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In this paper, we use a new decomposition technique to suggest and consider some new
iterative methods for solving system of linear equations. We prove that these iterative methods are
similar to the iterative methods derived by using homotopy perturbation method and Adomian
decomposition method. We consider the elliptic partial differential equation along with other sev-
eral numerical examples to illustrate the efficiency and performance of our results. Our results can
be viewed as an improvement and extensions of the previously known results.

© 2013 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

In recent years, several methods and techniques have been
developed to solve system of linear equations. Liu (2011), Ker-
amati (2009), Noor (2010) and Noor et al. (2013a) have used
homotopy perturbation method to derive iterative methods
for solving linear (nonlinear) equations. Noor et al. (2013b)
have used Adomian decomposition method to develop itera-
tive methods for system of linear equations. Babolian et al.
(2004) have used Adomian decomposition method to derive
an iterative method similar to the Jacobi iterative method for
solving system of linear equations. Allahviranloo (2005) used
Adomian decomposition method for fuzzy system of linear
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equations. There are many publication in the field of analytical
surveys using homotopy perturbation methods and other tech-
niques, see, for example, Ganji (2006, 2012), Ganji and Sadighi
(2006), Jalal and Ganji (2010, 2011) and Jalal et al. (2010,
2012). In the implementation of the Adomian (1989, 1994)
decomposition method, one has to calculate the derivatives
of the so-called Adomian polynomials, which is itself a difficult
problem. To overcome this drawback, we use a different type
of decomposition which is essentially due to Daftardar-Gejji
and Jafari (2006), to develop the iterative methods for solving
the system of linear equations. Noor (2006,2007), Noor and
Noor (2006a,b), Noor et al. (2006c) and Noor et al.
(2010a,b) have used the same decomposition technique for
solving nonlinear equations. This decomposition method does
not involve the high-order differentials of the function and is
very simple as compared with Adomian decomposition tech-
nique. In this paper, we use this new decomposition method
to develop iterative methods for solving system of linear equa-
tions. We show that our results obtained by using new decom-
position technique are the same as derived by Liu (2011) and

1815-3852 © 2013 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.
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Noor et al. (2013b) by using the homotopy perturbation meth-
od and Adomian decomposition method, respectively. This is
the main motivation of this paper. By using new iterative
methods we solve the elliptic partial differential equation and
it is well known that the elliptic partial differential equations
have applications in almost all areas of mathematics and
frequent applications in engineering and physics. We also give
several numerical examples to demonstrate the efficiency and
performance of our results.

2. Iterative methods

Consider the system of linear equations

AX =5, 2.1)
where

A=lay], X=|[x] andb=1[b], i=12,---,n,
j=12,---,n

It is well-known that systems of linear Eq. (2.1) arise in studies
in many areas such as engineering, industrial science and so on.
For example, in digital image and signal processing, especially
in compressed sensing, biomedical engineering, systems and
control science, machine learning and so on. For the formula-
tion and applications of the system of linear Eq. (2.1), see
Burden and Faires (2001) and the references therein. We
decompose the system of linear Eq. (2.1) in such way, which
is useful in developing the iterative methods. For an auxiliary
parameter h # 0, any splitting matrix Q and an auxiliary matrix
H, we can decompose the system of linear Eq. (2.1) as follows:

OX + (hHA — Q)X = liHb. (2.2)

Let W, be the initial approximation of X, then, Eq. (2.2) can be
written as:

OX = Wy +[(Q — hHA)X + hHb — W) (2.3)
Eq. (2.3) can be written as:

L(X)=C+ M(X), (2.4)
where

L(X) = 0¥, (2.5)
C=Ww,, (2.6)
M(X) =[(Q —hHA)X + hHb — W) (2.7)

Here we use a new decomposition technique, which is mainly
due to Daftardar-Gejji and Jafari (2006), to construct a family
of iterative methods. In this technique, the decomposition of
the operator M(X) is quite different than that of Adomian
(1989, 1994) decomposition. See also He (1999), Babolian
et al. (2004) and Yusufoglu (2009) for other techniques.

The main idea of this technique is to look for a solution of
Eq. (2.4) having the series form

X=>)x. (2.8)

The operator M is decomposed (Daftardar-Gejji and Jafari
(2000)) as

o0 i i—1

M(X) = M(X,) + Z{M(ZX,-) - M(Zx,-) } (2.9)
=1 =0 =0

Combining (2.4), (2.8), and (2.9), we have

L{Y X | = C+ M(X,)

i=0

00 i i—1
+ Z{M(ZX,—) - M(Z}g) } (2.10)
i=1 j=0 J=0
By using (2.5) and (2.10), we have
0 (Zx) = C+ M(Xo)
i=0
00 i i—1
=1 =0 =0
Thus, we have the following iterative scheme:
Q(XO) =C,
0(X1) = M(Xy),
0(X2) = M(Xo + X1) — M(Xo),
m ' m—1
O(Xyi1) = M(ZX/) - M(ZX;)- m=1.2,
=0 =0
(2.12)
From (2.7) and (2.12), we have
Q(XO) =C,
0(X,) =(Q —hHA)X, + hHb — Wy,
0(X2) = (Q —hHA)X,, (2.13)
Q(/Ym+1) = (QihHA)va m= 1727"'
From (2.13), we get
XO = Q_l W07
X, = (I—hQ"HA)X, + Q" (hHb — W}), (2.14)
Xy =(I—hQ"HA)X,, .1, m=2,3,4,--.
Taking initial approximation W, = hHb, we have
Xo=h(Q 'H)b
0 1(Q ) 17 " | (215)
X, =(I—hQ "HA)"W(Q 'H)b, m=1,23,--.

Thus, from (2.8) and (2.15), we have the series solution

00

X = i){,{ = (1~ hQ ' HA) h(Q ' H)b.
k=0

k=0

(2.16)

Formula (2.16) gives exactly the same series solution obtained
by using homotopy perturbation technique in Liu (2011) and
Adomian decomposition method Noor et al. (2013b). How-
ever, our technique of the derivation of the series solution is
quite easy and natural one. This technique does not involve
the computation of the Adomian polynomials, which is itself
a difficult problem. For the convergence analysis of series
(2.16), see Liu (2011). The series (2.16) converges if and only
if p(I—hQ 'HA) < 1, see Liu (2011). The auxiliary parameter
h#0, and the auxiliary matrix H are chosen properly so that
the series (2.16) converges.
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Using (2.16), we suggest the following iterative scheme:

Algorithm 2.1. For an initial value X© = h(Q~'H)b, compute
the approximate solution X by the following iterative scheme:

k
X =S (1 - hQ T HA)"WQ T )b, k=1,23,:-.

m=1

We now discuss some special cases, which can be obtained
from our new Algorithm 2.1.1. If Q = D, where

ay 0o ... 0
D= 0 an 7
: . .0
0 - 0 a.,

then, Algorithm 2.1 reduces to the following method:

Algorithm 2.2. For an initial value X© = n(D~'H)b, compute
the approximate solution X% by the following iterative
scheme:

k

X9 =N (1-hD"HA)"h(D'H)b, k=1,2,3,---.

m=1

II. If Q = D—hL, where

an 0 e 0 0 0 0
0 —ay 0 0
D= 22 and L = . ,
- 0
0 cee 0 An.n —dp —dpp-1 0

then, Algorithm 2.1 reduces to the following method:

Algorithm 2.3. For an initial value X© = h((D—hL)"'H)b,
compute the approximate solution X* by the following
iterative scheme:

k
X© =N"(1—n(D—nL)" ' HA)"h(D — hL)"'Hb,
m=1

k=1,2,3,---.

3. Numerical examples

In this section, we consider the elliptic partial differential equa-
tion and some other numerical examples to illustrate the effi-
ciency of the newly developed methods in this paper. We
compare the Jacobi method (JC) and Gauss—Seidel method
(GS) (Burden and Faires (2001)), Algorithm 2.2 and Algo-
rithm 2.3 for different values of h and taking H = I. For each
example, we calculate number of iterations, error estimate,
spectral radius  p(D”'(L + U)) (for Jacobi method),
p(D—L)"'U) (for Gauss—Seidel method), p(I —hD 'HA)
(for Algorithm 2.2) and p(I-h(D—hL)"'HA) (for Algorithm
2.3). All computations are done on MATLAB. We use
¢ = 107", The following stopping criteria is used for com-
puter programs:

IX* = XY
X

We consider the following examples to illustrate the implemen-
tation of the iterative methods.

< &

Example 3.1. (Burden and Faires (2001)) Consider the follow-
ing system of linear equations 4X = b, such that

-10 0 2 1 0 0 0]ry1 1 0 -
0 -1 0 2 0 0 0 0][x 0
0 0 -1 0 0 0 L 0]]|x 0
0 0 0 -2 0 -1 1 of|xl_| O
0 0 0 0 -1 0 0 1[[|x| | 0
00 0 0 0 1 0 O0]|x 10,000
00 0 20 0 £ o0]|x 0
(000 0 0 0 o0 —F _gftxsd L 0

The numerical results for this example are presented in Ta-
ble 3.1. It is clear from the Table 3.1 that Algorithm 2.3 is more
efficient as compared to all other methods in the table. The
optimal value of h for Algorithm 2.3 is 1.21 and for Algorithm
2.2 15 0.99. Residual fall of different methods is also shown by
Fig. 3.1.

Example 3.2. (Burden and Faires (2001)) Consider the follow-
ing system of linear equations 4X = b, such that

app  dpp aj 40 X by
a; a 40 X> b,
Qg0,1 Q402 Q40,40 X40 bao

where the entries of matrix 4 are

2i, whenj=iandi=1,2,---,40,
j=i+1land,i=1,2,---,39,
a;=4¢ —1, when{” .
j=i—landi=23,---,40,

0, otherwise,

and the entries column matrix b are b; = 1.5i—6, foreach,
i=1,2,--40.

Table 3.1 (Numerical results for Example 3.1).

Method h o IT Error

JC 0.7598 127 8.6979¢e-016

GS 0.5774 64 8.6979¢-016

Alg. 2.2 h=1 0.7598 127 5.3264e-016
h = 0.99 0.7622 124 9.3211e-016
h = 0.98 0.7646 126 7.9896e-016

Alg. 2.3 h=1 0.5774 63 6.1504e-016
h=12 0.2965 30 4.6128e016
h = 1.21 0.2461 29 7.3930e-016
h =122 0.2200 30 6.8395¢e-016
h =125 0.2500 33 6.3323¢-016
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Log of Residuals

T T T I
' ' —— I

——GS -
—— Alg. 2.2 (h=0.99)
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Figure 3.1

60 80
lterations

100 120

Residual fall for Example 3.1.

More precisely the above system of linear equations is given

by

T2 -1
-1 4
0 -1
0 0
0 0
0 0
0 0
0 0
L0 0

0o 0 0
-1 0 0
6 -1 0
-1 8 -1
0 -1 10
0o 0 -1
0o 0 O
0
0O 0 O

0 0 0 07
0 0 0 0
0 0 0 0
0 0 0 0
-1 0 0 0
12
-1 0 0
-1 76 -1 0
0 -1 78 -1
0 0 -1 80

4 (40x40)

The numerical results for the above system of linear equations
are presented in Table 3.2. Table 3.2 shows that the spectral ra-
dius p for Algorithm 2.3 is 0.06 at h = 1.06 which is less than
the spectral radius p of all other methods presented in the Ta-
ble 3.2. And hence Algorithm 2.3 is more efficient as compared
to all other methods. The optimal value of h for Algorithm 2.3
is 1.06 and for Algorithm 2.2 is 1. Fig. 3.2 shows the residual
fall of different method for this problem.

Table 3.2 (Numerical results for Example 3.2).

Method h p IT Error

JC 0.4158 40 5.7747e-016

GS 0.1729 21 5.7747e-016

Alg. 2.2 h = 0.4158 38 7.3984e-016
h = 0.99 0.4217 38 9.9190e-016
h = 0.98 0.4275 39 8.3105e-016

Alg. 2.3 h = 0.1729 19 7.3407e-016
h = 1.06 0.0600 12 1.8031e-016
h = 1.07 0.0700 13 8.9869¢-016
h=1.1 0.1000 15 5.3386e-016
h=1.15 0.1500 18 1.7480e-016

Log of Residuals

T T T T T I
: : : ——JC
—+—GS -
—— Alg. 2.2 (h=1)
—&— Alg. 2.3 (h=1.08)

-40 L
0

20 25
lterations

Figure 3.2 Residual fall for Example 3.2.

Example 3.3. Consider the following system of linear equa-
tions AX = b, such that

X6

X38

X39

X40 J

f_4.57
-1.5
1.5

51
52.5

(40x1) L .

(40x1)

e, die2

by
by

aj 16 X1

a 16 X2

a16,16 X16 bis

where the entries of matrix 4 are

4

)

a; =

whenj=iandi=1,2,---,16,
j=i+landi=1,2,3,56,7,9,10,11,13,14,15,
j=i—landi=2,3,4,6,7,8,10,11,12,14,15,16,

—1, when

j=i+4andi=1,2,---,12,

j=i—4andi=>5,6,---,16,

0, otherwise,

and the entries column matrix b are
b =1(1.902207,1.051143,1.175689,3.480083,0.819600, —0.264419,

—0.412789,1.175689,0.913337,—0.150209, —0.264419,
1.051143,1.966694,0.913337,0.819600, 1.902207)".

The numerical results for this problem are presented in
Table 3.3. Residual fall of different method for this problem
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Table 3.3 (Numerical results for Example 3.3).

Method h p IT Error
JC 0.8090 156 9.3593e-016
GS 0.6545 81 8.5793e-016
Alg. 2.2 h = 0.8090 155 8.6973e-016
h =0.99 0.8109 156 9.6098e-016
h = 0.98 0.8128 158 8.7745¢-016
Alg. 2.3 h = 0.6545 80 6.3921e-016
h =125 0.3375 33 4.8150e-016
h =126 0.2600 28 8.7725e-016
h=1.28 0.2800 29 2.3622¢-016
h =131 0.3100 31 4.6328e-016
0% ! ! 1 I '
1 H : : —*—JC
AL S S— S S ——GS i
: : Alg. 2.2 (h=1)
Al | —e—Alp 23(=128) ||

Log of Residuals

" i i i i i i i
0 20 40 60 80 100 120 140 160
lterations

Figure 3.3  Residual fall for Example 3.3.

is also shown in Fig. 3.3. It is clear from Table 3.3 and
Fig. 3.3 that Algorithm 2.3 is much efficient at optimal va-
lue h = 1.26.

Example 3.4. Consider the following elliptic partial differential
equation

82u+82u _ x+
oxr 9y y

with

, 1<x<2,

==

)

u(x,1) = xlnx, u(x,2) = xIn(4x?),1 < x < 2
u(l, ) = ylny,u(2,y) = 2yln(2y), 1 <y < 2.
Consider the following partition of the intervals:

1
h=-,
n

Xo=1<x<x%<--<Xx,=2, x;=2Xx0+ih,

and
. 1
Vo=1<py <y <<y, =2, y;=y+jk, k:%-

For each mesh point in the interior of the grid, (x;, y;), for each
i=12,--,n—1andj= 12, .,m—1, we use the Taylor series

Table 3.4 (Numerical results for elliptic partial differential
equation).
Method h 0 1T Error
JC 0.9380 495 9.6128e—016
GS 0.8807 255 9.6128e-016
Alg. 2.2 h = 0.9380 493 8.8029¢-016
h = 0.99 0.9386 498 9.6817e-016
h =098 0.9392 503 9.6801e-016
Alg. 2.3 h = 0.8807 254 8.3853¢-016
h =148 0.6247 72 6.0639¢-016
h = 1.49 0.6098 69 6.0164e-016
h=15 0.6175 68 4.6898e-016
h = 1.51 0.6252 69 8.0360e-016
lg—T—T T T T T T
! ] : ! P —=—uc
e s 1
: : d : Alg. 2.2 (h=1)
0 —S—Alg 23 (1=15) | |

Log of Residuals

0 R S S R N N S
0 50 100 150 200 250 300 350 400 450 500
lterations

Figure 3.4  Residual fall for Example 3.4.

in the variable x about x; to generate the centered-difference

formula:

3214()@'7)/,-) . u(xwhyj-) - 2u(xi7yj) + u(XH,J’j) 30
oxr I ' (32)

We also use the Taylor series in the variable y about y; to gen-

erate the centered-difference formula

azu(xhyj) o u(xiayj+l) - 2u(xi7y_j) + u(xiay/‘—l)

= 5 , (3.3)
9y? k

foreachi = 1,2,---n—1 and j = 1,2,-- . m—1.
The boundary conditions are as under

u(xo,y;) = u(l,y;) = ylny;, and  u(x,,y;) = u(2,y;)
=2pIn(2y;), j=0,1,2,---,m,

and

u(xi,yy) = u(xi, 1) = xinx;, and  u(x;,y,,) = u(x;,2)

=xiIn(4x?), i=1,2,---,n—1.

By using the formulas (3.2) and (3.3) in equation (3.1), we
have
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n\’ n\’
2<(E> i 1>w%i = (Wi + wicyy) = (E) (Wijs1
+wij) = —h (f’l * i)/> ' (3.4)
J 1

The linear system involving the unknowns w;; is expressed for
matrix calculations more efficiently if a re-labeling of the inte-
rior mesh points is introduced, as under:

Pr=(x;,y;) and w;=w;;

where [ =i + (m—1—j) (n—1), for each i = 1,2,---,n—1 and
j=12,-m—1.

In particular, we use n = m = 10 and obtain the following
system of linear equations AX = b, where the entries of 4 are
4, whenj=iandi=1,2,---,81,
j=i+landi=1,2,---,8,10,11,---,17,19,20,---26,

128,29,---,35,37,38,--,44,46,47,---,53,

155,56,-+-,62,64,65,--,71,73,74,---,80,
j=i—landi=2,3,---,9,11,12,---,18,20,21,---27,

129.30,---,36,38,39,--,45,47,48, -, 54,

56,57,--+,63,65,66,---,72,74,75,--- 81,
j=i+9andi=1,2,---,72,
j=i—9andi=10,11,--- 81,

a;=4 —1, when

0, otherwise,

and

4. Conclusions

In this paper, we have used a new decomposition technique
to derive iterative methods for solving system of linear equa-
tions. Our method of derivation of the iterative methods is
very simple as compared with the Adomian decomposition
technique and homotopy perturbation method. This new
technique does not involve the differentiation and easy to
implement. From the Tables 3.1-3.4 and Figs. 3.1-3.4, it is
clear that the new iterative methods obtained in this paper
perform much better than the previously known methods.
The technique and ideas of this paper may be extended for
solving the system of nonlinear equations, see, for example,
Noor et al. (2010a,b).

Acknowledgements

The authors would like to thank Dr. S.M. Junaid Zaidi, Rec-
tor, COMSATS Institute of Information Technology, Paki-
stan, for providing excellent research facilities and
environment. The authors are grateful to the referees for their
valuable and constructive comments, which helped us to im-
prove this paper.

b = (2.931066376,2.078975848,2.462872267,2.861994518, 3.275275463,3.701786539, 4.140712628,4.591332604, 10.12600811,

1.035541250, —0.02166666667, —0.02106837607, —0.02063492063, —0.02033333333, —0.02013888889, —0.02003267974,

—0.02000000000, 4.591332602, 0.8801428932, —0.02122549020, —0.02072398190, —0.02037815126, —0.02015686275,

—0.02003676471, —0.02000000000, —0.02003267974,4.140712630,0.7305853522, —0.02083333333, —0.02043269231,

—0.02017857143, —0.02004166667, —0.02000000000, —0.02003676471, —0.02013888889, 3.701786539, 0.5872279653,

—0.02050000000, —0.02020512821, —0.02004761905, —0.02000000000, —0.02004166667, —0.02015686275, —0.02033333333,

3.275275463,0.4504767156, —0.02023809524, —0.02005494505, —0.02000000000, —0.02004761905, —0.02017857143,

—0.02037815126, —0.02063492063,2.861994518,0.3207938235, —0.02006410256, —0.02000000000, —0.02005494505,

—0.02020512821, —0.02043269231, —0.02072398190, —0.02106837607, 2.462872267,0.1987101106, —0.02000000000,

—0.02006410256, —0.02023809524, —0.02050000000, —0.02083333333, —0.02122549020, —0.02166666667, 2.078975848,

0.1896823956,0.1987101106, 0.3207938235,0.4504767156,0.5872279653,0.7305853522,0.8801428932,1.035541250,

2.931066376)".

The numerical results for above system of linear equations
are presented in Table 3.4 and the Fig. 3.4 shows the residual
fall of different method for this problem. It is clear from the
Table 3.4 and Fig. 3.4 that Algorithm 2.3 provides results in
very small number of iterations as compared to the other
methods.
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