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:الستخلص  

( PVAMOA)ميثوكسي أنيلين  -بولي فينيل الكحولقابل الذوبان في الماء  المؤلف مت دراسة كفاءة البوليمرت
لقد تم استقصاء . مولاري 1في تثبيط تآكل الفولاذ الطري الموجود في وسط حامض الهيدروكلوريك بتركيز 

لقد تم تعيين . تثبيط التاكل باستخدام دراسة فقدان الوزن وديناميكا جهد الاستقطاب والممانعة الكهروكيميائية
.  ي في حالتي التآكل والتثبيط بواسطة الامتزازومناقشة معاملات الحركية والدينامكيا الحرارية للفولاذ الطر

على سطح الفولاذ الطري يخضع لمنحنيات لانجمير  PVAMOAولقد لوحظ بأن امتزاز البوليمر المؤلف 
إن عملية امتزاز البوليمر وجدير بالاشاره . والتي تتبع خط ثابت حراري امتزاز العوادي

 .SEMهر الالكتروني الماسح تم التثبت منها باستخدام المج  PVAMOAالمؤلف

 
 
 
 
 
 
 

 

 R. Karthikaiselvi and
 
S. Subhashini 



Journal of the Association of Arab Universities for Basic and Applied Sciences (2014) 16, 74–82
University of Bahrain

Journal of the Association of Arab Universities for

Basic and Applied Sciences
www.elsevier.com/locate/jaaubas

www.sciencedirect.com
ORIGINAL ARTICLE
Study of adsorption properties and inhibition of

mild steel corrosion in hydrochloric acid media by

water soluble composite poly (vinyl alcohol-o-
methoxy aniline)
* Corresponding author. Tel.:+91 9543966652.

E-mail addresses: karthidilip27@gmail.com, dkskarthi@gmail.com

(R. Karthikaiselvi).

Peer review under responsibility of University of Bahrain.

1815-3852 ª 2013 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

http://dx.doi.org/10.1016/j.jaubas.2013.06.002
R. Karthikaiselvi a,*, S. Subhashini b
a Department of Chemistry, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
b Department of Chemistry, Avinashilingam University for Women, Coimbatore, Tamil Nadu, India
Received 19 June 2012; revised 15 June 2013; accepted 18 June 2013
Available online 27 July 2013
KEYWORDS

Mild steel;

Corrosion inhibition;

Adsorption;

Polarization curves;

Electrochemical impedance;

Scanning electron

microscope
Abstract The efficiency of new water soluble composite namely, poly (vinyl alcohol-o-methoxy

aniline) PVAMOA has been studied for corrosion inhibition of mild steel in 1 M hydrochloric acid

(HCl). Corrosion inhibition was investigated using weight loss, potentiodynamic polarization and

electrochemical impedance studies. The kinetic and thermodynamic parameters for mild steel cor-

rosion and inhibitor adsorption respectively, were determined and discussed. The adsorption of

PVAMOA on the mild steel surface obeyed Langmuir followed by El-Awady adsorption isotherm.

The adsorption of the composite was established by scanning electron microscope (SEM).
ª 2013 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.
1. Introduction

Mild steel finds wide application in a broad field of industry

and machinery. However its tendency to corrode makes it
unsuitable for exposure to acids. For example, the scale forma-
tion in mild steel steam boilers is a quite common problem in

industries which has to be removed. Hydrochloric acid is used
for removing scales from the boiler surface. To minimize the
metal loss during this process, corrosion inhibition programs
are required. The corrosion inhibition is achieved by the addi-
tion of inhibitor to the system that prevents corrosion of the

metal surface. The influence of the inhibitor upon metal corro-
sion is often associated with physical or chemical adsorption.
This phenomenon is related to the presence of hetero atoms

(N, O, and S) as well as multiple bonds or aromatic rings in
the inhibitor (Azhar et al., 2002).

The use of polymers as corrosion inhibitors has consider-

able attention recently. Polymers are used as corrosion inhibi-
tors because, through their functional groups they form
complexes with metal ions and on the metal surface these com-
plexes occupy a large surface area, thereby blanketing the sur-

face and protecting the metal from corrosive agents present in
the solution.
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The corrosion inhibitive properties of polyvinyl alcohol have
been identified by Strawhecker and Manias (2000).
Manickavasagam et al. (2002) examined poly (styrene sulfonic

acid) – doped polyaniline influence on the inhibition of
corrosion of mild steel in l M HCl. The effect of polyvinyl
alcohol and other polymers on the corrosion of cadmium in a

0.5 M hydrochloric acid solution was studied by Khairou and
El-Sayed (2003). The corrosion behavior of mild steel in HCl
and its inhibition by 4-actamidoaniline were studied by Okafor

et al. (2003). The corrosion protection ofmild steel by paint con-
taining polyaniline – hydrochloride was investigated by Samui
et al. (2003). The effect of poly (4-vinylpyridine isopentyl bro-
mide) in 3� of quaternization (6%, 18% and 79%) on the corro-

sion of pure iron was investigated by Chetouani et al. (2003).
Selvaraj et al. (2004) studied the inhibition efficiency of polyvinyl
pyrrolidone in controlling corrosion of carbon steel immersed in

an aqueous solution containing 60 ppm of Cl� in the absence
and presence of Zn2+ using weight loss method. Rajendran
et al. (2005) investigated the corrosion behavior of carbon steel

using polyvinyl alcohol in neutral aqueous solution containing
60 ppm of Cl� in the absence and presence of Zn2+ ions using
weight lossmethod.Manivel andVenkatachari (2006) examined

the corrosion behavior of iron exposed to 1 MHCl solution and
its inhibition using poly (p-amino benzoic acid) compared with
p-amino benzoic acid. Polyethylene glycol, polyvinyl alcohol
and polyacrylamide exhibited the best inhibiting performance

toward the corrosion of mild steel in hydrochloric acid
(Umoren et al., 2006; Umoren and Obot, 2008). Poly (aniline-
formaldehyde) was used as an inhibitor on mild steel corrosion

(Quraishi and Shukla, 2009).
The compound such as polyvinyl alcohol – sulfanilic acid

has been used as corrosion inhibitor for mild steel in various

aqueous environments (Srimathi et al., 2010). Inhibitive action
of polyvinyl alcohol – Zn (II) system in corrosion inhibition of
carbon steel in ground water was examined by Manimaran

et al (2012). Conducting polyaniline as corrosion inhibitor
for mild steel in hydrochloric acid was studied by Feng et al.
(2013). Thus many research papers have reported the use of
polymers as corrosion inhibitors.

Substituted polyaniline such as poly (o-methoxy aniline)
inhibits metal corrosion efficiently and further its stability
and solubility are improved using polyvinyl alcohol (PVA) as

a supporting polymer. Water soluble PVA is nontoxic, acts
as steric stabilizer and prevents the precipitation of polymer-
Figure 1 The proposed structu
ized o-methoxy aniline and makes it finely dispersed in solu-
tion. The safety of PVA is shown in the literature study as
(i) The acute oral toxicity of PVA is very low, (ii) The orally

administrated PVA is very poorly absorbed from the gastroin-
testinal tract. (iii) PVA dos not accumulate in the body when
administrated orally. (iv) PVA is not mutagenic (De merlis

and schoneker, 2003). PVA was used as a steric stabilizer for
the dispersion polymerization of cross-linked poly (N-isopro-
pylacrylamide) in water (Lee et al., 2011).

In the present work, water soluble composite poly (vinyl
alcohol-o-methoxy aniline) has been synthesized and tested
as corrosion inhibitor for mild steel in 1 M HCl.
2. Experimental

2.1. Polymer synthesis

20 mL of PVA (10% w/w) was mixed with 20 mL of o-meth-
oxy aniline in oxalic acid (1 mL in 100 mL) using a magnetic

stirrer. The system was then cooled below �5 �C and followed
by the addition of 20 mL of aqueous acidic (oxalic acid)
solution of ammoniumpersulfate (APS). APS mole ratio was

maintained as 1:1. Polymerization was allowed to proceed
for 3 h and the composite was formed as bright green stable
solution (Gangopadhyay et al., 2001). The proposed structure

of PVAMOA is shown in Fig. 1.
The structural characteristic of PVAMOA (Fig. 2) was

investigated by FTIR spectroscopy in the range of 2000–

400 cm�1. The predominant OH stretching of PVA appearing
at 3285 cm�1 and characteristic NH stretching vibration
(3400–3250) were displaced toward the lower wave number
3188 cm�1. This shifting of peak might be due to the hydrogen

bonding between PVA and PMOA. A new peak observed at
3188 cm�1 was associated with peaks at 1699 cm�1 and
1297 cm�1 which was an indication of the presence of

C–N‚C and C–NH –C in the composite (Sazou and Georgo-
lios, 1997). The characteristic CH stretching vibrational peak
of PVA at 2912 cm�1 was shifted to 2850 cm�1. A band at

2967 cm�1 could be assigned to the aromatic C–H stretching.
The composite showed a band at about 1097 cm�1 that corre-
sponds to C–O stretching of the PVA. The peak at 1584 cm�1

was due to the C‚C double bond of the quinonoid ring, where
re of synthesized PVAMOA.
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as the peak at 1420 cm�1 arises due to vibration of the C‚C
bond associated with the benzenoid ring (Zheng et al., 1996).

1, 2 and 1, 4 di substitution were indicated by the peaks
appearing at 797 cm�1 and 713 cm�1 (Coates, 2000). Appear-
ance of several peaks between 900 and 630 cm�1 represented

the aromatic H out of plane bending.

2.2. Material preparation

Elemental analysis was carried out to determine the percentage
of elements present in the mild steel. Corrosion tests were per-
formed on the mild steel of the following percentage composi-
tion: carbon 0.126%, manganese 0.181%, silicon 0.058%,

phosphorous 0.033%, sulfur 0.029%, chromium 0.012%,
molybdenum 0.012%, nickel 0.002% and iron 99.547%. Mild
steel specimens were cut into 5 cm · 1 cm coupons for gravi-

metric measurements and were lacquered so as to expose an
area of 1 cm2 for all electrochemical studies. The specimens
were mechanically polished, their edges were abraded with fine

grade emery paper, degreasing in acetone, and dried at room
temperature before use. Molar acid solution was prepared by
using double-distilled water. The concentration range of inhib-

itor employed was 100–2000 ppm in 1 M HCl.

2.3. Weight loss measurements

Gravimetric experiments were carried out in a double walled

glass cell. The solution volume was 100 cm3; the temperature
of the solution was controlled thermostatically. Weight loss
measurements were carried out in triplicate in the absence

and presence of various concentrations of PVAMOA solution
in 1 M HCl at 303–343 K temperature.
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Figure 3 Variation of inhibition efficiency with different immer-

sion times of PVAMOA in 1 M HCl on the mild steel surface.
2.4. Electrochemical measurements

Electrochemical measurements were done by means of solar-
tron electrochemical analyzer model (1280B) interfaced with

an IBM computer and Z plot and corrware software were used
for data acquisition and analysis.

2.4.1. Potentiodynamic polarization curves

Polarization experiments were carried out in a conventional
three-electrode glass cell with a platinum counter electrode
and a saturated calomel electrode (SCE) as reference with a
luggin capillary bridge. The cathodic plot was always
determined first; the open-circuit potential was then re-estab-

lished and the anodic plot was determined. The anodic and
cathodic polarization curves were recorded at a constant scan
rate of 2 mV s�1. Inhibition efficiencies were determined from

corrosion currents calculated by the tafel extrapolation method.

2.4.2. Electrochemical impedance spectroscopy

Impedance spectra were obtained in the frequency range of

20 kHz to 0.1 Hz. A sine wave with 10 mV amplitude was used
to perturb the system (Mehdi et al., 2003; Bentiss et al., 2005).
SCE was used as reference and a platinum plate was used as

counter electrode. All potentials were reported versus SCE.
The charge transfer resistance (Rct) values were obtained from
the diameter of the semi circles of the Nyquist plots. The inhi-

bition efficiency (IE) of the inhibitor was calculated from Rct

values using the following equation:

IE ð%Þ ¼ ðRctðIÞ � RctÞ=ðRctIÞ � 100 ð1Þ
2.4.3. Surface analysis

The surface morphology of mild steel specimens was exam-
ined before and after exposure to HCl for 12 h with and
without inhibitor using Jeol JSM 6390 scanning electron

microscope. The energy of the acceleration beam employed
was 20 keV.

3. Results and discussion

3.1. Effect of immersion time

The weight loss study results indicated the increase in IE with
increase in time of immersion till 3 h. At 3 h, efficiency was
maximum 97.21 and then decreased to 92.02 at 24 h. The best

performance of the PVAMOA has been perceived at 3 and 6 h
of immersion period with the entire concentration of the inhib-
itor. The variation of inhibition performance of PVAMOA

with immersion time at various concentrations is shown in
Fig. 3.
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3.2. Effect of temperature

The effect of temperature on the inhibited acid–metal reaction
is very complex, because many changes occur on the metal
surface such as rapid etching, desorption of inhibitor and the

inhibitor itself may undergo decomposition (Bentiss et al.,
2005). The change of the corrosion rate (CR) at selected con-
centrations of PVAMOA during 1/2 h of immersion at differ-
ent temperatures (303–343 K) was studied in 1 M HCl, both in

the absence and presence of PVAMOA and CR was calculated
using the following expression:

CR ðmpyÞ ¼ 534W=DAT ð2Þ

where, W is the weight loss in g, D is the density of mild steel in

g/cm2, A is the area of the specimen in cm2, and T is the expo-
sure time in hours.

In general IE increases with the inhibitor concentration

(Li et al., 2009). But in acidic media, corrosion of metal
is accompanied with evolution of H2 gas, rise in tempera-
ture accelerates CR which results in a higher dissolution

rate of metal. It has been observed from Table 1 that IE
increased with increase in temperature up to 323 K and be-
yond this decrease in efficiency was noted. The decrease in
IE with temperature might be attributed to desorption of

the inhibitor molecule from the metal surface at higher tem-
peratures (Shukla and Quraishi, 2010). When temperature
increased, CR increased which was due to desorption of

PVAMOA from the metal surface and exposure of more
area of the metal surface to acidic medium. The decreased
in the adsorption at higher temperature indicated that phys-

ical adsorption of inhibitor (Maayata and Al-Rawashdeh,
2004).
Table 1 Corrosion rate of mild steel and inhibition efficiency of PV

Conc. (ppm) 303 K 313 K 323 K

CR (mpy) IE (%) CR (mpy) IE (%) CR

Blank 1250.72 4246.69 6954

100 459.64 63.25 1269.33 70.11 1646

200 442.63 64.61 1159.77 72.69 1450

400 429.12 65.69 1176.33 72.30 1349

600 422.99 66.18 1137.26 73.22 1322

800 356.83 71.47 1096.07 74.19 1204

1000 288.16 76.96 948.28 77.67 1169

2000 268.53 78.53 607.27 85.70 910

Table 2 Activation and thermodynamic parameters of mild steel in

Conc. (ppm) Ea (kJ/mol) k · 109 (mg /cm2) DG (kJ/ppm)

Blank 52 1.89 382.52 393.51

100 59 9.59 389.51 400.49

200 58 7.28 389.02 400.01

400 57 4.16 387.74 398.72

600 56 2.31 386.37 397.36

800 56 2.51 386.84 397.83

1000 56 2.12 386.87 397.86

2000 56 1.55 386.68 397.67
To calculate activation and thermodynamic parameters of
the corrosion process, Arrhenius Eq. (1) and transition state
Eq. (2) were used

logCR ¼ log k� ðEa=2:303RTÞ ð3Þ

CR ¼ RT=NhexpðDS=RÞexpð�DH=RTÞ ð4Þ

where, Ea is the apparent activation energy, R is the molar gas
constant, k is the frequency factor, h is Planck’s constant, N is
the Avogadro’s number, DS is entropy of activation and DH is

enthalpy of activation. Values of apparent activation energy of
corrosion (Ea) for mild steel in 1 M HCl with the absence and
presence of various concentrations of PVAMOA were deter-

mined from the slope of log (CR) versus 1/T plots and k ob-
tained from the intercept (logk) are shown in Table 2.

Table 2 showed that the values of Ea for inhibited solution

were higher than those for uninhibited solution. The higher
values of Ea indicated that the dissolution of mild steel was
slow in the presence of PVAMOA. Rise in activation energy
in the presence of inhibitor was explained in different ways

in the literature. The decrease in apparent activation energy
at higher levels of inhibition arises from a shift of the net cor-
rosion reaction, from uncovered surface to directly involving

the adsorbed sites. The increase in activation energy could be
attributed to an appreciable decrease in the adsorption of the
inhibitor on the mild steel surface with increase in temperature

(Szauer and Brand, 1981). Due to more desorption of inhibitor
molecules at higher temperatures the greater surface area of
mild steel comes in contact with aggressive environment,

resulting in an increase of corrosion rates with temperature
(Herrag et al., 2010).

The values of k were higher for inhibited solution than
those for uninhibited solution. It was clear from Eq. 3 that
AMOA for mild steel corrosion at various temperatures.

333 K 343 K

(mpy) IE (%) CR (mpy) IE (%) CR (mpy) IE (%)

.84 10823.88 15675

.90 76.32 3905.25 63.92 8182.35 47.8

.78 79.14 3664.96 66.14 7563.19 51.75

.24 80.60 3160.57 70.80 7368.82 52.99

.11 80.99 2783.90 74.28 7006.72 55.30

.57 82.68 2647.52 75.54 6085.03 61.18

.80 83.18 1893.09 82.51 5395.33 65.58

.38 86.91 1688.52 84.40 4233.81 72.99

1 M HCl without and with PVAMOA.

DH (kJ/ppm) DS (kJ /K/ppm)

404.50 415.49 426.48 49.55 �1098.93
411.47 422.46 433.44 56.75 �1098.22
410.99 421.97 432.96 56.22 �1098.34
409.71 420.70 431.68 54.87 �1098.59
408.35 419.34 430.33 53.42 �1098.84
408.82 419.81 430.79 53.90 �1098.81
408.85 419.84 430.83 53.91 �1098.88
408.66 419.65 430.64 53.68 �1099.01
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the higher Ea and the lower k lead to the lower CR. When the
concentration of inhibitor was relatively higher, the decrease in
mild steel CR was mostly linked to pre exponential factor. In

general, the effect of Ea on mild steel corrosion was larger than
that of k. However, if the change in k was larger than that in
Ea, k value might be a dominating factor to determine the cor-

rosion of mild steel. In the present study, values of Ea and k
vary in a similar manner and therefore, the combined effect
of Ea and k resulted in the increase of CR with temperature

(Ahamad et al., 2010).
A plot of log (CR/T) versus 1/T was shown in Fig. 4.

Straight lines were obtained with slope (�DH/2.303 R) and

intercept of [log (R/Nh) + (DS/2.303 R)] from which DH
and DS were calculated and are listed in Table 2. Inspection
of these data revealed that the thermodynamic parameter
(DH) for dissolution reaction of mild steel in 1 M HCl in

the presence of inhibitor concentration was higher (53.6–
56.7 kJ ppm�1) than that in the absence of inhibitor
(49.5 kJ ppm�1). The positive sign of DH reflected the endo-

thermic nature of the mild steel dissolution process suggesting
that the dissolution of mild steel was slow (Guan et al., 2004)
in the presence of inhibitor. It was noticed that Ea and DH
values vary in the same way (Table 2). This result permitted
to verify the known thermodynamic relation between Ea and
DH as shown in Table 2.

DH ¼ Ea �RT ð5Þ

Large and negative values of entropies (DS) implied that the

activated complex in the rate determining step represents an
association rather than a dissociation step, meaning that
decrease in disordering takes place on going from reactants

to the activated complex (Martinez and Stern, 2002).
The change in activation free energy (DG) of the corrosion

process can be calculated at each temperature by applying the

equation

DG ¼ DH� TDS ð6Þ

The calculated DG values are presented in Table 2. The val-
ues of DG were positive and showed almost no change with
increasing temperatures, indicating that the activated complex

was not stable and the probability of its formation decreased
somewhat with rise in temperature. However DG values for
the inhibited system revealed that in the course of inhibitor

addition, the activated corrosion complex becomes less stable
as compared to its absence.
3.3. Adsorption isotherm and adsorption parameters

In order to gain more information about the mode of adsorp-

tion of the composite on the mild steel surface, the experimen-
tal data have been tested with several adsorption isotherms.
The weight loss temperature results were used to calculate

the adsorption isotherm parameters. The most frequently used
isotherms are Langmuir, Frumkin, Temkin, Flory-Huggins
and thermodynamic/kinetic model of El-Awady isotherm.

Inhibitor molecules were adsorbed on the metal surface if the
interaction between molecule and metal surface was higher
than that of the water molecule and the metal surface. Many
adsorption isotherms were plotted and Langmuir adsorption

isotherm was found to be the best description of the adsorp-
tion behavior. Langmuir adsorption isotherm is given by the
following equation:

logðC=hÞ ¼ logC� logK ð7Þ

The values of regression coefficients (R2) confirmed the
validity of this approach.

Though the linearity of the Langmuir plot (Fig. 5) may be

taken to suggest that the adsorption of inhibitor follows the
Langmuir isotherm, the considerable deviation of the slope
from unity indicated that the isotherm could not be strictly ap-

plied (Table 3). It has been postulated in the derivation of
Langmuir isotherm equation that adsorbed molecules did
not interact with one another, but this was not true in the case
of large polymer molecules having polar atoms or groups

which could be adsorbed on the metal surface. Such adsorbed
species interact by mutual repulsion or attraction and would
affect the slope. The deviation of the slope could also be inter-

preted due to the changes in adsorption heat with increasing
surface coverage which has also been ignored in the derivation
of Langmuir isotherm (Oguzie et al., 2004).

The experimental data have been then fitted into the mod-
ified form of Langmuir isotherm known as El-Awady isotherm
which can appropriately represent the adsorption behavior of

the inhibitor onto the iron surface.
El-Awady isotherm is given by (El-Awady et al., 1992)

logðh=1� hÞ ¼ logKþ y log C ð8Þ

where, y is number of inhibitor molecules occupying one ac-
tive site. h (IE/100) is the surface coverage. C is the concentra-

tion, K is the constant related to the equilibrium constant of
adsorption process. Kads = K1/y and y represent the number
of inhibitor molecules occupying a given site. The values of

1/y calculated from El-Awady model is given in Table 3. The
on the mild steel surface in 1 M HCl solution.



Table 3 Adsorption parameters calculated from Langmuir adsorption isotherm.

Temperature (K) Kads/ppm 1/y R2 Slope DGads (kJ/ppm)

303 4.73 · 104 3.7603 0.7771 0.2659 �25.64
313 1.68 · 105 3.9282 0.6630 0.2545 �29.78
323 1.91 · 106 4.6013 0.9282 0.2173 �37.26
333 3.07 · 104 2.5293 0.9056 0.3953 �26.98
343 5.39 · 103 2.8750 0.8687 0.3478 �22.83
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values of 1/y less than one imply multilayer adsorption. In the

current work the values of 1/y obtained were more than unity
which indicates that each molecule of PVAMOA involved in
the adsorption process was attached to more than one active

site on the metal surface. Kads represents the strength between
adsorbate and adsorbent. Larger values of the Kads implied
more efficient adsorption and hence better IE. With increase

in the temperature, Kads value decreased in the presence of
PVAMOA indicating that the adsorption of composite on
the mild steel surface was unfavorable at higher temperatures.

The equilibrium constant for the adsorption process was re-

lated to the standard free energy of adsorption by the
expression

DGads ¼ �2:303RT logð55:5KadsÞ ð9Þ

where DGads is Gibbs free energy of adsorption, T is the tem-

perature in Kelvin and 55.5 is the molar concentration of water
in solution. The negative values of DGads ensure the spontane-
ity of adsorption process and stability of the adsorbed layer on
Table 4 Electrochemical parameters for the corrosion of mild steel

Conc. (ppm) Ecorr (mV(SCE)) Icorr 10
�4 (mA /cm2) ba (mV

Control �481.11 59.81 153.48

100 �454.29 32.22 132.6

200 �447.93 23.73 124.87

400 �451.6 23.34 145.11

600 �445.94 21.7 140.62

1000 �443.37 17.52 134.37

2000 �459.04 14.91 149.22
the metal surface (Bentiss et al. 2005). Generally, values of
(DGads) up to �20 kJ ppm�1 are consistent with the electro-
static interactions between the charged molecules and the
charged metal (physisorption) while those around

�40 kJ ppm�1 or higher are associated with chemisorption
as a result of sharing or transfer of electrons from polymer
molecules to the metal surface to form a coordinate type of

bond (chemisorption) (Hosseini et al., 2003). The values of
DGads listed in Table 3 indicate the chemisorption of
PVAMOA on the mild steel surface. Inspection of Table 3 re-

vealed that DGads value decreases from �26 to �22 kJ ppm�1
with increasing temperature from 333 to 343 K. These results
showed that inhibition efficiency decreased with increase in

temperature (Ahamad and Quraish, 2010).

3.4. Electro chemical measurements

3.4.1. Tafel polarization

The Tafel polarization curves for mild steel in hydrochloric acid
with the addition of various concentrations of PVAMOA are

shown in Fig. 6. Electrochemical parameters such as corrosion
current density (Icorr), corrosion potential (Ecorr), Tafel con-
stants (ba and bc), IE and CR were calculated from the Tafel

plots and are given in Table 4. It was evident from the Table 4
that the corrosion current value (Icorr) was decreased from
59.81 mAcm�2 of the blank to 32.22 mAcm�2 with the addition
of 100 ppm inhibitor and it gets further reduced gradually with

increasing concentrations of inhibitor. No definite trendwas ob-
served in the shift ofEcorr values. Both anodic and cathodic reac-
tions of mild steel electrode corrosion were inhibited with the

increase of PVAMOA concentration and the addition of PVA-
MOA in 1 M HCl solution modified slightly the cathodic and
anodic slopes (Fig. 6 and Table 4). This result showed that the

addition of PVAMOA reduced the anodic dissolution and also
retards the hydrogen evolution reaction, indicating that this
inhibitor exhibited both cathodic and anodic inhibition effects

(Olivares et al. 2006). Therefore, PVAMOA can be classified
as inhibitor of relatively mixed effect (anodic/cathodic inhibi-
in 1 M HCl containing PVAMOA.

/dec) bc (mV/dec) IE (%) RP (Ohm cm2) IE (%)

124.9 4.85

114.61 46.13 7.53 35.59

103.18 60.32 12.09 59.88

122.48 60.98 12.44 61.01

105.6 63.72 12.5 61.20

98.69 70.71 13.3 63.53

137.79 75.07 16.47 70.55



Table 5 Parameters derived from Nyquist plot of mild steel

in1 M HCl containing PVAMOA.

Concen. (ppm) Rct (Ohm cm2) IE (%) Cdl(lF/cm
2) h

Control 14.59 39.04

100 38.5 62.10 16.63 0.57

200 40.35 63.84 15.86 0.59

400 45.52 67.95 14.06 0.64

600 50.05 70.85 12.79 0.67

800 76.33 80.89 8.39 0.79

1000 94.99 84.64 6.74 0.83

2000 173.73 91.60 3.68 0.91

Figure 7 Nyquist plot of mild steel in 1 M HCl with different

concentrations of PVAMOA.
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tion) in 1 MHCl. Itwas also observed that the values of ba and bc
did not show any significant change indicating that the studied
inhibitor is a mixed type inhibitor.

3.4.2. Polarization resistance study

The polarization resistance (Rp) values of mild steel in hydro-
chloric acid increased from 4.85 Ohm cm2 that of the blank to
16.47 Ohm cm2 with 2000 ppm concentration of inhibitor (Ta-

ble 4). The increase in Rp value showed that IE increases with
increase in the inhibitor concentration.
Figure 8 (a) Scanning electron micrographs of mild steel immersed in

of PVAMOA deposited on the mild steel surface.
3.4.3. Electro chemical impedance studies

The impedance parameters deduced from the analysis of Ny-

quist diagram and values of IE are given in Table 5. As it
can be seen, the impedance response of mild steel in uninhib-
ited solution has significantly changed after the addition of

PVAMOA. Nyquist plots (Fig. 7) were depressed into the real
axis and not perfect semi-circles as a result of the roughness
and other in homogeneities of the metal surface (Lebrini

et al., 2007). Double layer capacitance values (Cdl) and
charge-transfer resistance values (Rct) were obtained from
impedance measurements. By increasing the inhibitor concen-
tration, Rct value increased. A large Rct has associated with a

slower corroding system. Furthermore, better protection pro-
vided by an inhibitor could be associated with a decrease in
capacitance of the metal. The decrease in Cdl, which could re-

sult from a decrease in local dielectric constant and/or an in-
crease in the thickness of the electrical double layer, suggests
that PVAMOA molecules function by adsorption at the metal

solution/interface. Increase in surface coverage value from 0.57
to 0.91 has been found due to reduction in Cdl value in the
presence of inhibitor.

3.5. Scanning electron microscope

The micrograph of mild steel specimen without polymer com-
posite showed a large number of pits and cracks due to the at-

tack of aggressive corrosive medium (Fig. 8a). SEM
micrographs of mild steel specimen in the presence of polymer
composite illustrated a uniform layer formation on the metal

surface (Fig. 8b). This showed that PVA incorporated polyme-
thoxyaniline has more surface adhesion and close packing nat-
ure. (Athawal and Bhagwat, 2003). As shown in the SEM

image, each unit has many polymer granules. This might be
due to the multiple nucleation of polymer preferentially on
the same site of the substrate. In some of the micrographs, it

was possible to see a compact granular structure with few
pores between the grains. This observation was similar to the
report of polyaniline metal bilayer coating (Ananda Kumar
et al., 2008). The resulting micrograph revealed that the sur-

face was strongly damaged owing to corrosion in the absence
of the inhibitor, but in the presence of the inhibitor there
was much less damage on the surface. This was attributed to

the formation of a good protective film on the mild steel sur-
face (Migaheda et al., 2011).
1 M HCl at 500 magnification. (b) Scanning electron micrograph
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3.6. Mechanism of inhibition

The inhibition of active dissolution of the metal was due to the
adsorption of the inhibitor molecules on the metal surface
forming a protective film. Poly methoxy aniline might adsorb

on the iron surface as (i) by sharing of electrons between the
nitrogen atom and iron. (ii) through p electron interactions be-
tween the benzene ring of the molecule and the metal surface.
(iii) through the cationic form with positively charged part of

the molecule oriented toward the negatively charged iron sur-
face. As chloride ions were adsorbed on the iron surface, the
cationic form of methoxy aniline molecule can adsorb on the

iron surface. The adsorption of polymer composite on anodic
sites occurs through the p electrons of the aromatic rings and
lone pair electrons of nitrogen and oxygen atoms which may

decrease the anodic dissolution of mild steel. The adsorption
mechanism may take place by electrostatic attraction between
the charged molecules and charged metallic ions. As the elec-

tron density around nitrogen of the amino group formed coor-
dination bonds with Fe atoms a protective layer on the metal
surface evolves to shield steel from the aggressive environment
(Azhar et al., 2002).
4. Conclusion

The results obtained from weight loss, EIS and polarization

measurements showed that the adsorption of PVAMOA
composite at the metal/acid solution interface occurs which
inhibited corrosion of mild steel in 1 M HCl solution. The

inhibition efficiencies determined by weight loss and electro-
chemical measurements were in reasonable agreement. The
inhibition efficiency of PVAMOA was found to decrease

with increasing temperatures. The corrosion process was
inhibited by the adsorption of PVAMOA on the mild steel
surface fits Langmuir isotherm followed by El Awady
adsorption model. The kinetic parameter obtained from

the study indicated that the presence of inhibitor increased
the activation energy and the negative value of DG showed
the spontaneous adsorption of the inhibitor on the surface

of mild steel. SEM analysis has given the inference of the
surface morphology that was smoothly covered by compos-
ite film.
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