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Abstract Exact solutions of nonlinear evolution equations (NLEEs) play a vital role to reveal the
internal mechanism of complex physical phenomena. In this article, we implemented the modified
simple equation (MSE) method for finding the exact solutions of NLEESs via the (2 + 1)-dimensional
cubic Klein—-Gordon (cKG) equation and the (3 + 1)-dimensional Zakharov—Kuznetsov (ZK) equa-

tions; tion and achieve exact solutions involving parameters. When the parameters are assigned special

Solitary wave solutions;
(2+ 1)-Dimensional cubic
Klein—Gordon equation;

(3 + 1)-Dimensional Zakha-
rov—Kuznetsov equation

values, solitary wave solutions are originated from the exact solutions. It is established that the
MSE method offers a further influential mathematical tool for constructing exact solutions of
NLEEs in mathematical physics.

© 2013 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

Nonlinear phenomena exist in all areas of science and engi-
neering, such as fluid mechanics, plasma physics, optical fibers,
biology, solid state physics, chemical kinematics, chemical
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physics and so on. It is well known that many NLEEs are
widely used to describe these complex physical phenomena.
Therefore, research to look for exact solutions of NLEEs is ex-
tremely crucial. So, to find effective methods to discover ana-
lytic and numerical solutions of nonlinear equations have
drawn an abundance of interest by a diverse group of research-
ers. Accordingly, they established many powerful and efficient
methods and techniques to explore the exact traveling wave
solutions of nonlinear physical phenomena, such as, the Hiro-
ta’s bilinear transformation method (Hirota, 1973; Hirota and
Satsuma, 1981), the tanh-function method (Malfliet, 1992;
Nassar et al., 2011), the (G'/G)-expansion method (Wang
et al., 2008; Zayed, 2010; Zayed and Gepreel, 2009; Akbar
et al., 2012a,b,c,d; Akbar and Ali, 2011a; Shehata, 2010), the

1815-3852 © 2013 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

http://dx.doi.org/10.1016/j.jaubas.2013.05.001


mailto:ali_math74@yahoo.com
mailto:alimath74@gmail.com
http://dx.doi.org/10.1016/j.jaubas.2013.05.001
http://www.sciencedirect.com/science/journal/18153852
http://dx.doi.org/10.1016/j.jaubas.2013.05.001
http://crossmark.dyndns.org/dialog/?doi:10.1016/j.jaubas.2013.05.001&domain=pdf

Exact solutions of the (2 + 1)-dimensional cubic Klein—-Gordon equation 75

Exp-function method (He and Wu, 2006; Akbar and Alj,
2011b; Naher et al., 2011, 2012), the homogeneous balance
method (Wang, 1995; Zayed et al., 2004), the F-expansion
method (Zhou et al., 2003), the Adomian decomposition meth-
od (Adomian, 1994), the homotopy perturbation method
(Mohiud-Din, 2007), the extended tanh-method (Abdou,
2007; Fan, 2000), the auxiliary equation method (Sirendaoreji,
2004), the Jacobi elliptic function method (Ali, 2011), Weierst-
rass elliptic function method (Liang et al., 2011), modified
Exp-function method (He et al., 2012), the modified simple
equation method (Jawad et al., 2010; Zayed, 2011a, Zayed
and Ibrahim, 2012; Zayed and Arnous, 2012), the extended
multiple Riccati equations expansion method (Gepreel and
Shehata, 2012; Gepreel, 2011a; Zayed and Gepreel, 2011)
and others (Gepreel, 2011b,¢).

The objective of this article is to look for new study relating
to the MSE method to examine exact solutions to the cele-
brated (2+ 1)-dimensional cKG equation and the (3+1)-
dimensional ZK equations to establish the advantages and
effectiveness of the method. The cKG equation is used to mod-
el many different nonlinear phenomena, including the propa-
gation of dislocation in crystals and the behavior of
elementary particles and the propagation of fluxions in Joseph-
son junctions. The (3 + 1)-dimensional Zakharov—Kuznetsov
equation describes weakly nonlinear wave process in dispersive
and isotropic media e.g., waves in magnetized plasma or water
waves in shear flows.

The article is organized as follows: In Section 2, the MSE
method is discussed. In Section 3 we exert this method to the
nonlinear evolution equations pointed out above, in Section 4
physical explanation, in Section 5 comparisons and in Section 6
conclusions are given.

2. The MSE method

Suppose the nonlinear evolution equation is in the form,
) =0, (2.1)

F(H, ula uxa u)‘u u27 ux,\‘7 uth .

where F'is a polynomial of u(x, y, z, f) and its partial derivatives
wherein the highest order derivatives and nonlinear terms are
involved. The main steps of the MSE method (Jawad et al.,
2010; Zayed, 2011a; Zayed and Ibrahim, 2012; Zayed and Ar-
nous, 2012) are as follows:

Step 1: The traveling wave transformation,
u(x,y,z,t) = u(f), E=x+y+zt it (2.2)

allows us to reduce Eq. (2.1) into the following ordinary differ-
ential equation (ODE):

Plu,ut,un,...) =0, (2.3)

where P is a polynomial in u(¢) and its derivatives, while
w(é) = %

Step 2: We suppose that Eq. (2.3) has the solution in the

form
P\’

(&) = Zojc( =

where C(i = 0, 1, 2, 3,...) are arbitrary constants to be deter-

mined, such that C, # 0 and ¢(¢) is an unspecified function to

be found out afterward.
Step 3: We determine the positive integer n appearing in Eq.
(2.4) by considering the homogeneous balance between the
highest order derivatives and the highest order nonlinear
terms come out in Eq. (2.3).
Step 4: We substitute Eq. (2.4) into (2.3) and then we
account the function ¢(&). As a result of this substitution,
we get a polynomial of (¢'(£)/¢(&)) and its derivatives. In
this polynomial, we equate the coefficients of same power
of ¢/(¢) to zero, where j > 0. This procedure yields a sys-
tem of equations which can be solved to find C;,¢p(¢) and ¢
'(&). Then the substitution of the values of C;, ¢(&) and ¢'(&)
into Eq. (2.4) completes the determination of exact solu-
tions of Eq. (2.1).

3. Applications

3.1. The (2+ 1)-dimensional cubic Klein—Gordon (cKG)
equation

In this sub-section, first we will exert the MSE method to find
the exact solutions and solitary wave solutions of the cele-
brated (2+ 1)-dimensional cKG equation,

Uy + Uy — Uy + 0w + pud =0 (3.1)

where o and f are non zero constants.
The traveling wave transformation

u=u(x,y,1), E=x+y—Ait, u(x,y1)=u(), (3-2)
transforms the Eq. (3.1) to the following ODE:
(2 — 2wl + qu+ pu® = 0. (3.3)

Balancing the highest order derivative and nonlinear term of
the highest order, yields n = 1.
Thus, the solution Eq. (2.4) takes the form,

u(é) = Co+ C (((f;)/((g)))’ (3.4)

where Cy and C; are constants such that C; # 0, and ¢(¢) is an
unspecified function to be determined. It is simple to calculate
that

w = C, (% - (%)) (3.5)

wr = C <M) _30 <€b//¢>/) 120 (@)7 (3.6)

¢ ¢’ ¢
3 2
w=C (%) +3C1C <%) +3C,C; (%) +C. (3.7)

Substituting the values of u, u”, and u° into Eq. (3.3) and
equating the coefficients of ¢°,¢~',¢p"%,¢ > to zero, yields

aCy + BCy = 0. (3.8)
(A =2)¢" — (o +3BC3) ¢ = 0, (3.9)
(72 = 2)1 + BCyCip' =0, (3.10)
(BCT =22 =2)C1)(¢')* = 0. (3.11)

Solving Eq. (3.8), we obtain
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Co=0,+1 (%)

And solving Eq. (3.11), we obtain

2 J—
Ci==x (%), since C; #0.

Case-I: When C, = 0, we obtain trivial solution, therefore

the case is rejected.
Case-II: When Cy = £/,/ (ﬁ), Eqgs. (3.9) and (3.10) yield

¢/I/ _
o +1=0, (3.12)
where [ = aﬁoﬂ CC, i
Integrating, Eq. (3.12) with respect to &, we obtain
P1(&) = a, exp(—1§) (3.13)
Using Eq. (3.13), from Eq. (3.10), we obtain
—a) (4 —2) exp(=£)

(&) = . 3.14
¥ e (3.14)
Upon integration, we obtain

=2 ~1
$(0) = ay + WA Z 2 exp(Zh) (3.15)

u+38Ch

where a; and a, are constants of integration. Therefore, the ex-
act solution of the cKG Eq. (3.1) is

(a+3[3C(2))
BCo
al(izf 2) exp(=1§)
ay (2 +3BCy) + ar (A2 = 2) exp(—1¢)

Substituting the values of Cy, C;, and / and simplifying, we
obtain

M(C’) = C() —

(3.16)

W@ =I

) (z) . 2a,(72 —2){cosh< (ﬁ>“> +sinh< <ﬁ>c)} ‘
(a1 (7> —2) — 2ay4) cosh <\/ (ﬁ) 5) +(ay (2 —2) + 2aya) sinh <\/ (ﬁ) \)

(3.17)

where ¢ = x + y — Ar.
We can arbitrarily choose the parameters a; and a,. There-
fore, if we set a; = 2"”‘ , Eq. (3.17) reduces to:

uia(x, 3, 1) = ilm

x coth (1/ x+y—u> (3.18)
Again if we set a; = 2“2” , Eq. (3.17) reduces to:
[ (o
usa(x,y,t) = £I (E)
X tanh (1/ x+y—)t> (3.19)

Using hyperbolic function identities, from Egs. (3.18) and
(3.19), we obtain the following periodic solutions

usg(x,y,1) =+ (Z)

X cot (1/ x—o—y - ) (3.20)
And
u73 X y :l:“ %)

X tan (1/ x—i—y—m) (3.21)

Remark 1. Solutions (3.16)—(3.21) have been verified by
substituting them back into the original equation and found
correct.

3.2. The (3+ 1)-dimensional Zakharov—Kuznetsov (ZK)
equation

Now we will study the MSE method to find exact solutions and
then the solitary wave solutions to the (3 + 1)-dimensional ZK
equation

U+ auity + gy + 1y, +u.. =0, (3.22)
where
u= “(x7y727 l)a é = x+y +z— ;"l?u(xayaz7 t) = M(f) (323)

The traveling wave transformation (3.23) reduces to Eq. (3.22)
to the following ODE:

—ul + auu! + 3ult = 0. (3.24)
Integrating Eq. (3.24) with respect to &, we obtain

S
—Au+ S au +3u =0. (3.25)

Balancing the highest order derivative ' and nonlinear term
u?, we obtain 2n = n + 1, which gives n = 1.
Therefore, the solution (2.4) takes the form

o-c (%)

where Cy and C; are constants such that C; # 0, and ¢(¢) is an
unstipulated function to be determined. It is easy to make out
that

e(s-(9)

= C; +2C,C, (q;) +C; (‘Z’)

(3.26)

(3.27)

(3.28)
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Substituting the values of u, «' and »* from (3.26), (3.27), and
(3.28) into Eq. (3.25) and then equating the coefficients of ¢°,

¢!, and ¢~ to zero, we respectively obtain
—1Cy+ %aCﬁ =0, (3:29)
3C ¢+ Ci(aCy — L)t =0, (3.30)
Gaci - 3C1) (1) =0 (3.31)
From Eq. (3.29), we obtain
Cy =0, Q
And from Eq. (3.31), we obtain
C = g, since C,#0.

Case-I: When Cy = 0 Egs. (3.30) yield
% _ g (3.32)
Integrating Eq. (3.32), we obtain
P1(&) = arexp G 5), (3.33)
where a; is a constant of integration.

Integrating (3.33) with respect to £, we obtain
(&) =ar+ 3—;11 exp (g 5)7 (3.34)

where a, is a constant of integration.

Therefore, the exact solution of the (3 + 1)-dimensional ZK
equation (3.22) is

Ja; exp (4
#Qé)) ) (3.35)

u(@) = Co+ G <,1a2 + 3a exp (4¢)

Substituting the values of Cy and C; into Eq. (3.35) and simpli-
fying, we obtain

o2 3/ay (cosh (£&) + sinh (£¢))
u(é) = (3ay + Zay) cosh (2¢) + (3ay — Jay) sinh (£¢) )

(3.36)

where ¢ = x + y + z — AL
We can randomly choose the parameters «a; and a,. Setting
ay =*2, Eq. (3.36) reduces to:

A A
u (x,,z,1) = p (1 + tanh ( (x+y+z— it))) (3.37)
Again setting a; = — ﬂ q. (3.36) reduces to:

A A
ury(x,y,z,1) = 2 (1 + coth (E (x+y+z— 2[))). (3.38)

Case-I1I: When Cy = 2/ , from Eq. (3.30), executing the par-
allel course of action Wthh described in Case-1, we obtain

a

2 3a; (1 — tanh (£¢))
us(¢) = — (1 * Jazsech(4E) — 3ay (1 —3tanh (g&)))’ (3.39)

where ¢ = x + y + z — At

Remark 2. Solutions 3.35, (3.36)—(3.39) have been checked by
substituting them back into the original equation and found
correct.

4. Physical explanations

In this section, physical explanations of the determined solu-
tions are illustrated to show the effectiveness and convenience
of the MSE method for seeking exact solitary wave solution
and periodic traveling wave solution of nonlinear wave equa-
tions named (2+ 1)-dimensional cKG equation and the
(3+ 1)-dimensional ZK equation.

4.1. Explanations

4.1.1. The (2+ 1)-dimensional cubic Klein—-Gordon (¢KG)
equation

The wave speed 4 and the nonzero constants o, and f play an
important role in the physical structure of the solutions ob-
tained in Egs. (3.18)—(3.21). Now we will discuss the physical
structure of Egs. (3.18) and (3.19). For different values of 4,
o and f the following cases arise in Egs. (3.18) and (3.19):

(i) In Egs. (3.18)-(3.21), the wave speed i# +./(2) or
A#0.

() If —v2<4<+/2 and « >0, § >0 then from Egs.
(3.18) and (3.19) we get complex soliton solutions.

(i) If —v2 < A< v2and « < 0, § < 0 then Egs. (3.18) and
(3.19) turn into Egs. (3.20) and (3.21) respectively, i.c.,
they provide plane periodic solutions.

(iv) f —=v2 < . <+2and o < 0, § > 0 then Egs. (3.18) and
(3.19) give complex periodic solutions.

W) If—v2<i<+2anda > 0, < 0then Eq. (3.18) fab-
ricates singular kink solution and Eq. (3.19) furnishes
kink solutions.

(vi) If A < —=v2or . >+2and o > 0, § > 0 then Egs. (3.18)
and (3.19) turn into Egs. (3.20) and (3.21) respectively,
i.e., they provide plane periodic solutions.

(vil) If A < —v2or 2> +v2and o < 0, § < 0 then Egs. (3.18)
and (3.19) donate complex solitons.

(vii)) If A < =2 or > +v2and « < 0, § > 0 then Eq. (3.18)
constructs singular kink solution and Eq. (3.19) assem-
bles kink solutions.

(ix) f A< —=v2or /. >+v2and o > 0, § < 0 then Egs. (3.18)
and (3.19) represent complex periodic solutions.

4.1.2. The (3+ 1)-dimensional Zakharov—Kuznetsov (ZK)
equation

The wave speed 4 and the nonzero constant a play a significant
role in the physical structure of the solutions obtained in Eqs.
(3.37)—(3.39). For different values of A and a the following
cases arise in Eqgs. (3.37)—(3.39):
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(1) In Egs. (3.37)—~(3.39) 2 # 0 and a # 0. For other values of
A and a Eq. (3.37) produce kink solutions and Eq. (3.38)
construct singular kink solutions.

(i) If 1 <0 and a < 0 or a > 0 then Eq. (3.39) provides
singular soliton solutions.

(iii) If 2 > 0 and a > 0 then Eq. (3.39) provides soliton
solutions.

(iv) If 2 > 0 and @ < 0 then Eq. (3.39) provides kink wave
solutions.

(v) In Eq. (3.39) ay,a, # 0.

4.2. Graphical representation

Some of our obtained traveling wave solutions are represented
in the following figures via symbolic computation software
Maple with explanations:

The solution Eq. (3.18) that comes infinity as in trigonom-
etry, is Singular kink solution. Fig. 1 shows the shape of the
exact singular kink-type solution of the (2+ 1)-dimensional
cKG Eq. (3.1) (only shows the shape of Eq. (3.18) with wave
speed A = -1,y =20 =1, = —1and —10 < x,7 < 10).

The solution Eq. (3.19) is called the kink solution. Fig. 2
shows the shape of the exact kink-type solution of the
(2+ 1)-dimensional cKG Eq. (3.1) (only shows the shape of
Eq. (3.19) with wave speed 1 =2, y = 0,0 = —1, f = 2 and
—10 < x,t < 10)). The disturbance represented by u(x,y,t) is
moving in the positive x-direction. If we take wave speed
A < 0, then the propagation will be in the negative x-direction.

Egs. (3.20) and (3.21) are the exact periodic traveling wave
solutions of the (2+ 1)-dimensional cKG Eq. (3.1), shapes are
represented in Figs. 3 and 4, respectively. Fig. 3 shows the
shape of Eq. (3.20) with wave speed A1 =2, y =2,
o =0.50,f =1 in the interval —10 < x,r < 10 and Fig. 4
shows the shape of Eq. (3.21) with wave speed A = 2,
y = 0,0 =1, =2 in the interval — 10 < x,r < 10. The Eq.
(3.20) is singular periodic traveling wave solution and Eq.
(3.21) is periodic traveling wave solution.

The solution Egs. (3.37) and (3.39) are the kink solutions.
Figs. 5 and 7 show the shape of the exact kink-type solution
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Figure 1 The shape of Eq. (3.18) with y =2, A = -1, a = 1,

B=—1and —10< x,r < 10.
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Figure 2 The shape of Eq. (3.19) with
y=01=20=—-1,=2and —10 < x,r < 10.

Figure 3 The shape of Eq. (3.20) with A =2, y =2, « = 0.5,
p = 1and —10 < x, < 10.

of the (3+ 1)-dimensional ZK Eq. (3.22) (only show the shape
of Eq. (3.37) with wave speed 2 = 2,a = 1, y = z = 0 in the
interval —10 < x, 1< 10 and Eq. (3.39) with wave speed
A=1,a=—-1,a =1,a,= -1,y =1,z =1 in the interval
—10 < x, t < 10 respectively. The disturbance with y = z = 0
represented by u(x, y, z, t) is moving in the positive x-direction.
If we take wave speed 4 < 0 the propagation will be in the neg-
ative x-direction. These types of waves are traveling waves
whose evolution from one asymptotical state at ¢ — — oo to
other asymptotical state at £ — oo.

The solution Eq. (3.38) that comes infinity, is singular kink
wave solution. Fig. 6 shows the shape of the exact singular
kink-type solution of the (3 + 1)-dimensional ZK Eq. (3.22)
(only shows the shape of Eq. (3.38) with wave speed A = 3,
a=1,y=1,z=2and —10< x, 1< 10) (see Fig. 7).
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Figure 4 The shape of Eq. (3.21) with A =2, y =0, a = 1,
p =2and —10 < x,7 < 10.

Figure 5 The shape of Eq. 3.37) with A =2,a=1,y =z =0,
—10 < x,r < 10.

5. Comparison

Zayed (2011b) studied solutions of the (2+ 1)-dimensional
cKG equation using the (G'/G)-expansion method combined
with the Riccati equation. The solutions of the (2 + 1)-dimen-
sional cKG equation obtained by MSE method are different
from those of the (G'/G)-expansion method combined with
the Riccati equation (see Appendix). Comparing the MSE
method with the (G'/G)-expansion method we might conclude
that the exact solutions have investigated using the (G'/G)-
expansion method with the help of the symbolic computation
software, such as, Mathematica, Maple, to facilitate the com-
plex algebraic computations. On the other hand via the MSE
method the exact solutions to these equations have been
achieved without using any symbolic computation software be-
cause the method is very simple and easy for computations.

._.
("
raa |

| —
[ o [ o
|

1
—
o

-10

Figure 6 The shape of Eq. (3.38) with A =1,a= -1,y =1,
z=2and —10 < x,t < 10.

Figure 7 The shape of Eq. (3.39) with A =1,a= -1, a; = 1,
a=-1l,y=z=1, —10< x,r < 10.

Moreover, in Exp-function method, tanh function method, Ja-
cobi elliptic function method, (G'/G)-expansion method, etc., ¢
(&) is a pre-defined function or solution of a pre-defined differ-
ential equation. But, since in the MSE method ¢ (&) is not pre-
defined or not solution of any pre-defined equation, some fresh
solutions might be found. Consequently, much new and more
general exact solutions of the (2+ 1)-dimensional cKG equa-
tion can be obtained by means of the MSE method with less
effort.

6. Conclusions

In this article, we have found the traveling wave solutions of
the (2+ 1)-dimensional cubic Klein—-Gordon (cKG) equation
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and (3+ 1)-dimensional Zakharov—Kuznetsov (ZK) equation
using the MSE method. These traveling wave solutions are ex-
pressed in terms of hyperbolic, and trigonometric functions
involving arbitrary parameters. When these parameters are ta-
ken special values, the solitary waves are originated from the
traveling waves. Compared to the methods used before, one
can see that this method is direct, concise and effective. This
method can also be used to many other nonlinear equations.
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Appendix A. Zayed (2011b) studied solutions of the (2+1)-
dimensional cKG equation using the (G'/G)-expansion method
and achieved the following calculations and exact solutions:

G ' [200A°B(2 — V*) + oo A + 3Bor A° B + 3Boggor, A
+ G204 AB*(2 — V?) + a0y B + 3BPoggony + 3Poi AB’|
+ G [34%Borjo | + G*[3B* Barjou]
+ G [Py B + 20, B (2 = V)] + G [Borf A* + 20143 (2 — V?)]
+ ooy + ﬁocb =0. (34)
Consequently the following algebraic equations
200 A*B(2 — V*) + o A + 3B A B + 3oy A = 0,
204 AB*(2 — V*) + ooy B + 3BPogoy + 3o AB* = 0,
342 Bodoy = 0,
3B Bty = 0,
BB + 20 B (2 — 7?) =0,
B A + 20,422~V =0
a0y + fog = 0. (35)

Which can be solved to get

o
2[§AB7 0. V=x2-0 (36)

Substituting (3.36) into (3.4) yields

=+ 2/;0;13 (%) (37)

where

E=x+yFun/2 (38)

According to general solutions of the Riccati equations, he
(Zayed, 2011b) got the following families of exact solutions:

==+

Family 1. If A =4, B = —1, then

\/% isech¢, (39)
Or
u(é) = i\/% csché, (40)

where { =x+y F1v/2 +a.

u(¢) =

Family 2. If A = B = +4, then

u(é) = 1/_7206560 &, (41)
ulé) ==+ —2 cscé (42)
=4,/ 7 7

where E =x+y Ftv2+a.
Family 3. If 4 = 1,B = —1, then

u(é) = i\/% (coth & —tanh &), (43)

where { =x+yF1,/2+5
Family 4. If 4 = B = 1, then

u() = £, /g—g (cot & + tan &), (44)
where { =x+yF1,/2 -5

The general solutions of the Riccati equations G'(¢) =
A + BG? are well known which are listed in the following
table:

A B The solution G(&)

% —% tanhé + iseché, cothé de ¢sché, tanhs, coth%

:I:% :I:% secé + tané, :I:lanz, :FcotS +(csc€ — coté)

1 -1 tanhé, cothé

1 1 tani — coté

0 #0 e +C , Where ¢; is an arbitrary constant.
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