] of S;4, then the solutions of x* -
€ A(B) in Ay are

1. A(p), ifde L.

2. A<7§), ifdé¢ L.
Proof. Given that € [1,13] N Hyq, [1,13] splits into two clas-
ses A(ff) and A(z) of Ay4. Moreover, gcd(d,13) = 1. So by

(2.10), [1,13] = A(f) uA(fa) is a solution set of x* € [1,13]
— A(B) UA<§) in Sis. However, A(f) mA(ff) — ¢. Hence,
for each me[l,13] = <n € A(p)&n ¢ A<§>) or (neA
(ﬁ) & ¢ A(B)).
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(1) Assumed € L. If t € A(p), then (”f p)mis conjugate tof

in A4 However, n? ~ ~m (becausé' d € L) = ¢ ~ ﬁ =
A1

#
~ f3). How-

#
n? € A(B)&n’ ¢ A (ﬁ) Afrea ([3) , then (nA
#
ever, nd~n(becausedeL):>n ﬁ:>77: eA([f)&
7 ¢ A(P). Then, the solution set ofxd € A(f)in Ay41s A(p).
#
(2) Assumed¢ L. If © € A(p), then (n ~ ﬁ) =% I /)’_ How-
# #
/3 =nle4 <[3)&

p). Ifn eA(ﬁ) = (”f‘ §> =7 ~ f. However,

14

ever, n¢ = ~ 2 (because d ¢ L) = n?
1

A(
4 ﬁ

T

14

# #
A ([}) . Then, the solution set of x* € A(f) in A4 is A (ﬁ)

(because d ¢ L) = n"Az B= nlcAP)& n’¢

ES

Definition 3.19. Let f = y4 € [3,11] of S14, where 4 = (ay,as, -
(ay,as,a3,a4,as,a,a7,as,ag, aro, ayy) and y = (by,by,b3), we
define classes [3,11] £ of A4 by:

AB) = [3.11]"
and A(ﬁ) =[3,11] ={pe31]p= z[ﬁt*1 for some t€

= {ueB,11]] = tpr" for some € A}

#
A4}, where f = iy and Ay = (a1, as3,as,a7,a9,a11, az, 4,0, ds, a10)

Remark 3.20.

(i) Let p=9i€[3,11] of Sy4 where 7y = (by,bsb3),
A = (a1,az,a3,a4,0s,ds,a7,0d3,d9, A19, A1 1),
/11 = (01703’615,6177097011&12761470670876110 ,
ay, ds, ar, dy, dz, ds, dg, dy, a3, de, dy ),

)
=( as)
(a as,ay, @y, g, d1o, A3, A7, A1, A4, A3),
=( )

ap, dg, di, ds, dyo, dg, dy, Az, dg, A, d7

and d is a positive integer. Thus,

1) /3" B < d=1 (mod 33)

@) p4=7y"'4 < d=2 (mod 33)

(3) p? = yi3 < d=4 (mod 33)

4) p?=y7""2 < d=5 (mod 33)

(5) p'=y93" <= d=7 (mod 33)

6) p'=9y"1);" < d=8 (mod 33)
@) B =yi" <= d=10 (mod 33)

(8) B =yl < d=13 (mod 33)

©9) p?=y""2 < d=14 (mod 33)
(10) B = y44 < d=16 (mod 33)
(1) p=y"1;" < d =17 (mod 33)
(12) B = 94 < d=14 (mod 33)
(13) p=y"1;" <= d =20 (mod 33)
(14) p? =972 < d=23 (mod 33)
(15) p9 = )y < d=25 (mod 33)
(16) p? = y7'25 < d=26 (mod 33)
(17) ' =92;" < d=28 (mod 33)
(18) pI=97113" <= d =29 (mod 33)
(19) p?=927" < d =31 (mod 33)
(20) p? =972 = d=32 (mod 33)

i) A() =A(F™), A7) = AGA), Alpis) = Ay 43"),
A(™"2) = A(yay ), A2y ) =A( ' 4s), A4, ) =
A(yha), A(y27") = A(y~'7) [given that A4 is an ambiva-
lent group]

(i) A(B) = A(yA3) [because, 3t = (a»,as,as,aio,as)(as,as,-
t = (as,as,a6,a10,a4) (a3, 09,011, as,a7) € Ays such that
1Bt = pis].

(iv) A(B) = A(y/4) [because, 3t = (as,ds, as,as,aio)(as,a,-
t = (az,a¢,a4,as,a10)(a7,a9,as,as,a11) € A4 such that
1Bt = pia].

(v) A(B) = A(y/2) [because, It = (as,as,ar, as,aro)(ao, as,-
t = (as,as,as,a4,a10)(ay,as,a7,ag,ay,) € Arg such that
1Bt = i)

(Vi) A(B™") = A(y~"'4) [because, 31 = (as, as,az, ar, az)(aro,-
t = (ag,a9,a7,a11,a3) (a0, ds,ds, dg,ar) € A4 such that
Bt =y ).

Lemma 3.21. Let L = {me N| m=q (mod 33) for some
qg=1,2,4,8,16,17,25,29,31,32}. If d is a positive integer such
that ged(d,3) = 1 & ged(d, 11) = 1 and B € [3,11] of Si4,
then the solutions of xle A(B) in Ayy are

1. A(p), ifde L.
#
2. A(ﬁ), ifdé¢ L.
Proof. Given that € [3,11] N Hyy, [3,11] splits into two clas-
#
ses A(f)) and 4 (ﬁ) of A4,4. Moreover, ged(d,3) = 1 and
#
ged(d, 11) = 1. So by (2.10), [3,11] = A(p) UA(B) is a solu-
However,

#
tion set of xde[3,11]:A(ﬁ)UA(ﬁ> in S

Hence, for  each

A(ﬁ)ﬂA@) =¢. €311 =

(e atpenea(h)) or (wea(F)enean).

(1) Assume d e L. If & € A(f), then (nA~ B)m is conjugate to

B in A, However, 4 ~m (because
14
#
dEL):>7r‘JA%[3:>7r"GA(ﬁ)&nd¢A<ﬁ>. If
14

# #
e A<ﬁ>, then (n ~ /3) However, ¢ ~ A (because

14 Ais
#
del)= ndf B=n’ eA(ﬁ)&n" ¢ A(B). Then, the
14

solution set of x? € A(f) in A4 is A(P). . #
(2) Assume d¢ L. If m € A(p), then (n ~ p)=n ~ f. How-

14

#
ever, n’~ 1 (because
Arg

A(E)&ndeéA(/I). If neA(ﬁ> = <7rAz E) :%ﬁﬁ.

However, 7/~ 1t d¢l)= n"Az B=
14

14

d¢L):>n [)’:>7re

(because

S

T
# _ ,
! € A(B)&n? ¢ A B ). Then, the solution set of x“-

€ AP) in A4 is A(fz). O
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4. Concluding remarks

By the Cayley’s theorem: Every finite group G is isomorphic to
a subgroup of the symmetric group S, for some n > 1. Then
we can discuss these propositions. Let x? = g be class equation
in finite group G and assume that f:G = A4,,, for some n € 0 and
flg) e HN C*. The first question we are concerned with is:
what is the possible value of d provided that there is no solu-
tion for xY = g in G? The second question we are concerned
with is: what is the possible value of d provided that there is
a solution for x? = g in G? and then we can find the solution
and the number of the solution for x? = g in G by using Cay-
ley’s theorem and our theorems in this paper. In another direc-
tion, let G be a finite group, and n(G) = {g € G| i the least
positive integer number satisfies g’ = 1}. If | 7; (G) = k;, then
we write ,(G) = {g,1,8xn,---,8, > and [] = {m(G)},., . For
each g € G and g; € n(G) we have (gg,»jgfl)i = 1. By the Cay-
ley’s theorem we can suppose that (£:G = S,,) or (f:G = 4,,). Also
the questions can be summarized as follows:

1. Is JT = {m(G)},, collection set of conjugacy classes of
G?

2. Is there some i > 1, such that /~'(C*) = =, (G), for each
C* of A4,, where (G = A4,)?

3. Is there some i > 1, such that /~'(C*) = m; (G), for each
C* of S, where (f:G = S,,)?

4. If (G=S,) and p(n) is the number of partitions of, is
ITT| = p(n)?

5. If (G=A4,) and A4, has m ambivalent conjugacy classes.
Is it necessarily true that G has m ambivalent conjugacy
classes?
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